8-3. The thin-walled cylinder can be supported in one of two ways as shown. Determine the state of stress in the wall of the cylinder for both cases if the piston P causes the internal pressure to be 65 psi. The wall has a thickness of 0.25 in . and the inner diameter of the cylinder is 8 in .

(a)

(b)

Case (a):

$$
\begin{aligned}
& \sigma_{1}=\frac{p r}{t} ; \quad \sigma_{1}=\frac{65(4)}{0.25}=1.04 \mathrm{ksi} \\
& \sigma_{2}=0
\end{aligned}
$$

Ans.

Ans.
Case (b):

$$
\begin{array}{ll}
\sigma_{1}=\frac{p r}{t} ; & \sigma_{1}=\frac{65(4)}{0.25}=1.04 \mathrm{ksi} \\
\sigma_{2}=\frac{p r}{2 t} ; & \sigma_{2}=\frac{65(4)}{2(0.25)}=520 \mathrm{psi}
\end{array}
$$

Ans.

Ans.

Ans:

(a) $\sigma_{1}=1.04 \mathrm{ksi}, \sigma_{2}=0$,
(b) $\sigma_{1}=1.04 \mathrm{ksi}, \sigma_{2}=520 \mathrm{psi}$
*8-12. A pressure-vessel head is fabricated by gluing the circular plate to the end of the vessel as shown. If the vessel sustains an internal pressure of 450 kPa , determine the average shear stress in the glue and the state of stress in the wall of the vessel.
$+\uparrow \Sigma F_{y}=0 ; \quad \pi(0.225)^{2} 450\left(10^{3}\right)-\tau_{\text {avg }}(2 \pi)(0.225)(0.01)=0 ;$
$\tau_{\text {avg }}=5.06 \mathrm{MPa}$
$\sigma_{1}=\frac{p r}{t}=\frac{450\left(10^{3}\right)(0.225)}{0.02}=5.06 \mathrm{MPa}$
$\sigma_{2}=\frac{p r}{2 t}=\frac{450\left(10^{3}\right)(0.225)}{2(0.02)}=2.53 \mathrm{MPa}$

Ans.

Ans.

8-23. The clamp is made from members $A B$ and $A C$, which are pin connected at A. If it exerts a compressive force at C and B of 180 N , sketch the stress distribution acting over section $a-a$. The screw $E F$ is subjected only to a tensile force along its axis.

There is no moment in this problem. Therefore, the compressive stress is produced by axial force only.

$$
\sigma_{\text {const }}=\frac{P}{A}=\frac{240}{(0.015)(0.015)}=1.07 \mathrm{MPa}
$$

Ans:

$\sigma_{\text {const }}=1.07 \mathrm{MPa}$

8-30. The rib-joint pliers are used to grip the smooth pipe C. If the force of 100 N is applied to the handles, determine the state of stress at points A and B on the cross section of the jaw at section $a-a$. Indicate the results on an element at each point.

Support Reactions: Referring to the free-body diagram of the handle shown in Fig. a,
$\zeta+\Sigma M_{D}=0 ; \quad 100(0.25)-F_{C}(0.05)=0 \quad F_{C}=500 \mathrm{~N}$
Internal Loadings: Consider the equilibrium of the free-body diagram of the segment shown in Fig. b,
$\Sigma F_{y^{\prime}}=0 ;$
$500-V=0$
$V=500 \mathrm{~N}$
$\zeta+\Sigma M_{C}=0 ;$
$M-500(0.025)=0$
$M=12.5 \mathrm{~N} \cdot \mathrm{~m}$

Section Properties: The moment of inertia of the cross section about the centroidal axis is

$$
I=\frac{1}{12}(0.0075)\left(0.02^{3}\right)=5\left(10^{-9}\right) \mathrm{m}^{4}
$$

Referring to Fig. c, Q_{A} and Q_{B} are

$$
\begin{aligned}
& Q_{A}=0 \\
& Q_{B}=\bar{y}^{\prime} A^{\prime}=0.005(0.01)(0.0075)=0.375\left(10^{-6}\right) \mathrm{m}^{3}
\end{aligned}
$$

Normal Stress: The normal stress is contributed by bending stress only. Thus

$$
\sigma=\frac{M y}{I}
$$

For point $A, y=0.01 \mathrm{~m}$. Then

$$
\sigma_{A}=-\frac{12.5(0.01)}{5\left(10^{-9}\right)}=-25 \mathrm{MPa}=25 \mathrm{MPa}(\mathrm{C})
$$

Ans.

For point $B, y=0$. Then

$$
\sigma_{B}=0
$$

Ans.
Shear Stress: The shear stress is contributed by transverse shear stress only. Thus,

$$
\begin{aligned}
& \tau_{A}=\frac{V Q_{A}}{I t}=0 \\
& \tau_{B}=\frac{V Q_{B}}{I t}=\frac{500\left[0.375\left(10^{-6}\right)\right]}{5\left(10^{-9}\right)(0.0075)}=5 \mathrm{MPa}
\end{aligned}
$$

Ans.

Ans.

The state of stress of points A and B are represented by the elements shown in Figs. d and e respectively.

Section $a-a$

(b)

(c)

(d)

(e)

Ans:
$\sigma_{A}=25 \mathrm{MPa}(\mathrm{C}), \sigma_{B}=0$,
$\tau_{A}=0, \tau_{B}=5 \mathrm{MPa}$

8-37. The drill is jammed in the wall and is subjected to the torque and force shown. Determine the state of stress at point B on the cross section of drill bit, in back, at section $a-a$.

Internal Loadings: Consider the equilibrium of the free-body diagram of the drill's right cut segment, Fig. a,
$\Sigma F_{x}=0 ; \quad N-150\left(\frac{4}{5}\right)=0$

$$
N=120 \mathrm{~N}
$$

$\Sigma F_{y}=0 ; \quad 150\left(\frac{3}{5}\right)-V_{y}=0 \quad V_{y}=90 \mathrm{~N} \quad$ Section $a-a$

$$
\begin{aligned}
& \Sigma M_{x}=0 ; \quad 20-T=0 \\
& \Sigma M_{z}=0 ;-150\left(\frac{3}{5}\right)(0.4)+150\left(\frac{4}{5}\right)(0.125)+M_{z}=0 \\
& \quad M_{z}=21 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
T=20 \mathrm{~N} \cdot \mathrm{~m}
$$

Section Properties: The cross-sectional area, the moment of inertia about the z axis, and the polar moment of inertia of the drill's cross section are

$$
\begin{aligned}
& A=\pi\left(0.005^{2}\right)=25 \pi\left(10^{-6}\right) \mathrm{m}^{2} \\
& I_{z}=\frac{\pi}{4}\left(0.005^{4}\right)=0.15625 \pi\left(10^{-9}\right) \mathrm{m}^{4} \\
& J=\frac{\pi}{2}\left(0.005^{4}\right)=0.3125 \pi\left(10^{-9}\right) \mathrm{m}^{4}
\end{aligned}
$$

Referring to Fig. b, Q_{B} is

$$
Q_{B}=\bar{y}^{\prime} A^{\prime}=\frac{4(0.005)}{3 \pi}\left[\frac{\pi}{2}\left(0.005^{2}\right)\right]=83.333\left(10^{-9}\right) \mathrm{m}^{3}
$$

Normal Stress: The normal stress is a combination of axial and bending stress. Thus,

$$
\sigma=\frac{N}{A}-\frac{M_{z} y}{I_{z}}
$$

For point $B, y=0$. Then

$$
\sigma_{B}=\frac{-120}{25 \pi\left(10^{-6}\right)}-0=-1.528 \mathrm{MPa}=1.53 \mathrm{MPa}(\mathrm{C})
$$

Ans.

8-37. Continued

Shear Stress: The transverse shear stress developed at point B is

$$
\left[\left(\tau_{x y}\right)_{V}\right]_{B}=\frac{V_{y} Q_{B}}{I_{z} t}=\frac{90\left[83.333\left(10^{-9}\right)\right]}{0.15625 \pi\left(10^{-9}\right)(0.01)}=1.528 \mathrm{MPa}
$$

The torsional shear stress developed at point B is

$$
\left[\left(\tau_{x y}\right)_{T}\right]_{B}=\frac{T c}{J}=\frac{20(0.005)}{0.3125 \pi\left(10^{-9}\right)}=101.86 \mathrm{MPa}
$$

Thus,

$$
\begin{aligned}
\left(\tau_{x y}\right)_{B} & =0 \\
\left(\tau_{x y}\right)_{B} & =\left[\left(\tau_{x y}\right)_{T}\right]_{B}-\left[\left(\tau_{x y}\right)_{V}\right]_{B} \\
& =101.86-1.528=100.33 \mathrm{MPa}=100 \mathrm{MPa}
\end{aligned}
$$

Ans.

Ans.
The state of stress at point B is represented on the element shown in Fig. d.

(a)

Ans:
$\sigma_{B}=1.53 \mathrm{MPa}(\mathrm{C}), \tau_{B}=100 \mathrm{MPa}$

8-57. The sign is subjected to the uniform wind loading. Determine the stress components at points A and B on the $100-\mathrm{mm}$-diameter supporting post. Show the results on a volume element located at each of these points.

Point A :

$\sigma_{A}=\frac{M c}{I}=\frac{10.5\left(10^{3}\right)(0.05)}{\frac{\pi}{4}(0.05)^{4}}=107 \mathrm{MPa}(\mathrm{T})$
$\tau_{A}=\frac{T c}{J}=\frac{3\left(10^{3}\right)(0.05)}{\frac{\pi}{4}(0.05)^{4}}=15.279\left(10^{6}\right)=15.3 \mathrm{MPa}$
Point B :
$\sigma_{B}=0$
$\tau_{B}=\frac{T c}{J}-\frac{V Q}{I t}=15.279\left(10^{6}\right)-\frac{3000(4(0.05) / 3 \pi))\left(\frac{1}{2}\right)(\pi)(0.05)^{2}}{\frac{\pi}{4}(0.05)^{4}(0.1)}$
$\tau_{B}=14.8 \mathrm{MPa}$

Ans.

Ans.

Ans.

Ans.

Ans:
$\sigma_{A}=107 \mathrm{MPa}(\mathrm{T}), \tau_{A}=15.3 \mathrm{MPa}$,
$\sigma_{B}=0, \tau_{B}=14.8 \mathrm{MPa}$

8-66. Determine the state of stress at point B on the cross section of the pipe at section $a-a$.

Internal Loadings: Referring to the free-body diagram of the pipe's right segment, Fig. a,
$\Sigma F_{y}=0 ; \quad V_{y}-50 \sin 60^{\circ}=0$
$V_{y}=43.30 \mathrm{lb}$
$\Sigma F_{z}=0 ; \quad V_{z}-50 \cos 60^{\circ}=0$
$V_{z}=25 \mathrm{lb}$
$\Sigma M_{x}=0 ; \quad T+50 \sin 60^{\circ}(12)=0$
$T=-519.62 \mathrm{lb} \cdot$ in
$\Sigma M_{y}=0 ; \quad M_{y}-50 \cos 60^{\circ}(10)=0$
$M_{y}=250 \mathrm{lb} \cdot$ in
$\Sigma M_{z}=0 ; \quad M_{z}+50 \sin 60^{\circ}(10)=0$
$M_{z}=-433.01 \mathrm{lb} \cdot$ in
Section Properties: The moment of inertia about the y and z axes and the polar moment of inertia of the pipe are

$$
\begin{aligned}
& I_{y}=I_{z}=\frac{\pi}{4}\left(1^{4}-0.75^{4}\right)=0.53689 \mathrm{in}^{4} \\
& J=\frac{\pi}{2}\left(1^{4}-0.75^{4}\right)=1.07379 \mathrm{in}^{4}
\end{aligned}
$$

Referring to Fig. b,
$\left(Q_{z}\right)_{B}=0$
$\left(Q_{y}\right)_{B}=\bar{y}_{1}^{\prime} A_{1}^{\prime}-\bar{y}_{2}^{\prime} A_{2}^{\prime}=\frac{4(1)}{3 \pi}\left[\frac{\pi}{2}\left(1^{2}\right)\right]-\frac{4(0.75)}{3 \pi}\left[\frac{\pi}{2}\left(0.75^{2}\right)\right]=0.38542 \mathrm{in}^{3}$
Normal Stress: The normal stress is contributed by bending stress only. Thus,

$$
\sigma=-\frac{M_{z} y}{I_{z}}+\frac{M_{y} z}{I_{y}}
$$

For point $B, y=0$ and $z=-1$. Then

$$
\sigma_{B}=-0+\frac{250(-1)}{0.53689}=-465.64 \mathrm{psi}=466 \mathrm{psi}(\mathrm{C})
$$

Ans.

Shear Stress: The torsional shear stress developed at point B is

$$
\left[\left(\tau_{x y}\right)_{T}\right]_{B}=\frac{T \rho_{C}}{J}=\frac{519.62(1)}{1.07379}=483.91 \mathrm{psi}
$$

8-66. Continued

The transverse shear stress developed at point B is

$$
\begin{aligned}
& {\left[\left(\tau_{x z}\right)_{V}\right]_{B}=0} \\
& {\left[\left(\tau_{x y}\right)_{V}\right]_{B}=\frac{V_{y}\left(Q_{y}\right)_{B}}{I_{z} t}=\frac{43.30(0.38542)}{0.53689(2-1.5)}=62.17 \mathrm{psi}}
\end{aligned}
$$

Combining these two shear stress components,

$$
\begin{aligned}
\left(\tau_{x y}\right)_{B} & =\left[\left(\tau_{x y}\right)_{T}\right]_{B}-\left[\left(\tau_{x y}\right)_{V}\right]_{B} \\
& =483.91-62.17=422 \mathrm{psi} \\
\left(\tau_{x z}\right)_{B} & =0
\end{aligned}
$$

(a)

(b)

Ans.
Ans.

Ans:
$\sigma_{B}=466 \mathrm{psi}(\mathrm{C}), \tau_{B}=422 \mathrm{psi}$

