Heterogeneous System Composition, Simulation, and Validation with the assistance of IP-XACT

Gary Delp, PhD EE

Mayo Clinic

Special Purpose Processor Development Group (SPPDG)

Purpose and Outline

Convince you of the utility of standards and standard based tools when assembling, simulating, and validating (heterogeneous) components and interconnections

<u>Outline</u>

- Introductions
 - SPPDG
 - IEEE Stds
- IP Reuse
- Interconnections & Integration Making your job harder with automation
- The Talk

SPPDG

MAYO CLINIC

Conclusions and Questions

no recommendations expressed or implied #include <std/disclaimer.h>

- Structure and Resources IP-XACT
 - Verification (+ coverage) UVM
 - Power UPF
 - Quality Assessment QIP
 - Tagged traceability Soft & Hard Tags
 - Additional Semantics and constraints

Special Purpose Processor Development Group (SPPDG) Overview

- Research group in the department of Physiology and Biomedical Engineering at Mayo Clinic
 - Founded in 1971 with initial work in high-speed medical signal processing
 - Still operating under the same Director: Dr. Barry Gilbert
- Since 1978, primarily funded by U.S. Government agencies
 - R & D in high performance electronics and related systems
 - Charter for Mayo: transfer technology to biomedical research and clinical practice
 - SPPDG operates as a government-trusted, unbiased (non-competitive), thirdparty for TRL-1-3 research, proof of concept development, and bleeding edge evaluation and validation

PHOTOGRAPH OF EXPERIMENTAL DYNAMIC SPATIAL RECONSTRUCTOR THREE DIMENSIONAL X-RAY COMPUTED TOMOGRAPHY IMAGING MACHINE (Side View of Rotating Gantry, Showing 14 X-ray Tubes and 14 Video Image Chains Mounted on Gantry; Designed in 1975; Fabricated at Raytheon, Sudbury, MA; Installed at Mayo in 1978)

Real-time 3-D Electronic Tomography 1975-1978

MAYO CLINIC

SPPDG

xxx / 1978 / BKG / 6128v2

Now:

- Power Packaging
- Cooling
- Technology evaluation
- Medical (and other)
 Sensing
- Signal and Power integrity
- Specialized Mathematics
- 6 transistor analysis
- Architecture, analysis & processing
- graph & neural dense SIMD
- Sparse array
- In Memory
- Composites/ optics
- Novel technologies and extreme temperatures

NOV_30 / 2017 / GSD / 46064 - 5

Medical Applications and Beneficial Potentials for Hybrid Computing Platforms

	dical eas	Dense linear algebra	Sparse linear algebra	Graph Algorithms	Frequency Analysis	Data Retrieval/ Filtering/ Sorting	Stochastic processes	Monte Carlo Particle methods
Basic Bio-	Disease Processes		<u>×</u>	<u>×</u>			X	
medical Modeling	Devices / Physics	X			X		X	X
Modeling	Biology						x	x
Clinical science	Population Statistics	Trad	<u>Graph</u>	<u>Graph</u>	<u>Trad</u>	<u>Both</u>	<u>Both</u>	
	Image Formation	X			<u>×</u>		x	
Clinical	Image Analytics	<u>×</u>	<u>x</u>	<u>x</u>	<u>×</u>	<u>×</u>	<u>×</u>	<u>×</u>
Practice	Genomic Analysis	<u>x</u>				<u>×</u>		
	Decision Support		<u>x</u>	<u>×</u>		<u>x</u>	<u>x</u>	
Health	Trend Analytics	<u>Trad</u>	<u>Graph</u>	<u>Graph</u>	<u>Trad</u>	<u>Both</u>	<u>Both</u>	
Management	Privacy Protection					<u>x</u>		

Key Messages & Goals for the talk

GOALS OF STRUCTURED INTERCONNECTIONS

Useful **Functional** Logical Physical Correct Consistent Easy Verify-able Build-able Test-able Abstract-able Reuse-able Transport-able Implement-able

MAYO CLINIC

SPPDG

GOALS OF THE TALK

In 25 minutes you will:

- Know about electronic design automation (EDA) standards as *providers of capability*:
 - IP-XACT IEEE Std 1685-2014
 - Unified verification methodology (UVM)
 - IEEE Std 1800.2
 - Power intent
 IEEE Std1801-2015
 - IP Quality
 IEEE Std 1734-2011
 - IP Tagging VSIA => Accellera Standard
- Know where to find tools to successfully interconnect heterogeneous is systems
 - See Backup for 4 pages of links

Grass Roots to International agreement potential paths to "simplified structure"

(occasionally over 50 standards in an area each with 1000+ pages)

- The UN International Standards association (ISO) has accredited:
 - International Electrotechnical Commission (IEC)
 - The American National Standards Institute ANSI has accredited
 - IEEE Standards Association IEEE
 - IEEE Computer Society has accredited the Design Automation Standards Committee (DASC)
 - The DASC charters working groups for different proposed EDA standards

NOV 30/2017/GSD/46064-9

Outline of the Talk & Progress Toward the Goals

Purpose: Convince you of the new capabilities of standards and standard-based tools for assembling, simulating, and validating (heterogeneous) components and interconnections

- Structure and Resources: IP-XACT
- Verification (+ coverage): UVM
- Power Management: UPF
- Quality Assessment: QIP
- Traceability: Soft & Hard Tags
- Additional Semantics and constraints
- Conclusions and Questions

GOALS OF STRUCTURED INTERCONNECTIONS

F

С

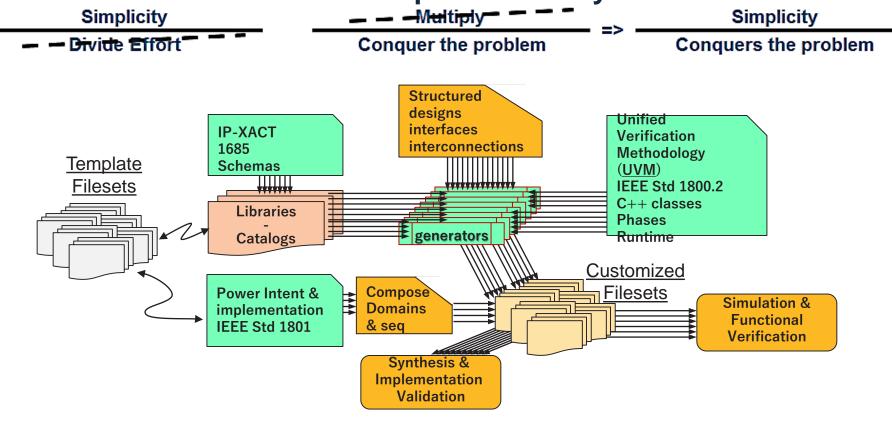
Useful	Verify-able
unctional	Build-able
Logical	Test-able
Physical	Abstract-able
Correct	Reuse-able
onsistent	Transport-able
Easier	Implement-able

Outline of the Talk & Progress Toward the Goals

Purpose: Convince you of the new capabilities of standards and standard-based tools for assembling, simulating, and validating (heterogeneous) components and interconnections

Structure and Resources: IP-XACT

- Verification (+ coverage): UVM
- Power Management: UPF
- Quality Assessment: QIP
- Traceability: Soft & Hard Tags
- Additional Semantics and constraints
- Conclusions and Questions


MAYO

SPPDG

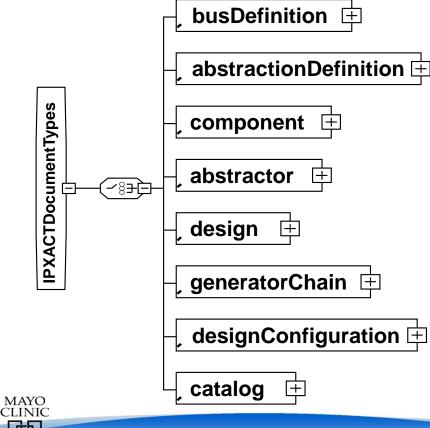
GOALS OF STRUCTURED

Useful	Verify-able		
Functional	Build-able		
Logical	Test-able		
Physical	Abstract-able		
Correct	Reuse-able		
Consistent	Transport-able		
Easier	Implement-able		

Hierarchical Composition of Systems

MAYO CLINIC

SPPDG



Standard Synergies – Data & MetaData

- IP-XACT is Meta-Data
 - information about
 - the information about
 - the design Electronic Databook
- Provides for codified data transfer semantics across languages & tools
- Provides both Concrete and Abstract Abstraction Descriptions
 - Systems composed of components
 - Composed of systems
 - Composed of Components
- Integration Constraints
 - IP-XACT can express limitations of or requirements for adjoining IP's not available in VHDL or Verilog
 - · Generators can check the use of an IP
- Standard Xtensions for Power Management, VIP, Bus Interconnections, Version tracking, . . .

The IP-XACT XML Schema Defines the Syntax for the Documents that Enable System Composition ...

SPPDG

- The <u>SCHEMA</u> of each of the top level documents are used to codify the required/allowable structure for the types of elements. (Syntax)
- Those documents the describe individual "classes of buses, components, etc.
- Instances of documents based on the "classes" of elements hold the Meta-Data for each element of a design.
- Semantic Consistency Rules ensure: That the Humpty Dumpty Principal is followed, "When I use a word, it means exactly what I want it to mean – no more – no less. Who will be the master, you, or the word?"

<xs:schema xmlns:ipxact="http://www.accellera.org/XMLSchema/IPXACT/1685-2014" xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace=<u>http://www.accellera.org/XMLSchema/IPXACT/1685-2014</u> elementFormDefault="qualified">

<xs:schema

<xmlns:ipxact="http://www.accellera.org/XMLSchema
/IPXACT/1685-2014"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.accellera.org
/XMLSchema/IPXACT/1685-2014" elementFormDefault="qualified">
<xs:include schema/IPXACT/1685-2014" elementFormDefault="qualified">
<xs:include schemaLocation="busDefinition.xsd"/>
<xs:include schemaLocation="design.xsd" />
<xs:include schemaLocation="designConfig.xsd" />
<xs:include schemaLocation="abstractionDefinition.xsd"/>
<xs:include schemaLocation="abstractor.xsd" />
<xs:include schemaLocation="abstractor.xsd" />
<xs:group name="IPXACTDocumentTypes">
<xs:annotation>
<xs:documentation>This IP-XACT schema documentation is part of the

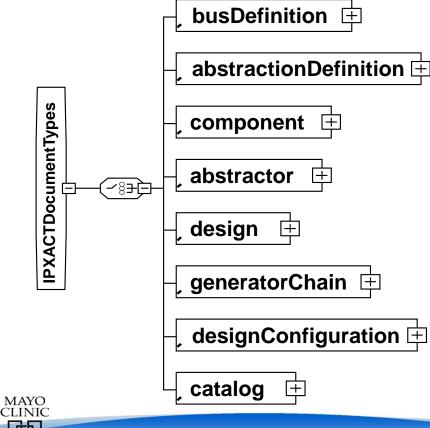
IP-XACT standard deliverables. The diagrams in this documentation represent the relationships between elements of the schema together with their attributes and expected values. Valid IP-XACT XML files must have a top-level type that is one of the elements listed here.</xs:documentation>

</xs:annotation>

SPPDG

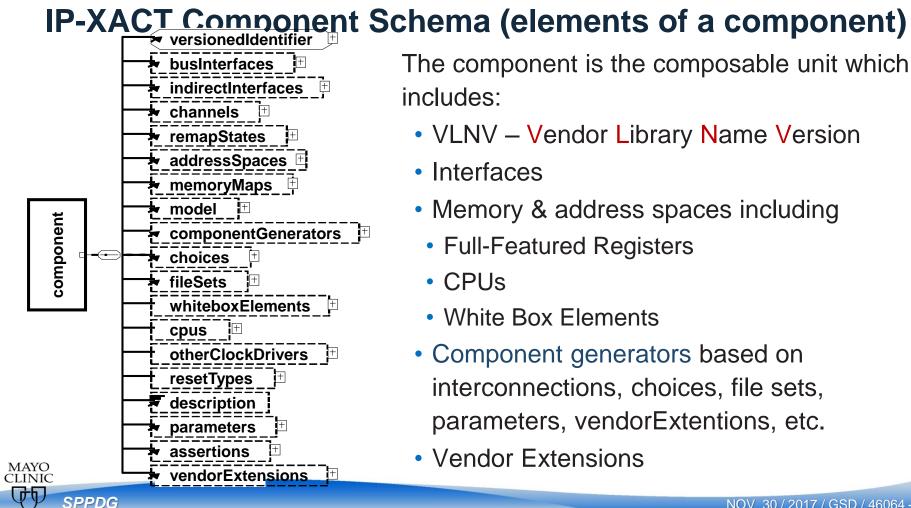
MAYO

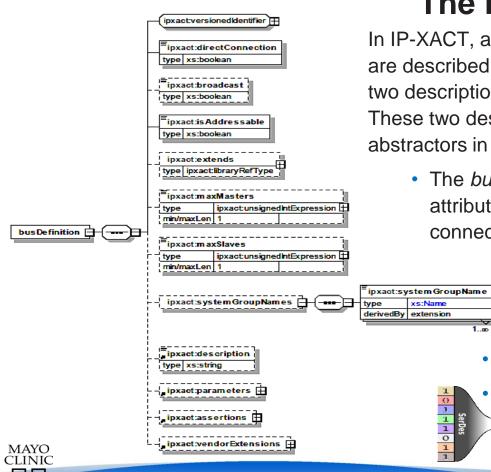
<xs:choice>


<xs:element ref="ipxact:busDefinition">

<xs:annotation>

<xs:documentation>To define all elements and attributes supported when defining a bus.</xs:documentation> </xs:annotation> </xs:element>


<xs:element ref="ipxact:abstractionDefinition" /> <xs:element ref="ipxact:component"> <xs:annotation> <xs:documentation>To define all elements and attributes supported when defining a component.</xs:documentation> </xs:annotation> </xs:element> <xs:element ref="ipxact:abstractor" /> <xs:element ref="ipxact:design"> <xs:annotation> <xs:documentation>To define all elements and attributes supported when defining a design and its configured components</xs:documentation> </xs:annotation> </xs:element> <xs:element ref="ipxact:generatorChain"> <xs:annotation> <xs:documentation>To define all elements and attributes supported for defining generator chains.</xs:documentation> </xs:annotation> </xs:element> <xs:element ref="ipxact:designConfiguration" /> <xs:element ref="ipxact:catalog" /> </xs:choice> </xs:aroup> </xs:schema>


The IP-XACT XML Schema Defines the Syntax for the Documents that Enable System Composition ...

SPPDG

- The <u>SCHEMA</u> of each of the top level documents are used to codify the required/allowable structure for the types of elements. (Syntax)
- Those documents the describe individual "classes of buses, components, etc.
- Instances of documents based on the "classes" of elements hold the Meta-Data for each element of a design.
- Semantic Consistency Rules ensure: That the Humpty Dumpty Principal is followed, "When I use a word, it means exactly what I want it to mean – no more – no less. Who will be the master, you, or the word?"

SPPDG

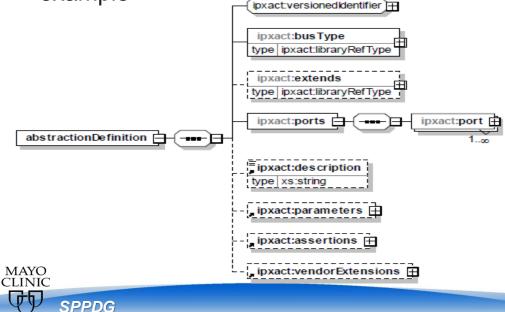

The Busdefinition Document

In IP-XACT, a group of ports that together perform a function are described by a set of elements and attributes split across two descriptions: a *bus definition* and an *abstraction definition*. These two descriptions are referenced by components or abstractors in their bus or abstractor interfaces.

• The *bus definition* description contains the high-level attributes of the interface, including items such as the connection method and the indication of addressing.

Examples include *bus definitions* for interfaces like

• AMBA Peripheral Bus (APB)



At many levels of abstraction

The Abstraction Definition

The *abstraction definition* contains the low-level attributes of the interface, including items such as the name, direction, and width of the ports. This is a list of logical ports that may appear on a bus interface for that bus type.

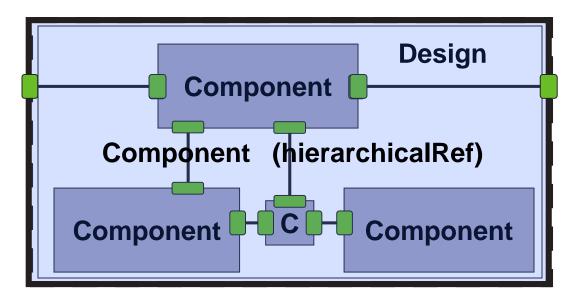
 Multiple abstractions definitions can be associated with a single bus definition, for example

The Ethernet physical layer encompasses coaxial, twisted pair and fiber-optic physical media interfaces (PMIs) Common forms are 10BASE-T and 1000BASE-T. These three use twisted pair cables and 8P8C modular connectors. Fiber optic variants are also very common in larger networks.

All Protocols Should Talk Nicely Like Padlipski Verification through the Abstractions

- Application
- Presentation
- Session
 - Setup, Initialize, maintain state
- Transport
 - Turns Frames into data stream/ address accesses, MESI transactions
- Network

MAYO CLINIC

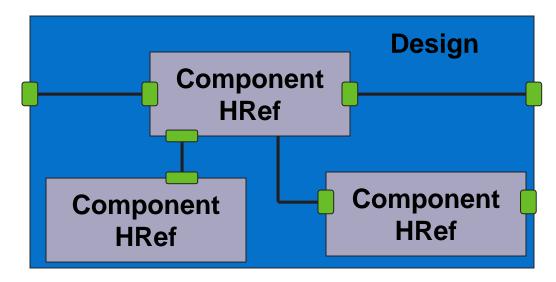

SPPDG

- Get from one place to another
 - Naming addressing routing
- Link coding across wires electrical or optical connection
- Physical / Mechanical

Design/Component Hierarchy

 Managing Complexity:

- Design and Conquer
- Divide and Conquer
- Reuse
- Provide Robust Interfaces



OK to Click Next

NOV 30/2017/GSD/46064-20

Design/Component Hierarchy

- The Interface specification is common to:
 - · the design of the component and
 - the Reuse of the component.

MAYO CLINIC

SPPDG

• It is the contract made at the boundary between design teams.

OK to Click Next

Top-down and Bottom-up are really just two views of the Component/Interface-based design flow.

NOV_30 / 2017 / GSD / 46064 - 21

IP-XACT eco-system is applicable to the 3-D composition space

- Components are composed into systems
- IP-XACT (consistent) interfaces are defined, used, and tested
- Constraints may be simple or complex
- Bundling the descriptions requires agreed semantics
- The IP-XACT Architecture and Xtensions workgroup in Accellera
 - Is a good place for converging on semantic agreements
- Progressive refinement of Metadata Descriptions
 - Provide successive approximations to the working systems this is often just a part of the process

OK to Click Next

NOV 30/2017/GSD/46064-22

Outline of the Talk & Progress Toward the Goals

Purpose: Convince you of the new capabilities of standards and standard-based tools for assembling, simulating, and validating (heterogeneous) components and interconnections

- Structure and Resources: IP-XACT
- Verification (+ coverage): UVM
- Power Management: UPF
- Quality Assessment: QIP
- Traceability: Soft & Hard Tags
- Additional Semantics and constraints
- Conclusions and Questions

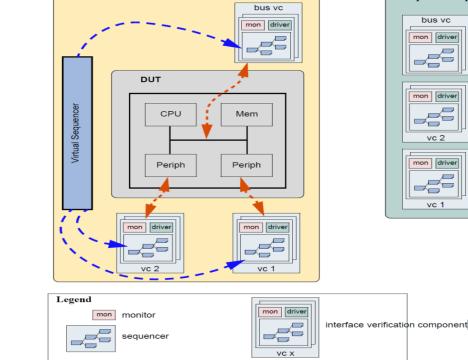
MAYO

SPPDG

GOALS OF STRUCTURED

Useful V Functional E Logical 7 Physical Ab Correct R Consistent Tra Easier Imp

Verify-able Build-able Test-able Abstract-able Reuse-able Transport-able Implement-able



IP-XACT and UVM Support Automated Generation and Testing [of Interconnections] System C++ Classes are the UVM Foundation Component Repository

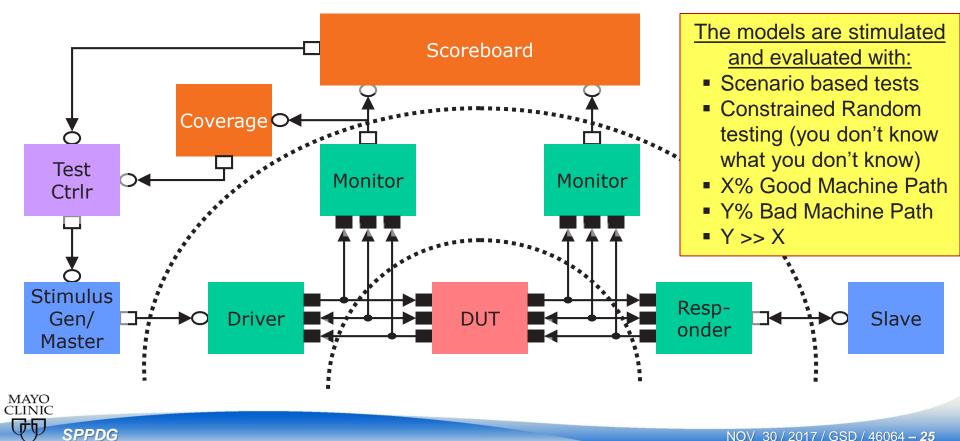
Environment Verification Component Repository vc 1 mon driver mon driver bus vc mon driver bus vc

STRUCTON

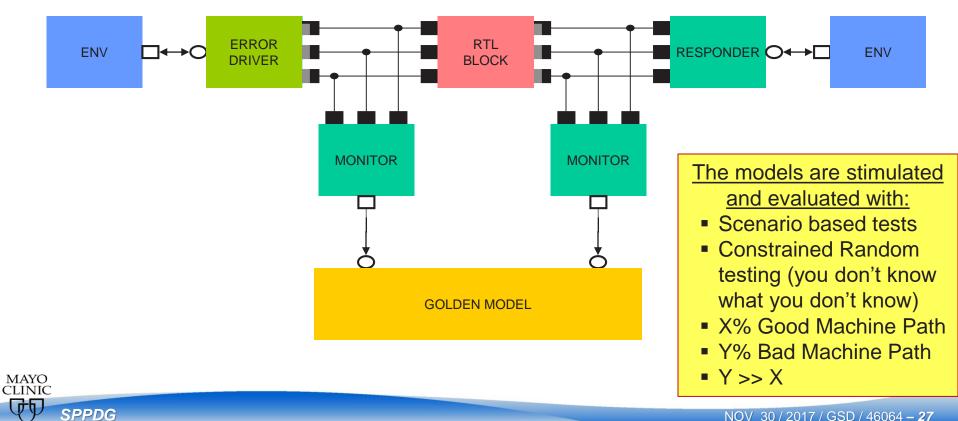
vc 2 mon driver vc 1 mon driver mon vc.2mon driver Legend monitor sequencer VC X mon driver interface verification component

https://workspace.accellera.org/downloads/standards/uvm

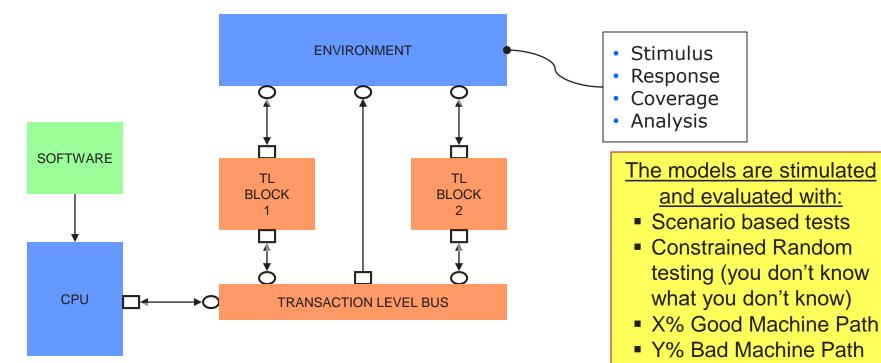
OK to Click Next


NOV 30 / 2017 / GSD / 46064 - 24

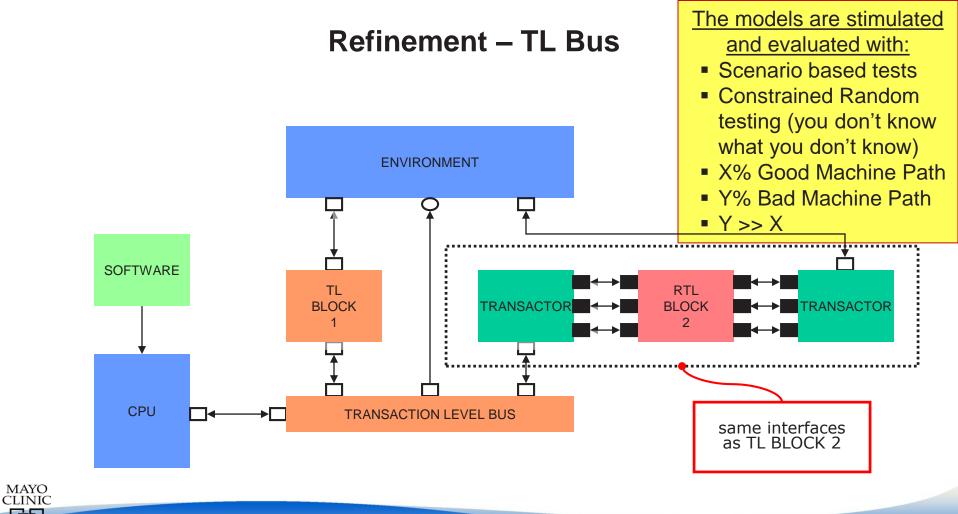
bus vc


vc 2

vc 1


UVM Generic Testbench Organization Device Under Test (DUT) Simulation and Verification Environment

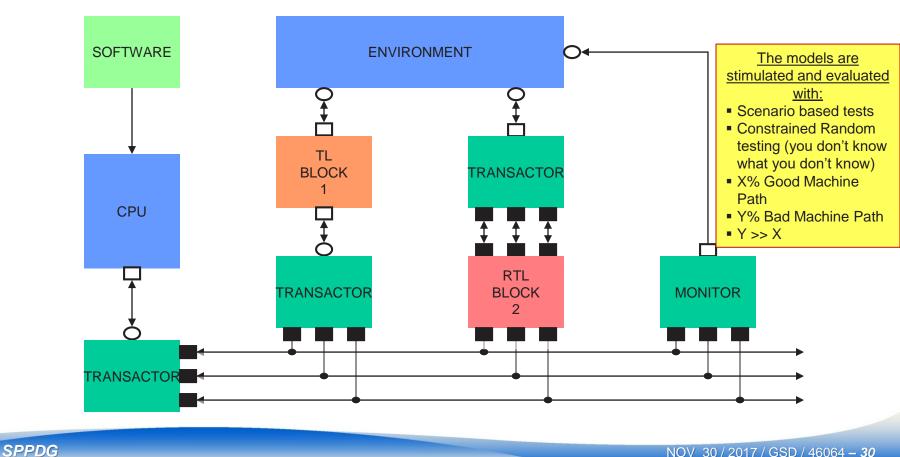
Golden Models


Transaction Level Model

MAYO CLINIC

SPPDG

■ Y >> X



SPPDG

NOV_30 / 2017 / GSD / 46064 - 29

Refinement – Pin Level Bus

MAYO CLINIC

NOV_30 / 2017 / GSD / 46064 - 30

Outline of the Talk & Progress Toward the Goals

Purpose: Convince you of the new capabilities of standards and standard-based tools for assembling, simulating, and validating (heterogeneous) components and interconnections

- Structure and Resources: IP-XACT
- Verification (+ coverage): UVM

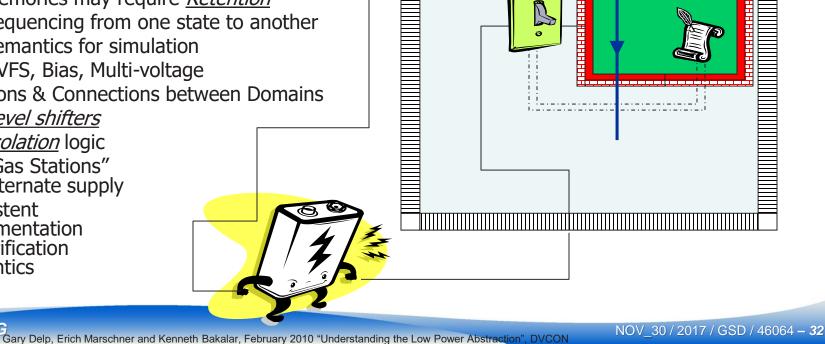
Power Management: UPF

- Quality Assessment: QIP
- Traceability: Soft & Hard Tags
- Additional Semantics and constraints
- Conclusions and Questions

MAYO

SPPDG

GOALS OF STRUCTURED


Useful Functional Logical Physical Correct Consistent Easier Verify-able Build-able Test-able Abstract-able Reuse-able Transport-able Implement-able

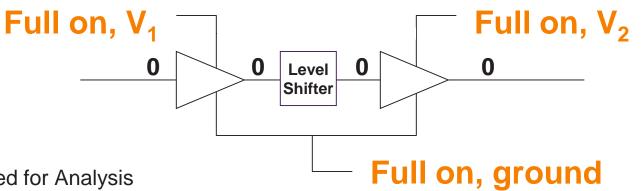
1801/UPF Supports Power Management Capabilities

- Power Domain
 - Collection of design objects that share common power attributes
- Power *States*
 - Determined by state of power supplies
 - Memories may require *Retention*
 - Sequencing from one state to another
 - Semantics for simulation
 - DVFS, Bias, Multi-voltage
- Relations & Connections between Domains
 - Level shifters
 - *Isolation* logic
 - "Gas Stations" alternate supply
- Consistent implementation & verification semantics

SPPDG

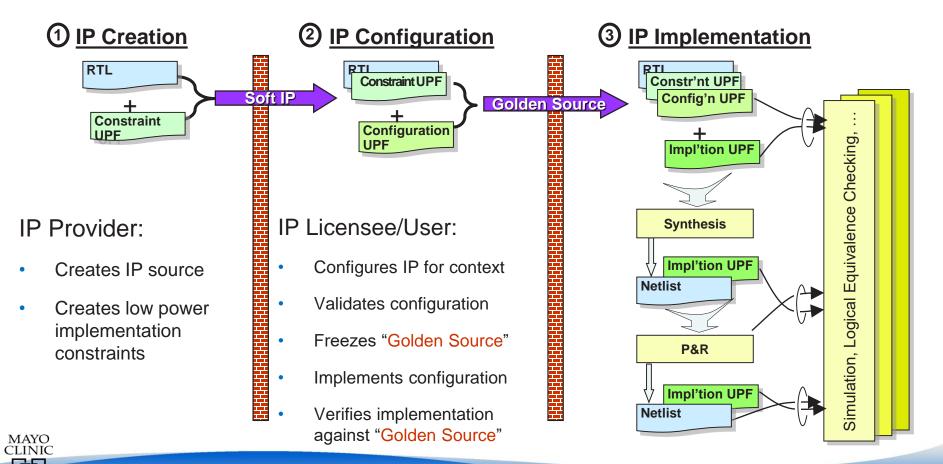
MAYO CLINIC

The concept of corruption – supply Off (or Partially On)


- Supply Nets
 - Net_State
 - Full_on
 - Partial_on
 - Off
 - Voltage
 - May be specified for Analysis and Time based corruption

Partial On or off Partial On or off

Protection from corruption Electrical – Level Shifting


- Supply Nets
 - Net_State
 - Full_on
 - Partial_on
 - Off
 - Voltage
 - May be specified for Analysis and Time based corruption

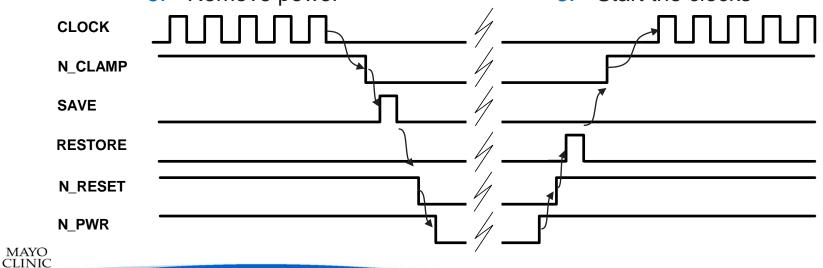
NOV 30/2017/GSD/46064-34

Successive Refinement of Low Power Intent

SPPDG

Sequencing Clocks, Resets and Power

Power down sequence:


- 1. Stop the clocks
- 2. Apply isolation
- 3. Optionally save state
- 4. Assert reset

SPPDG

5. Remove power

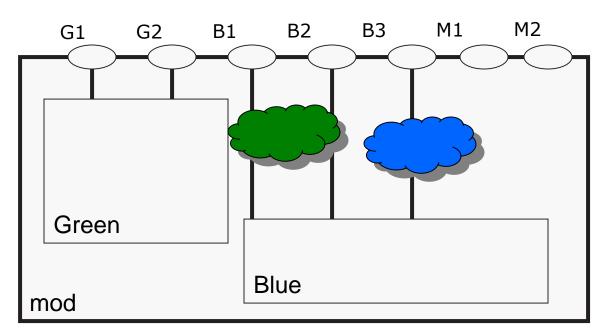
Power up sequence:

- 1. Apply power
- 2. Remove reset
- 3. Optionally restore state
- 4. Remove isolation
- 5. Start the clocks

Retention Power State Table For Balloon-style Latches

VDD	VDD RET	SS & SC	RS & RC	RTC	Retained value	Register value	Register state	Valid next states	Comments]
ON	ON	FALSE	FALSE	FALSE	Previous saved data	Previous state value	NORMAL	SAVE, RESTORE	—	
ON	ON	FALSE	FALSE	TRUE	Previous saved data	Previous state value	RETAIN_ON	NORMAL, RETAIN_OFF, RESTORE		
ON	ON	FALSE	TRUE	Х	Previous saved data	Retention value	RESTORE	NORMAL, RETAIN_ON	_	
ON	ON	TRUE	FALSE	х	Register value	Previous state value	SAVE	NORMAL, RETAIN_ON	_	Supplies are ON & RET. SUP_COR not set PARTIAL Isave or Restore
ON	ON	TRUE	TRUE	Х	CORRUPT	CORRUPT	CORRUPT	NA	SAV_RES_COR is set	VDDRET is ON
ON	OFF	Х	Х	TRUE	CORRUPT	CORRUPT	CORRUPT	NA	- /	NORMAL
ON	OFF	Х	TRUE	FALSE	CORRUPT	CORRUPT	CORRUPT	NA	RET_SUP_COR is set !Rest	stored & IRetained Save & Saved
ON	OFF	х	FALSE	FALSE	CORRUPT	Previous state value	PARTIAL_ CORRUPT	NORMAL	RET_SUP_COR is set	Restore & Restored ESTORE Save & IRetained SAVE
OFF	OFF	Х	X	Х	CORRUPT	CORRUPT	CORRUPT	NA	RET_SUP_COR is set	
OFF	ON	FALSE	FALSE	FALSE	CORRUPT	CORRUPT	CORRUPT	NA	!RTC	Retained Retained CORRUPTION
OFF	ON	FALSE	FALSE	TRUE	Previous saved data	CORRUPT	RETAIN_OFF	RETAIN_ON	/	VDD turns ON Restore & Restored
OFF	ON	FALSE	TRUE	х	CORRUPT	CORRUPT	CORRUPT	NA		RETAIN OFF CC4 - restoring while primary SOFF CC5 - primary supply is OFF
OFF	ON	TRUE	x	х	CORRUPT	CORRUPT	CORRUPT	NA	Save during power-up	A VDD is OFF ORET is ON CORRUPT
VDD –	- Primar	y Supply	VDD RE Supply	T – Retent		– Save Signa Condition	al RS & RC – Restore Con	Restore Signal & dition	RTC – Retention Condition	A VDD IS ON & VDDRET IS ON (CC1 - CC5)
NORM Functiona tive mode supplies	al/ac- sr e, all sa ON. (f	CAVE: The tin napshot where ave action occu for balloon-late tyle registers).	the time snap the restor h occurs (fe	oshot where	RETAIN_ON snapshot where th supply is ON and in retention state (retention_conditi	e primary si the register is si is	RETAIN_OFF : The mapshot where the pri- ipply is OFF and the in retention state etention_condition ==	mary The retaine register corrupted, l value is not	out the register retained value are both	or VDD is OFF

Design Automation Standards Committee of the IEEE Computer Society: P1801 working group, (2015, 5 December). IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems, IEEE Sta1801-2015, IEEE Standards Association, Approved, Available:


http://standards.ieee.org/getieee/1801/download/1801-2015.pdf p.201

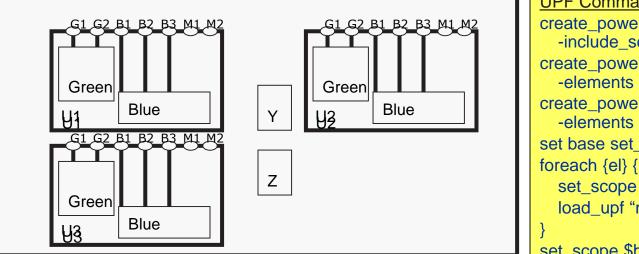
The Power Portion of Robust Interfaces:

Designing within a context

UPF 2.0 Supply sets and

MAYO

CLINIC


SPPDG

set_port_attributes

- <u>UPF Commands: mod_if</u>
- Create_power_domain mod_PD -include_scope
- Create_power_domain G
- Create_power_domain B
- Set_port_attributes
 -ports {G1, G2}
 -supply_set G.primary
- Set_port_attributes
 -ports {B1, B2, B3}
 -supply_set B.primary
- <Set_port_attributes
 -ports {M1, M2}
 -supply set mod pd.primary>
- mod_details:
- Create_power_domain G update
 - -elements {Green}
- Create_power_domain Bupdate
 - -elements {BOK to Click Next

Using UPF 2.0 Components in a Design

UPF Commands: top

create_power_domain top_PD
 -include_scope
create_power_domain pd_G
 -elements {Y}
create_power_domain pd_B
 -elements {Z}
set base set_scope
foreach {el} {U1 U2 U3} {
 set_scope \$base/\$el
 load_upf "mod_if.upf"

set_scope \$base

create_composite_domain topc_PD -subdomains {top_PD U1/mod_PD U2/mod_PD U3/mod_PD} create_composite_domain pdc_G -subdomains {pd_G U1/G U2/G U3/B} create_composite_domain pdc_B -subdomains {pd_B U1/B U2/B U3/G}

OK to Click Next

Purpose: Convince you of the new capabilities of standards and standard-based tools for assembling, simulating, and validating (heterogeneous) components and interconnections

- Structure and Resources: IP-XACT
- Verification (+ coverage): UVM
- Power Management: UPF

Quality Assessment: QIP

- Traceability: Soft & Hard Tags
- Additional Semantics and constraints
- Conclusions and Questions

MAYO

SPPDG

GOALS OF STRUCTURED

Useful	Verify-able
Functional	Build-able
Logical	Test-able
Physical	Abstract-able
Correct	Reuse-able
Consistent	Transport-able
Easier	Implement-able

An Example of a QIP Spreadsheet

Gary Delp's Example Hold Harmless Copyright © 2003, 2004, 2005, 2006, 2007 VSIA Summary Report Release Version 3.0 Technical Support Type in the name of the IP Vendor	IP Integration Assessment IP Development Assessment Vendor Assessment Total Imperatives not satisfied Rules & Guidelines not satisfied Satisfied Imperatives, Rules & Guidelines Unanswered Total Gary Delp's Example Hold Harmless OpenCores.org processor	1% 0% 75% 13% 0 15 45 203 263
Copyright © 2003, 2004, 2005, 2006, 2007 VSIA Summary Report Release Version 3.0 Technical Support	Vendor Assessment Total Imperatives not satisfied Rules & Guidelines not satisfied Satisfied Imperatives, Rules & Guidelines Unanswered Total Gary Delp's Example Hold Harmless	75% 13% 0 15 45 203
Summary Report Release Version 3.0 Technical Support	Total Imperatives not satisfied Rules & Guidelines not satisfied Satisfied Imperatives, Rules & Guidelines Unanswered Total Gary Delp's Example Hold Harmless	13% 0 15 45 203
Summary Report Release Version 3.0 Technical Support	Imperatives not satisfied Rules & Guidelines not satisfied Satisfied Imperatives, Rules & Guidelines Unanswered Total Gary Delp's Example Hold Harmless	13% 0 15 45 203
Technical Support	Rules & Guidelines not satisfied Satisfied Imperatives, Rules & Guidelines Unanswered Total Gary Delp's Example Hold Harmless	15 45 203
Technical Support	Rules & Guidelines not satisfied Satisfied Imperatives, Rules & Guidelines Unanswered Total Gary Delp's Example Hold Harmless	15 45 203
Alliance	Rules & Guidelines not satisfied Satisfied Imperatives, Rules & Guidelines Unanswered Total Gary Delp's Example Hold Harmless	15 45 203
Alliance	Satisfied Imperatives, Rules & Guidelines Unanswered Total Gary Delp's Example Hold Harmless	45 203
Alliance	Unanswered Total Gary Delp's Example Hold Harmless	203
Type in the name of the IP Vendor	Total Gary Delp's Example Hold Harmless	
Type in the name of the IP Vendor	Gary Delp's Example Hold Harmless	263
Type in the name of the IP Vendor		
Type in the name of the IP Vendor		
Type in the name or part number of the IP	· ·	
Select the type of IP you are evaluating	hard IP	
Select the type of Hard IP you are evaluating	Digital	
Enter the technologies you wish to assess (Default is shown)	G90	
Select the type of assesment you are undertaking	Vendor & Integration	
Select the amount of information you wish to display	By Category	
	Score	%
Vendor Assessment	194	75%
VENDOR: Vendor Assessment	194	75%
IP Integration Assessment		1%
HARD IP INTEGRATION: IP Ease of Reuse	5	1%
HARD IP INTEGRATION: IP Maturity Assessment	0	0%
HARD IP INTEGRATION: Documentation Quality	0	0%
	5	2%
HARD IP INTEGRATION: Ease of Integration	5	2%
IP Development Assessment	0	0%

MAYO CLINIC

SPPDG

NOV_30 / 2017 / GSD / 46064 - 41

VSIA Quality Metrics and Semantics

IEEE Std 1734

	Very Risky	Challenging	Acceptable	Excellent - Our Goal	
Reuse Level	1	2	3	4	
Component Functionality & Behavior	Undefined, functionalityInconsistent or unreliable behavior	Poorly defined functionality Unexpected behavior	Clearly defined functionality Consistent, predictable, behavior		
Component External Structure	Awkward, inconsistent, "ad hoc" type interface. May have multiple source baselines	Varied, complex, interface May have multiple source baselines	Clearly delineated, uniform interface Single source baseline		
Component Adaptability	Complex, non-existent or "improvised" configuration capabilities	Complex configuration capabilities with redundant or conflicting mechanisms	Structured, consistent configuration capabilities		
Component Packaging	Contains some items in Submission Checklist	Contains most items in Submission Checklist	Contains all items in Submission Checklist		
Documentation	Does not adhere to Reuse guidelines and templates. No consistency	May adhere to Reuse guidelines and templates Although may not adhere to Reuse guidelines and templates, docs. are consistent	Follows all Reuse guidelines and templates Consistent	Same as Level-3	
Knowledge of Component's Internal Logic	Expert, thorough knowledge of component's internal logic required in order to integrate/use component	Substantial knowledge of component's internal logic required in order to integrate/use component	Knowledge of component's internal logic not required in order to integrate/use component		
Support	Thorough, on-going training and discovery necessary. Constant (full- time) access to component developers necessary or full-time developer participation necessary	Detailed training necessary Access to component developers necessary	Minimal or no training necessary Access to component developers not necessary		
Requirements	Poorly focused requirements. Reusability not considered	Fundamental requirements identified Reusability may be a requirement	Fundamental requirements defined Reusability a requirement		
Architecture & Design	Developed "ad hoc". No recognizable structured or complex, flat structure. Requirements not addressed	Developed with limited rigor or attention to process Minimal structure with mediocre documentation Unknown Requirements Adherence	Rigorously developed using defined process Documented, self- contained, layered structure Requirements satisfied	Level-3 with the additional requirements that: a. All reuse procedures rigorously followed	
Source code characteristics	Ad hoc structure. No apparent style. Sporadic comments	Minimal structure Inconsistent style and comments Sporadic comments	Well structured, follows design Standard style, well commented Consistent style adhering to a documented set of guidelines	 b. All deliverables adhere to reuse standards c. IP component can be rapidly extended and supported by other than 	
Test Plan & Verification software	Developed & implemented "ad hoc". Not documented. Test coverage is unknown	Developed & implemented with limited rigor or attention to process Insufficiently documented Test coverage is incomplete or questionable	Rigorously developed & implemented using same process and standards as component. Well documented Test coverage is complete	the original development team	
Integrator's Score	< 60%	60%	85%	95%	
	Daunting / Very High Risk Excessive Reuse Costs	Challenging / Risky, High to Acceptable Reuse Cost	Efficient / Negligible RiskMinimal Reuse Cost		

Challenging

Accentable

Excellent Our Cool

Vory Biolog

Reusability - Characteristi

oonent-Characteristics

			Very Risky	Challenging	Acceptable	Excellent - Our Goal	
		Reuse Level	1	2	3	4	
		Component	Undefined,	Poorly defined	Clearly defined		
		Functionality &	functionalityInconsistent or	functionality Unexpected	functionality Consistent,		
	VCIA	Behavior		behavior	predictable, behavior		
			Awkward, inconsistent,	Varied, complex, interface	Clearly delineated, uniform		
	Very Risky	Challenging	Ac	ceptable	Excell	ent Our Goal	
Reuse Level	1	2		3		4	

• • •	• • •	• • •	• • •	• • •
ecture & D	recognizable structured or complex, flat structure. Requirements not	with mediocre documentation Unknown	Rigorously developed using defined process Documented, self- contained, layered structure Requirements satisfied	Level-3 with the additional requirements that: a. All reuse procedures rigorously followed b. All deliverables adhere to reuse standards c. IP component can be rapidly extended and supported by other than the original development team

. . .

. . .

. . .

 Daunting / Very High Risk
 Challenging / Risky, High
 Efficient / Negligible

 Excessive Reuse Costs
 to Acceptable Reuse Cost
 RiskMinimal Reuse Cost

. . .

. . .

NOV 30/2017/GSD/46064 - 44

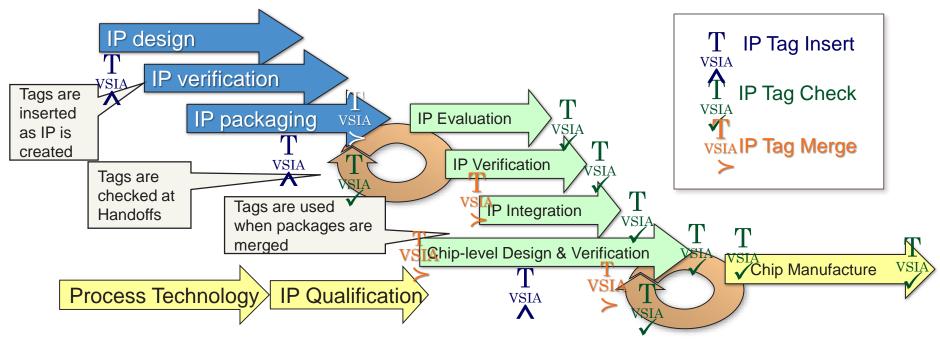
Outline of the Talk & Progress Toward the Goals

Purpose: Convince you of the new capabilities of standards and standard-based tools for assembling, simulating, and validating (heterogeneous) components and interconnections

- Structure and Resources: IP-XACT
- Verification (+ coverage): UVM
- Power Management: UPF
- Quality Assessment: QIP

Traceability: Soft & Hard Tags

- Additional Semantics and constraints
- Conclusions and Questions


MAYO

SPPDG

GOALS OF STRUCTURED

Useful	Verify-able
Functional	Build-able
Logical	Test-able
Physical	Abstract-able
Correct	Reuse-able
Consistent	Transport-able
Easier	Implement-able

The VSIA IP ECO System – Tagging flow Track the versions, licensing, and quality checks

2005 Illustration by Gary Delp, CTO VSIA

SPPDG

MAYO CLINIC

IEEE Standard for Quality of Electronic and Software Intellectual Property Used in System and System on Chip (SoC) Designs," in *IEEE Std* 1734-2011, Sept. 30 2011 doi: 10.1109/IEEESTD.2011.6035731

NOV_30 / 2017 / GSD / 46064 - 45

NOV_30 / 2017 / GSD / 46064 - 46

Outline of the Talk & Progress Toward the Goals

Purpose: Convince you of the new capabilities of standards and standard-based tools for assembling, simulating, and validating (heterogeneous) components and interconnections

- Structure and Resources: IP-XACT
- Verification (+ coverage): UVM
- Power Management: UPF
- Quality Assessment: QIP
- Traceability: Soft & Hard Tags

Additional Semantics and constraints

Conclusions and Questions

MAYO

SPPDG

GOALS OF STRUCTURED

F

С

Useful	Verify-able
unctional	Build-able
Logical	Test-able
Physical	Abstract-able
Correct	Reuse-able
onsistent	Transport-able
Easier	Implement-able

Standard Semantics, Constraints and Properties

- IEEE Std 1685 IP-XACT Sematic Consistency Rules (SCRs)
- B.1.1 Compatibility of busDefinitions
- A set of busDefinitions are considered compatible if they are related by the extends relationship as described in 5.11.1. A busDefinition is always compatible with itself.
- B.1.2 Interface mode of a bus interface
- Specifies which of the following exclusive subelements of the busInterface is present: master, slave, system, mirroredMaster, mirroredSlave, mirroredSystem, or monitor. For instance, a busInterface containing a system subelement is considered to have an interface mode of system.

- SCF Standard Constraint File
 VERB OBJECT OPTIONS SCOPE
 This form also used for UPF
- PSL Property Specification Language
 - Consistent semantics of property expression across VHDL, Verilog, TCL, SystemC, UVM

MAYO

е

Outline of the Talk & Progress Toward the Goals

Purpose: Convince you of the new capabilities of standards and standard-based tools for assembling, simulating, and validating (heterogeneous) components and interconnections

- Structure and Resources: IP-XACT
- Verification (+ coverage): UVM
- Power Management: UPF
- Quality Assessment: QIP
- Traceability: Soft & Hard Tags
- Additional Semantics and constraints

Conclusions and Questions

MAYO CLINIC

SPPDG

GOALS OF STRUCTURED INTERCONNECTIONS

Useful	Verify-able
Functional	Build-able
Logical	Test-able
Physical	Abstract-able
Correct	Reuse-able
Consistent	Transport-able
Easier	Implement-able

Conclusions

- The addition of the Low power Abstraction has enhanced the current abstraction hierarchy to treat with new design issues
- Corruption is a good thing
 - as long as you recognize it and use it for good
- Transactional abstractions still require the "reduction to simplicity"
- Initialization/Reset is not a "one-time-thing"
- Abstractions provide:
 - The ability to not think about things that you don't want to think about
 - but not be in denial
- Standards are only useful if the enable new capabilties

Key Messages & Goals for the talk

GOALS OF STRUCTURED INTERCONNECTIONS

Useful Functional Logical Physical Correct Consistent Easy Verify-able Build-able Test-able Abstract-able Reuse-able Transport-able Implement-able

MAYO CLINIC

SPPDG

GOALS OF THE TALK

After the past 25 minutes do you now:

- Know about electronic design automation (EDA) standards as *providers of capability*?
 - IP-XACT IEEE Std 1685-2014
 - Unified verification methodology (UVM)
 - IEEE Std 1800.2
 - Power intent
 IEEE Std1801-2015
 - IP Quality
 IEEE Std 1734-2011
 - IP Tagging VSIA => Accellera Standard
- Know where to find tools to successfully interconnect heterogeneous is systems?
- Know why you might care?

FIN

NOV_30 / 2017 / GSD / 46064 - 63