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Heuristic-Based Ankle Exoskeleton Control for
Co-Adaptive Assistance of Human Locomotion
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Abstract—Assisting human locomotion with exoskeletons is
challenging, largely due to the complexity of the neuromuscu-
loskeletal system, the time-varying dynamics that accompany
motor learning, and the uniqueness of every individual’s response
to device assistance. Assistance strategies designed to keep the
human “in-the-loop” can help overcome many of these challenges.
The purpose of this study was to develop a human-in-the-
loop assistance strategy that uses co-adaptive control to slowly
and continuously respond to biomechanical changes thought to
encode the user’s needs. Online measurements of muscle activity
and joint kinematics were used to guide the evolution of an
exoskeleton torque pattern based on the following heuristics:
1) muscle activity that acts cooperatively with the exoskeleton
indicates the user wants more torque; 2) muscle activity that
acts antagonistically to the exoskeleton indicates the user wants
less torque; and 3) torque should stop increasing if the user is
not adapting. We applied our controller to tethered, bilateral
ankle exoskeletons worn by naı̈ve participants as they walked
on a treadmill at 1.25 m·s−1 for 30 minutes. The evolved torque
profiles reduced the root-mean-square of soleus muscle activity
by 35 ± 12% and metabolic rate by 22 ± 8% compared to
walking with the exoskeletons while they provided no torque. This
was equivalent to a 9 ± 12% reduction in metabolic rate when
compared to normal walking. Furthermore, the algorithm was
responsive to changes in each user’s coordination patterns. These
results confirm the effectiveness of the controller and suggest
a new approach to exoskeleton assistance aimed at fostering
co-adaptation with the user. This technique might particularly
benefit individuals with age-related muscle weakness.

Index Terms—Exoskeleton, adaptation, gait, assistance, muscle
activity.

I. INTRODUCTION

EXOSKELETONS have the potential to enhance mobility
in able-bodied individuals [1]–[7] and restore mobility

to those with reduced functionality, such as the elderly [8],
those with spinal cord injury [9], [10], or those with neuro-
logical disorders [10]–[12]. For decades, however, researchers
struggled to design exoskeletons that achieved improvements
in human performance comparable to those predicted by
models of human walking [13]–[16] or expected based on
an understanding of the mechanics and energetics of human
movement [17]–[19]. The challenge stemmed, in large part,
from the complexity and redundancy of the human motor
control system. Coordination strategies adopted during walk-
ing with an exoskeleton are often unique to an individual
and evolve over time [4], [20]–[22] making it difficult to
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know how individual users will respond to a given pattern of
assistance and what pattern of assistance is best. Furthermore,
the task of walking with exoskeleton-applied assistance is
difficult and users, especially naı̈ve users, often struggle to
discover effective ways of interacting with assistive devices.

Human-in-the-loop optimization is a promising approach for
overcoming many of these complexities, given its ability to
customize assistance patterns for each user and facilitate motor
learning. Human-in-the-loop optimization updates exoskeleton
assistance in real time in response to measured changes in the
user so as to maximize human performance [6], [23], [24]. We
previously demonstrated the efficacy of human-in-the-loop op-
timization by using an evolutionary algorithm to identify ankle
exoskeleton assistance parameters that minimized metabolic
rate [6]. Other researchers had similar success using Bayesian
optimization to find the optimal assistance parameters for
a hip exoskeleton [24]. These methods achieved significant
improvements in walking economy for their respective devices
and the results from these studies suggest that it is important
to keep the human ‘in-the-loop’ when developing assistance
strategies.

Human-in-the-loop optimization has many advantages, but
the development of alternative human-in-the-loop strategies
may be beneficial for different populations, devices, and
situations. For instance, to find optimal assistance parameters,
human-in-the-loop optimization forces users to walk with a
wide variety of torque patterns, many of which are suboptimal.
Although such enforced exploration of different coordination
strategies may be beneficial for motor learning [25], users
must endure walking with uncomfortable torque patterns for
sustained periods of time. Additionally, once assistance pa-
rameters are optimized, they are often held fixed even though
users may still be changing their coordination patterns. Control
techniques that, instead, prioritize continuous responsiveness
and co-adaptation between the device and the user could
address these issues.

One example of continuously-updated assistance is propor-
tional myoelectric control, which provides device torque in
direct proportion to measured muscle activity, thereby giving
users step-to-step control over device assistance [20], [21],
[26]. Incorporating an adaptive gain into the control scheme
improved performance outcomes [4], further suggesting the
importance of time-varying and customized assistance strate-
gies. The update law, however, required maximum exoskeleton
torque be applied on every walking step, thereby assuming the
ideal level of assistance is known. Proportional myoelectric
control, with or without an adaptive gain, inherently constrains
the pattern of torque to match that of muscle activity on each
step, permits large step-to-step fluctuations in torque resulting
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from inherent step-to-step variability in electromyography pat-
terns, and does not account for indications of maladaptation,
such as co-contraction or significant kinematic changes. These
features may make it challenging for users to learn how to best
utilize assistive devices.

The goal of this project was to develop an alternative
human-in-the-loop assistance strategy that uses heuristics
about effective human-device interaction to guide the discov-
ery of an exoskeleton assistance pattern. Muscle activity that
acts cooperatively with the exoskeleton may indicate that the
user wants more assistance and could act to increase torque
from the exoskeleton. Significant antagonistic muscle activity
and large deviations from nominal joint kinematics may in-
dicate that the user is having difficulty adapting to assistance
and could act to slow or reverse growth of exoskeleton torque.
Together, these measurements could be used to enable co-
adaptation, in which the user and the device continuously
respond and adapt to each other. We hypothesized that such
an assistance strategy would improve whole-body locomotor
economy in naı̈ve exoskeleton users and allow the exoskeleton
to adjust to the changing needs of each user. We expect such
co-adaptive control strategies to help with the discovery of
assistance techniques for new lower-limb devices and enhance
our ability to assist people with a broad range of physiological
needs, especially the elderly.

II. ALGORITHM DEVELOPMENT

We developed a heuristic-based algorithm that uses real-
time measurements of muscle activity and joint kinematics
to guide the evolution of an ankle exoskeleton torque pattern
(Fig. 1). The algorithm is based upon three main heuristics:
1) soleus muscle activity, which acts cooperatively with the
ankle exoskeleton, indicates the user wants more torque; 2)
tibialis anterior muscle activity, which acts antagonistically to
the exoskeleton, indicates the user wants less torque; and 3)
significant deviations from nominal ankle kinematics and a
lack of reduction in gross measures of soleus muscle activity
indicate that the user is having trouble adapting to exoskeleton-
applied torque, therefore torque growth should slow or stop.
We formulated a control scheme to best realize these driving
heuristics and implemented it on tethered, bilateral ankle
exoskeletons.

A. Algorithm Formulation

On the first walking step, n = 1, exoskeleton torque,
τdes(i, n), is set to zero for all time indices, i. Exoskeleton
torque then grows on each subsequent walking step, n + 1,
according to the following formula. The exoskeleton torque
pattern on the next walking step, τdes(i, n + 1), is a linear
combination of the current exoskeleton torque, τdes(i, n), and
a specified change in torque, dτdes(i, n), calculated from
measurements of the user’s current biomechanics (Eq. 1). The
contribution of current exoskeleton torque to torque on the next
walking step adds a memory component to the control scheme.
This prevents exoskeleton torque from being solely governed
by the current coordination pattern of the user and enables
exoskeleton torque to grow gradually over time. The change
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Fig. 1. Algorithm schematic. Soleus muscle activity (EMGs), tibialis anterior
muscle activity (EMGt), ankle joint angle (θa), and desired exoskeleton
torque (τdes) measured on step n, at each sample i, are transformed and
summed to produce the change in desired torque (dτdes). The change in desired
torque (dτdes) is then added to the desired torque (τdes) on step n to produce
the desired torque on the next step, n+ 1.

in torque is made up of contributions from soleus muscle
activity, tibialis anterior muscle activity, ankle kinematics, and
the magnitude of current exoskeleton torque (Eq. 2).

Soleus muscle activity at every time index, offset by time
delay d to account for the neuromuscular and actuation delays
between muscle activation and force production, EMGs(i +
d, n), positively contributes to exoskeleton torque. The pro-
portion of soleus muscle activity added to the exoskeleton
torque profile is governed by two factors: the magnitude of
the gain k1 and the average soleus muscle activity over the
current walking step, 〈EMGs(n)〉. Average soleus muscle
activity serves as a gross measure of how active the soleus
muscle was over an entire walking step and is used as a
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Fig. 2. Example of the co-adaptation that occurred between the user and the exoskeleton over time. Soleus muscle activity (EMGs, first row), tibialis anterior
muscle activity (EMGt, second row), and ankle kinematics (θa, third row) guided the slow and responsive growth of ankle exoskeleton torque (τdes, last
row). As exoskeleton torque evolved, the patterns of soleus muscle activity, tibialis anterior muscle activity, and ankle kinematics changed in response to the
applied torque, which in turn affected the torque profile on subsequent steps. Soleus and tibialis anterior muscle activity were normalized to peak muscle
activity measured during walking in the Zero-Torque mode. The green, dashed lines around the ankle angle trajectory show the deadband around deviations
in ankle kinematics. Each trajectory is shown as a percent of stance and plotted over time in steps. Up to 100 steps, trajectories are the average of 10 steps,
after which trajectories are the average of 100 steps. Data presented is for the left leg of one participant.

proxy for user adaptation. High average soleus muscle activity
over a walking step, even with low soleus muscle activity at
specific time indices, suggests that the user needs more time
to adapt. Therefore, high values of average muscle activity act
to decrease the proportion of soleus muscle activity added to
the torque pattern, while low values of average muscle activity
act to increase the proportion of soleus muscle activity added
to the torque pattern. By including this term, the controller is
able to automatically speed up or slow down torque growth,
depending on how well users seem to be adapting. The
magnitude of the exponent m affects the relative contributions
of average soleus muscle activity and soleus muscle activity
at a specific time index to the growth rate of torque.

Three factors negatively contribute to the desired exoskele-
ton torque profile to help prevent desired torque from growing
unstably: 1) tibialis anterior muscle activity at every delayed
time index, EMGt(i + d, n); 2) average deviations in ankle
kinematics from nominal over the dorsiflexion phase of gait,
〈eθa(n)〉; and 3) current exoskeleton torque at every time
index, τdes(i, n). The proportion of tibialis anterior muscle
activity that contributes to exoskeleton torque is governed
by the magnitude of the gain k2. Without this term, the
user may adopt a coordination strategy that relies heavily
on co-contraction. The contribution of average ankle angle
deviation to exoskeleton torque is governed by the magnitude
of the gain k4. Average ankle angle deviations must first

reach a defined threshold, cθa , which lies outside the range of
natural step-to-step variations in ankle kinematics, so that only
excessive deviations induced by exoskeleton-applied torque
contribute to the torque profile. This term only acts to shift
the entire torque pattern up or down. Initial attempts to
incorporate kinematic deviations at every time index led to
oscillatory torque patterns, likely due to delays between the
applied force and measured changes in ankle angle. Without
a term that incorporates kinematic changes, the user could
adapt to the applied exoskeleton torque by walking with a
more plantarflexed ankle joint, instead of reducing soleus
muscle activity. Sustained levels of soleus muscle activity
would continue to add to the exoskeleton torque pattern,
leading to unconstrained growth. The negative contribution of
current exoskeleton torque to torque on the next walking step
is governed by the magnitude of the gain k3 and provides
negative force feedback. This term was included for two main
reasons. First, it acts as a leaking term, slowly lessening
the contribution of older coordination patterns to the current
exoskeleton torque pattern. Second, it helps stabilize the
system by defining an equilibrium criterion. Assuming the user
maintains ankle kinematics and tibialis anterior muscle activity
similar to baseline, this term defines a steady-state torque for a
given reduction in soleus muscle activity. This prevents torque
from growing unbounded. Additional details about the steady-
state criteria of the algorithm, given the chosen gains, are
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provided in Appendix B. Finally, a deadband on the change
in torque, max(|dτdes(i, n)| − dτdb, 0), sets sufficiently small
values of dτdes to zero to prevent desired exoskeleton torque
from drifting upward due to non-zero baseline soleus muscle
activity. The following formulation of the control scheme was
implemented to best realize the driving heuristics:

τdes(i, n+ 1) =

τdes(i, n) + sgn(dτdes(i, n)) ·max(|dτdes(i, n)| − dτdb, 0)
(1)

where
dτdes(i, n) =

k1 · EMGs(i+ d, n) · 〈EMGs(n)〉−m

− k2 · EMGt(i+ d, n)− k3 · τdes(i, n)

− k4 · sgn(〈eθa(n)〉) ·max(|〈eθa(n)〉| − cθa , 0)

(2)

The step number, n, was updated every heel strike and the
time index, i, was updated at a frequency of 500 Hz. The
desired exoskeleton torque profile, therefore, had a resolution
of approximately 350 nodes, for a typical stance period of
700 ms for normal human gait. Through pilot testing, the
constants were determined to be: d = 84 ms, k1 = 0.0025
N·m·kg−1 · body mass, k2 = 0.05 N·m, k3 = 0.01, k4 = 2
N·m·deg−1, m = 1.3, cθa = 5 deg, and dτdb = 0.01 N·m.

To provide intuition for how the algorithm works, we
examine calculations of torque at three different stages in
the evolution. On the first walking step, torque from the
exoskeleton is zero, soleus and tibialis anterior muscle activity
are at normal levels, and ankle kinematics have not deviated
from baseline. The change in torque is, therefore, the sum
of the positive contribution from soleus muscle activity and
the smaller negative contribution from tibialis anterior muscle
activity, resulting in a net increase in torque. On the next
walking step, exoskeleton torque is a small but non-zero value,
soleus and tibialis anterior muscle activity remain close to
normal levels, and ankle kinematics are similar to baseline.
The change in torque is now the sum of the positive contribu-
tion from the soleus, the small negative contribution from the
tibialis anterior, and the small negative contribution from the
force feedback term. This combination similarly results in a
net increase in torque. After a few minutes, exoskeleton torque
begins inducing measurable changes in the user’s coordination
patterns. Soleus muscle activity is lower than baseline but
still quite active, tibialis anterior muscle activity may have
increased slightly, and ankle kinematics have likely started
deviating outside the defined deadband. The change in torque
is now the sum of the positive contribution from the soleus
and the negative contributions from the tibialis anterior, ankle
angle deviations, and the force feedback term. The net result
is still a positive change in torque, but the magnitude of the
change is small due to larger negative contributions. That is,
the growth rate is slowing. After tens of minutes of walking,
torque has likely reached an equilibrium point, in which the
positive contribution from soleus muscle activity is offset by
the negative contributions.

B. Algorithm Implementation
Measurements taken from two wired, bipolar electrodes

(Bagnoli Desktop System, Delsys Inc., Boston, Massachusetts,

USA) placed on the medial and lateral aspects of the soleus
were averaged to give a single soleus muscle activity signal,
EMGs. Soleus muscle activity was high-pass filtered with
a cutoff frequency of 20 Hz, full-wave rectified, low-pass
filtered with a cut-off frequency of 6 Hz [21], [27], normalized
to average peak muscle activity measured during walking
while the exoskeletons applied zero torque, and shifted by the
experimentally-determined delay every walking step. Average
soleus muscle activity was calculated by integrating the nor-
malized, non-delayed signal of soleus muscle activity over the
current walking step using the trapezoidal method. Tibialis
anterior muscle activity, EMGt, was measured using one,
bipolar electrode placed on the belly of the muscle. The signal
was high-pass filtered with a cutoff frequency of 20 Hz, full-
wave rectified, low-pass filtered with a cut-off frequency of
6 Hz [21], [27], normalized to average peak muscle activity
measured during walking while the exoskeletons applied zero
torque, and shifted by the experimentally-determined delay
factor every walking step. Ankle angle was measured online
using an absolute magnetic encoder placed at the ankle joint of
the exoskeleton and low-pass filtered with a cut-off frequency
of 50 Hz. The ankle angle profile over the dorsiflexion phase of
gait on each walking step was subtracted from the dorsiflexion
ankle angle profile during walking with 5 N·m of exoskeleton
torque applied constantly throughout stance. The calculated
difference at each time point was then averaged to obtain
the ankle angle deviation term, 〈eθa〉. Additional details about
the measurement of baseline ankle kinematics are provided in
Appendix D.

C. Ankle Exoskeleton Emulator

The algorithm was implemented on a set of bilateral ankle
exoskeletons via our emulator system which uses off-board
motors and control architecture to actuate the exoskeleton
end-effectors via a flexible tether (Fig. 3). The exoskeletons
contacted the user at the shank below the knee via a strap
worn around the calf, at the toe via a plate embedded in the
front of the shoe, and at the heel via a rope embedded in
the rear of the shoe (Fig. 9). Additional information about the
exoskeleton end-effectors used in this study are provided in
Appendix C. Full details of the emulator and ankle exoskeleton
end-effectors can be found in [28], [29]. Control of the
ankle exoskeletons was state-dependent, with different control
methods used for the stance and swing phases of gait. During
stance, torque control with iterative learning [30] was used
to track the time-based, desired exoskeleton torque profile.
During swing, motor position control was used to track the
exoskeleton ankle joint angle with a defined amount of slack
in the Bowden cable so as to not interfere with the natural
motion of the user’s ankle.

III. EVALUATION OF CONTROLLER PERFORMANCE

We conducted an experiment to evaluate the effectiveness
of the algorithm at discovering exoskeleton torque profiles that
reduced metabolic rate in naı̈ve exoskeleton users. Participants
walked for 30 minutes with the co-adaptive controller as it
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Fig. 3. Experimental set-up. Participants walked on an instrumented split-
belt treadmill while wearing exoskeleton end-effectors on both legs. Flexible
transmissions connected the exoskeletons to off-board motor and control
hardware. EMG electrodes placed on the participants legs were used to
measure muscle activity, while respirometry equipment was used to measure
oxygen consumption and carbon dioxide expulsion. Inset: Soleus muscle
activity, tibialis anterior muscle activity, ankle joint angle, and exoskeleton
torque were continuously measured to update the co-adaptive controller and
to be compared across conditions.

evolved based on the described heuristics (Adaptive). We mea-
sured soleus muscle activity and whole-body metabolic rate
to observe how changes in muscle activity patterns affected
torque profiles and how the torque profiles affected muscle
activity patterns and whole-body coordination strategies. We
compared these outcomes to those measured during walking
with a static torque profile (Static) to give context to the
results from the Adaptive condition. This Static profile was
defined as the average of participant-optimized torque profiles
from a different protocol [6], in which each participant’s
torque profile was optimized to directly minimize metabolic
rate. The shape of the Static profile was the same for each
participant, with the magnitude normalized by body mass. The
goal was for the co-adaptive controller to match improvements
in metabolic rate achieved with the Static torque profile. All
outcomes were reported in reference to a baseline condition
defined as walking with bilateral exoskeletons as they provided
zero torque (Zero Torque). Finally, to capture the added cost
of wearing the exoskeletons, we compared the Zero Torque
condition to walking in normal shoes (Normal Walking).

A. Experimental Protocol

Ten able-bodied individuals (8 men and 2 women; age =
22.7 ± 2.0 yrs; body mass = 68.3 ± 9.4 kg; height = 1.75 ±

0.05 m) participated in the study. No participants had worn the
exoskeletons prior to the study and all participants provided
written informed consent before completing the protocol ap-
proved by the Carnegie Mellon Institutional Review Board.

The Adaptive and Static conditions each consisted of one
30-minute trial. The presentation of the Adaptive and Static
conditions was randomized to account for ordering and learn-
ing effects. The Normal Walking condition consisted of one
six-minute trial and was randomly chosen to come either first
or last. The Zero Torque condition was the average of two, six-
minute trials in which the exoskeletons were worn on both an-
kles but provided zero torque. One trial was performed before
the Adaptive and Static conditions and one trial was performed
after. All walking trials were performed on a treadmill at
1.25 m·s−1. Basal metabolic rate was obtained through a Quiet
Standing condition lasting four minutes. Additional details
about the experimental protocol are provided in Appendix D.

B. Measured Outcomes

1) Muscle Activity: Muscle activity was measured using
surface electromyography and processed as described pre-
viously. Average peak and root-mean-square (RMS) of the
processed electromyography signals were calculated for the
last three minutes of each walking condition and used to
compare muscle activity across the different conditions.

2) Metabolic Rate: Metabolic rate was estimated by sub-
stituting volumetric oxygen consumption and carbon dioxide
expulsion flow rates into a widely-used equation [31]. Volu-
metric flow rates were measured using indirect calorimetry via
a portable metabolics cart (Oxycon Mobile, CareFusion, San
Diego, California, USA). The average of the last three minutes
of metabolics data for each condition, normalized to body
mass, was used as our measure of steady-state metabolic rate.
Net metabolic rate was calculated by subtracting the metabolic
rate of Quiet Standing from the different walking conditions.
Change in metabolic rate was calculated by subtracting net
metabolic rate of each walking condition from net metabolic
rate of the Zero Torque condition.

3) Exoskeleton Mechanics: We used on-board sensors to
measure ankle exoskeleton kinematics and kinetics. Exoskele-
ton ankle joint angle was measured using an absolute magnetic
encoder, sampled at 500 Hz and low-pass filtered with a cut-
off frequency of 50 Hz. Exoskeleton plantarflexion torque was
measured using calibrated strain gauges, sampled at 500 Hz
and low-pass filtered with a cut-off frequency of 50 Hz. The
desired exoskeleton torque profile was averaged over the last
three minutes of the Adaptive condition and normalized to
body mass. Average peak and RMS of the evolved exoskeleton
torque profiles were calculated for the last three minutes of the
Adaptive condition for the left and right legs independently.
These measures were used to compare the evolved torque
profiles across legs and subjects and to the torque profile
applied in the Static condition.

4) Separation into Strides: Ground reaction forces, sam-
pled at a frequency of 500 Hz using an instrumented split-
belt treadmill (Bertec, Columbus, Ohio, USA) and low-pass
filtered with a cut-off frequency of 60 Hz, were used to detect
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the swing and stance phases of gait. A threshold of 150 N was
used to trigger heel-strike and toe-off. All time-trajectories of
interest were separated into strides.

5) Statistical Analysis: We compared soleus muscle ac-
tivity, exoskeleton torque, and metabolic rate across walking
conditions. Average trajectories, normalized to percent stride,
were generated for each subject. All outcomes were averaged
across subjects. Standard deviations represent variations be-
tween subjects. We performed paired t-tests to compare results
across the two conditions of interest for a given outcome. We
then applied the Holm-S̆ı́dák step-down correction for multiple
comparisons [32] and used a significance level of α = 0.05.

IV. RESULTS

We developed a heuristic-based algorithm that uses mea-
surements of muscle activity and joint kinematics to drive
the evolution of a desired exoskeleton torque profile. We
conducted an experiment to evaluate the effectiveness of the
algorithm and found that the resulting growth in exoskeleton
torque led to significant reductions in soleus muscle activity
and whole-body metabolic rate.

A. Evolved Torque Profiles and Reductions in Soleus EMG

The co-adaptive controller resulted in slow growth of
exoskeleton torque, guided by changes in measured soleus
muscle activity, tibialis anterior muscle activity, and ankle
kinematics, which led to a coincident reduction in soleus
muscle activity (Fig. 2). Exoskeleton torque evolved indepen-
dently for the left and right legs and for each participant,
resulting in different torque profiles between limbs and across
participants (Fig. 4A). On average, RMS of exoskeleton torque
was 0.32 ± 0.058 N·m·kg−1 and peak exoskeleton torque was
0.75 ± 0.21 N·m·kg−1. Soleus muscle activity, particularly
during late stance, was significantly reduced when participants
walked with the co-adaptive exoskeleton controller. Average
RMS and peak soleus muscle activity in the Adaptive con-
dition were 32.6% and 56% lower, respectively, compared to
the Zero Torque condition (p = 3 · 10−6 and p = 3 · 10−6,
respectively, Fig. 4B). Reductions in RMS soleus muscle
activity ranged from 15% to 54%.

B. Reductions in Whole-Body Metabolic Rate

The algorithm we developed led to substantial reductions
in metabolic rate below walking in the Zero-Torque mode
and below walking in normal shoes, comparable to reductions
achieved with the previously-optimized static exoskeleton
torque profile (Fig. 5). Metabolic rate decreased, on average,
from 3.43 ± 0.51 W·kg−1 in the Zero Torque condition to
2.66 ± 0.38 W·kg−1 in the Adaptive condition, a 22.0%
reduction (p = 1 · 10−4). Reductions in metabolic rate ranged
from 12.1% to 40.0% across participants. Compared to Nor-
mal Walking, the co-adaptive exoskeleton controller reduced
metabolic rate by 8.7%. Net metabolic rate was not signif-
icantly different across the Adaptive and Static conditions
(p = 0.8).

DISCUSSION

Soleus muscle activity, tibialis anterior muscle activity,
and ankle joint kinematics guided the evolution of ankle
exoskeleton torque profiles that effectively reduced whole-
body metabolic rate. Average metabolic savings, compared to
walking in the Zero-Torque mode, amounted to 22.0%, which
is approximately equivalent to removing a 33 lb backpack
[33]. Such reductions were achieved within 30 minutes and
did not incorporate direct measurements of metabolic rate into
the update law.

The co-adaptive control strategy led to greater reductions
in soleus muscle activity and metabolic energy consump-
tion in less time than alternative electromyography-driven
approaches. Traditional proportional myoeletric control only
reduced soleus muscle activity by 26% and metabolic rate by
8%, compared to walking with the exoskeletons turned off
[21]. Adding an adaptive gain to the proportional myoelectric
controller resulted in even smaller reductions in soleus muscle
activity but improved reductions in metabolic rate [34]; the
metabolic cost savings were consistent with those achieved
in the current study. In the above-referenced experiments,
participants were given three 30-minute trials of walking with
the respective controller, three times the exposure provided in
the current study. The co-adaptive control strategy was able
to achieve equivalent gains in less time, demonstrating its
effectiveness.

One major benefit of the co-adaptive control strategy is
its ability to continuously respond to the user over time.
The shape of the assistance profile changed as soleus muscle
activity patterns changed and the growth of the assistance
profile slowed down when coordination strategies deviated sig-
nificantly from normal walking (Movie 1). Although most sig-
nificant changes in torque magnitude happened during the first
couple of minutes of walking with the co-adaptive controller,
subtler changes in the shape of the torque pattern continued
throughout the 30-minute Adaptive condition (Fig. 6A, Movie
1), indicating that users were still changing their coordina-
tion patterns. Furthermore, average metabolic rate was still
decreasing at the end of the 30-minute condition, suggesting
the potential for further gains with continued exposure to this
controller (Fig. 6B). More testing is required to explore this
idea.

A second major benefit of the co-adaptive control strategy
is its ability to quickly identify effective, high-dimensional
assistance profiles for new devices. The algorithm can realize
any pattern of torque governed by measured muscle activity.
Although the current implementation of the algorithm is rela-
tively device-specific, modified versions of the algorithm will
likely generalize to other joints. For example, by expanding
measurements of muscle activity and joint kinematics to cover
the entire gait cycle, torque can be adjusted during both the
stance and swing phases of gait. Additionally, to incorporate
bi-directional control of a device, such as flexion and exten-
sion, incorporating average muscle activity contributions for
both the flexor and extensor muscles will likely be neces-
sary, and the gains on these different muscle contributions
will need to be adjusted to achieve the appropriate relative
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flexion/extension moments. Further adjustment of control pa-
rameters could be performed to decrease or increase the rate
of change of the assistance profile for different populations
and different devices.

Finally, a third major benefit of the co-adaptive control
strategy is its ability to scale well to multiple joints. Many
direct optimization methods scale at least linearly, if not
exponentially, with the number of parameters [23], [35],
[36]. Covariance matrix adaptation evolutionary strategies

(CMAES) do slightly better, theoretically scaling with the log
of the number of parameters [30]. Bayesian optimization can
also improve sampling efficiency, but is subject to the curse
of dimensionality and becomes computationally unwieldy at
around 10 parameters [37]. With this heuristic-based algo-
rithm, adding control over an additional joint is equivalent
to adding just one computation at every time step. We showed
this capability by independently applying the controller to
bilateral exoskeletons, requiring the algorithm to separately
discover torque profiles for the left and right legs. Given the
aforementioned strengths, effective generalization and scaling
of this approach could lay the foundation for a full lower-limb
exoskeleton assistance strategy.

The current formulation of the controller may benefit from
adjustments to its implementation. The desired torque profile
was restricted to converge to a neighborhood of the average
pattern of soleus muscle activity, assuming only small in-
creases in tibialis anterior muscle activity (Fig. 8), due to the
inclusion of a negative gain on the desired torque. Replacing
this term with a gross measure of torque, such as average
torque or peak torque, or another generic stabilizing term could
remove this constraint and enable the discovery of a broader
range of assistance profiles, some of which may prove more
effective. The constants used in the algorithm were determined
through experimental testing. Future work should include a
rigorous characterization of the control parameters and their
allowable bounds. Optimization of these constants could result
in assistance profiles that elicit even more beneficial interac-
tions between the device and user.

Heuristic-based controllers inherently rely on assumptions
and intuition that may be imperfect or incorrect, which is a
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concern for the presented controller. For example, it remains
unclear whether incorporating memory into the controller is
beneficial. Furthermore, the controller penalizes large kine-
matic changes, even though the relationship between metabolic
energy reductions and kinematic adaptations has not been well
characterized. These decisions were made based on previous
experience developing assistance strategies. We attempted to
balance natural kinematic adaptations to exoskeleton torque
with excessive kinematic adaptations, and guide users towards
reducing soleus muscle activity instead of only changing
kinematics. Additional testing of the size of the deadband
and the value of the gain on the kinematic error term could
be performed to better characterize the effect of kinematic
constraints on the evolved torque profile and the user’s whole-
body metabolic rate.

Continued lab-based research is necessary before this con-
trol approach is ready to be deployed on commercial ex-
oskeletons. Experiments were performed on a treadmill, at
steady-state, thus, it remains to be seen how this controller
will perform in more ecological scenarios, such as variable
speed or inclined walking. Applying this control approach to
exoskeletons acting about more complex joints, e.g. the hip
joint, may prove challenging given the inherent limitations
of measuring muscle activity using surface electromyogra-
phy. Some superficial muscles are, however, still available.
Furthermore, electromyography sensors can be cumbersome,
but they are still more mobile than metabolic carts and many
companies are working on developing more robust, wearable
electromyography systems.

Although this control approach worked well for able-bodied
individuals, it will likely not be effective for populations
with altered muscle activity, such as amputees or individuals
post-stroke. The evolved assistance profiles are dependent on

patterns of muscle activity, therefore torque profiles could
not be generated from an amputated limb or a limb with
abnormal muscle activity due to neurological injury. The
primary candidates for assistance with this control strategy
are those with generally normal patterns of muscle activity but
reduced muscle strength, including the 18% of adults over the
age of 60 with muscle weakness [38] and any other individuals
scoring less than five on the Medical Research Council (MRC)
muscle strength scale [39]. Exoskeleton torque profiles could
still evolve based upon measured muscle activity with such
individuals, and the resulting assistance may help compensate
for any reduced functionality caused by muscle weakness.

V. CONCLUSION

We developed a heuristic-based algorithm to simultaneously
adapt to changes in each user’s coordination patterns and
discover individualized exoskeleton assistance strategies that
effectively improve locomotor economy. Soleus muscle activ-
ity, tibialis anterior muscle activity, and ankle joint kinematics,
measured online, were used to guide the evolution of an
exoskeleton torque profile. The algorithm led to exoskele-
ton torque profiles that substantially reduced soleus muscle
activity and whole-body metabolic rate in naı̈ve exoskeleton
users, showing the effectiveness of the approach. This control
approach can quickly identify high-dimensional assistance
patterns and is tolerant of, and responsive to, slow user
adaptation. We expect this co-adaptive algorithm to enable the
discovery of effective lower-limb assistance strategies for able-
bodied individuals and those with muscle weakness, such as
the elderly, especially in complex paradigms.
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APPENDIX A
EVOLVED TARGET VARIABLES

To facilitate comparisons of this controller to previous
research, we provide subject-averaged trajectories for each
component included in the controller and bar plots of metrics
of interest for each respective component (Fig. 7).
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APPENDIX B
STEADY-STATE TORQUE

The inclusion of a negative force feedback term, −k3·τdes, in
the heuristic-based algorithm constrained steady-state torque
(τss) to be

τss =k1 · k−1
3 · EMGs · 〈EMGs(n)〉−m

− k2 · k−1
3 · EMGt

− k4 · k−1
3 · sgn(〈eθa(n)〉)± dτdb · k−1

3

(3)

where k1, k2, k3, k4, m, cθa , and dτdb are experimentally-
determined constants.

The relative values of k1 and k3 defined the steady-state
torque for a given reduction in soleus muscle activity, assum-
ing minimal to no contributions from the tibialis anterior and
ankle kinematics terms. This criteria restricted the shape of
the steady-state torque profile to a neighborhood of the soleus
muscle activity pattern (Fig. 8).
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APPENDIX C
ANKLE EXOSKELETON EMULATOR

External plantarflexion torque was applied about both ankles
using our ankle exoskeleton emulator (Fig. 9), the details of
which are provided in [28], [29]. The ankle exoskeleton end-
effectors contacted the user at three places on the body: at
the shank below the knee, under the ball of the shoe, and
under the heel of the shoe. Each end-effector had a mass of
0.875 kg and was actuated by a powerful off-board motor, with
forces transmitted through a flexible, unidirectional Bowden
cable tether. The end-effectors had rotational joints on the
medial and lateral sides of each leg, with the axis of rotation
approximately aligned with the center of the user’s lateral
malleolus.
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Fig. 9. Ankle exoskeleton end-effector used during experiments. (A) Schematic of the exoskeleton end-effector with major components identified. Additional
information about the exoskeletons can be found in [29]. (B) Photograph of the exoskeleton end-effector.

The exoskeleton end-effectors were instrumented to mea-
sure device mechanics and trigger state transitions. Exoskele-
ton plantarflexion torque was measured with four strain gages
(MMF003129, Micro Measurements, Wendell, NC, USA) af-
fixed to the frame in a Wheatstone bridge configuration. Root-
mean-square error of measured torque was 0.125 N·m, or
0.25% of peak [29]. Exoskeleton joint angle was measured
using an absolute magnetic encoder (MAE3, US Digital,
Vancouver, Washington, USA) mounted on the lateral side
of each exoskeleton’s ankle joint. Foot contact was detected
using a pressure switch (McMaster-Carr, Aurora, Ohio, USA)
situated in the heel of each shoe.

Control of the ankle exoskeletons was dependent on the
phase of the gait cycle. During stance, the desired exoskeleton
torque-time pattern was tracked using torque control. Ex-
oskeleton torque control was achieved using a combination of
proportional control, damping injection, and iterative learning
compensation. This method of torque control was previously
shown to result in torque tracking errors as low as 1% of the
peak torque during walking, which is lower than the torque
tracking errors observed with other commonly used torque
control methods [30]. During swing, exoskeleton ankle joint
angle was tracked using motor position control. A defined
length of slack was maintained in the Bowden cable to reduce
interference with the user’s natural ankle motion. The ankle
exoskeleton emulator was capable of generating peak plan-
tarflexion moments during walking of approximately 120 N·m
[29].

APPENDIX D
ADDITIONAL EXPERIMENTAL DETAILS

The soleus muscle activity terms, EMGs and 〈EMGs〉, and
the tibialis anterior muscle activity term, EMGt, in the co-
adaptive controller were normalized to peak baseline soleus
and tibialis anterior muscle activity, respectively. Baseline
muscle activity was measured just prior to the start of the
30-minute Adaptive condition. Participants walked on the
treadmill at 1.25 m·s−1 for 30 consecutive steps in the Zero-
Torque mode while we measured soleus and tibialis anterior

muscle activity. We then averaged each of these muscle activity
profiles and defined the peaks of these average profiles as our
normalization factors.

The deviation in ankle kinematics term, eθa , in the co-
adaptive controller was defined as the average difference
between measured and nominal ankle angle profiles at each
point in time, over the dorsiflexion phase of gait. Nominal
ankle kinematics were measured immediately after measuring
baseline muscle activity. Participants walked on the treadmill
at 1.25 m·s−1 while the exoskeleton applied a constant torque
of 5 N·m throughout the stance phase of gait. This small,
but imperceptible, amount of torque was meant to account
for shifting of the exoskeleton on the leg when forces were
transmitted through the bowden cable. Specifically, we did not
want changes in ankle kinematics due purely to shifting of
the exoskeleton to contribute to changes in the desired torque
profile. We let the user to walk for approximately 30 seconds
with the 5 N·m square-wave of torque to allow iterative
learning to compensate for any large torque-tracking errors.
Once we determined, through visual inspection, that desired
torque was being tracked well, we measured ankle kinematics
over 30 consecutive steps, then averaged these trajectories to
obtain a nominal ankle angle trajectory. We then briefly put the
exoskeleton back into the Zero-Torque mode, updated the co-
adaptive controller with the computed nominal values, then
started the Adaptive condition in which exoskeleton torque
evolved as defined by the heuristic-based algorithm.
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