
dottie
Text Box
Sample Chapter

Hibernate Search in Action
by Emmanuel Bernard

and John Griffin

Chapter 2

Copyright 2009 Manning Publications

brief contents
PART 1 UNDERSTANDING SEARCH TECHNOLOGY 1

1 ■ State of the art 3

2 ■ Getting started with Hibernate Search 28

PART 2 ENDING STRUCTURAL AND
SYNCHRONIZATION MISMATCHES 61

3 ■ Mapping simple data structures 63

4 ■ Mapping more advanced data structures 88

5 ■ Indexing: where, how, what, and when 115

PART 3 TAMING THE RETRIEVAL MISMATCH 159

6 ■ Querying with Hibernate Search 161

7 ■ Writing a Lucene query 201

8 ■ Filters: cross-cutting restrictions 251

PART 4 PERFORMANCE AND SCALABILITY 273

9 ■ Performance considerations 275

10 ■ Scalability: using Hibernate Search in a cluster 310

11 ■ Accessing Lucene natively 327

BRIEF CONTENTS
PART 5 NATIVE LUCENE, SCORING, AND THE WHEEL.............. 351

12 ■ Document ranking 353

13 ■ Don’t reinvent the wheel 399

appendix Quick reference

28

Getting started
with Hibernate Search

In the chapter 1, we discussed difficulties of integrating a full-text search engine
such as Apache Lucene into a Java application centered on a domain model and
using Hibernate or Java Persistence to persist data. More specifically, we saw three
mismatches:

■ Structural mismatch—How to convert the object domain into the text-only
index; how to deal with relations between objects in the index.

This chapter covers
■ What is Hibernate Search?
■ How to set up and configure Hibernate Search
■ An introduction to mapping your domain model
■ An introduction to indexing your data
■ An introduction to doing full-text queries
■ How to use Luke

29

■ Synchronization mismatch—How to keep the database and the index synchro-
nized all the time.

■ Retrieval mismatch—How to get a seamless integration between the domain
model-centric data-retrieval methods and full-text search.

Hibernate Search leverages the Hibernate ORM and Apache Lucene (full-text search
engine) technologies to address these mismatches. This chapter will give you an over-
view of Hibernate Search: how to use it, how to express full-text queries, and how it fits
into the Hibernate programmatic model.

 Hibernate Search is a project that complements Hibernate Core by providing the
ability to do full-text search queries on persistent domain models. Hibernate Core is
probably the most famous and most used ORM tool in the Java industry. An ORM lets
you express your domain model in a pure object-oriented paradigm, and it persists
this model to a relational database transparently for you. Hibernate Core lets you
express queries in an object-oriented way through the use of its own portable SQL
extension (HQL), an object-oriented criteria API, or a plain native SQL query. Typi-
cally, ORMs such as Hibernate Core apply optimization techniques that an SQL hand-
coded solution would not: transactional write behind, batch processing, and first- and
second-level caching. Hibernate Core is released under an open source license and
can be found at http://hibernate.org.

 Hibernate Search’s full-text technology entirely depends on Apache Lucene.
Lucene is a powerful full-text search engine library hosted at the Apache Software
Foundation (http://lucene.apache.org/java). It has rapidly become the de facto stan-
dard for implementing full-text search solutions in Java. This success comes from sev-
eral factors:

■ It is free and open source.
■ It has low-level and very powerful APIs.
■ It is agnostic as to the kind of data indexed and searched.
■ It has a good record of performance and maturity.
■ It has a vibrant community.

All these qualities make Lucene the perfect information-retrieval library for building
search solutions. These reasons are why Hibernate Search is built on top of Lucene.

 Hibernate Search, which is also released under an open source license, is a bridge
that brings Lucene features to the Hibernate world. Hibernate Search hides the low-
level and sometimes complex Lucene API usage, applies the necessary options under
the hood, and lets you index and retrieve the Hibernate persistent domain model
with minimal work. This chapter should give you a good understanding of how Hiber-
nate Search fits into the Hibernate programmatic model and describe how to quickly
start and try Hibernate Search.

 To demonstrate this integration, we’ll start by writing a DVD store application. We
won’t write the whole application but rather focus on the domain model and the core
engine, specifically the search engine.

http://hibernate.org
http://lucene.apache.org/java

30 CHAPTER 2 Getting started with Hibernate Search

 Our object model will be quite simple and contain an Item entity. The Item entity
represents a DVD. We want to let our users search by some of the Item properties. In
this chapter, we’ll show how to set up Hibernate Search, describe the metadata to
make Item a full-text searchable entity, index the items stored in the database, and
query the system to retrieve the matching DVDs.

2.1 Requirements: what Hibernate Search needs
Hibernate Search has been developed with Java 5 and needs to run on the Java Devel-
opment Kit (JDK) or Java Runtime Environment (JRE) version 5 or above. Aside from
this limitation, Hibernate Search runs everywhere Hibernate Core runs, especially in
the architecture and environment of your choice. While it’s next to impossible to list
all the possible environments Hibernate and Hibernate Search run on, we can list a
few typical ones:

■ Full-featured applications (web based or not) deployed on a Java EE application
server

■ Simpler web-based applications on a servlet container
■ Web-based applications using JBoss Seam
■ Swing applications
■ So-called lightweight dependency injection frameworks such as Spring Frame-

work, Guice, or Web Beans
■ Applications built on Java SE
■ Frameworks or platforms that use Hibernate, such as Grails

Hibernate Search integrates well into the Hibernate platform. More specifically, you
can use any of the following mapping strategies and APIs while using Hibernate
Search:

■ Hibernate Core APIs and hbm.xml files
■ Hibernate Core APIs and Hibernate Annotations
■ Hibernate EntityManager APIs and hbm.xml files
■ Hibernate EntityManager APIs and Hibernate Annotations

In other words, Hibernate Search is agnostic to your choice of mapping metadata
(XML or annotations) and integrates with both Hibernate native APIs and Java Persis-
tence APIs.

 While Hibernate Search has few restrictions, this chapter has some. The authors
expect the reader to understand the basics of Hibernate. The reader must be familiar
with the object-manipulation APIs from the Hibernate Session or the Java Persis-
tence EntityManager as well as the query APIs. She also must be familiar with asso-
ciation mappings and the concept of bidirectional relationships. These requirements
are nothing unusual for someone having a few months of experience with Hibernate.

 In this book, most examples will use Hibernate Annotations as the mapping meta-
data. Annotations have some advantages over an XML deployment descriptor:

31Setting up Hibernate Search

Metadata is much more compact, and mixing the class structure and the metadata
greatly enhances behavior readability. Besides, modern platforms, including the Java
platform, are moving away from XML as the preferred choice for code-centric meta-
data descriptors, which is reason enough for the authors to leave XML alone. Remem-
ber, while Hibernate Search uses annotations for its metadata, it works perfectly with
hbm.xml-based domain models, and it should be simple to port the examples.

2.2 Setting up Hibernate Search
Configuring Hibernate Search is fairly easy because it integrates with the Hibernate
Core configuration lifecycle. That being said, we’ll go through the steps of adding
Hibernate Search in a Hibernate-based application. We’ll add the libraries to the class-
path and add the configuration properties. But first you need to download Hibernate
Search at http://www.hibernate.org or use the JBoss Maven repository (http://reposi-
tory.jboss.org/maven2/org/hibernate/hibernate-search). It’s useful to download the
Apache Lucene distribution as well, which is available at http://lucene.apache.org/
java/. It contains both documentation and a contribution section containing add-ons
that aren’t bundled with Hibernate Search. Make sure you use the same Lucene ver-
sion that Hibernate Search is based on. You can find the correct version in the Hiber-
nate Search distribution in lib/readme.txt.

2.2.1 Adding libraries to the classpath

Add Hibernate Search’s necessary JARs (Java Archives) into your classpath. Hibernate
Search requires three JARs:

■ hibernate-search.jar—The core API and engine of Hibernate Search
■ lucene-core.jar—Apache Lucene engine
■ hibernate-commons-annotations.jar—Some common utilities for the Hibernate

project

All three JARs are available in the Hibernate Search distribution, and pulling them
from there is the safest way to have a compatible trio. Thus far Hibernate Search has
been staying as close as possible to the latest Lucene version to benefit from bug fixes,
performance improvements, and new features of the Lucene community.

 You can also add the optional support for modular analyzers by adding the follow-
ing JARs to your classpath:

■ solr-common.jar
■ solr-core.jar
■ lucene-snowball.jar

These JARs (available in the Hibernate Search distribution) are a subset of the Solr
distribution and contain analyzers. While optional, we recommend adding these JARs
to your classpath because it greatly simplifies the use of analyzers. This feature is avail-
able beginning with Hibernate Search 3.1.

http://www.hibernate.org
http://reposi-tory.jboss.org/maven2/org/hibernate/hibernate-search
http://reposi-tory.jboss.org/maven2/org/hibernate/hibernate-search
http://reposi-tory.jboss.org/maven2/org/hibernate/hibernate-search
http://lucene.apache.org/

32 CHAPTER 2 Getting started with Hibernate Search

NOTE You can put the full Solr distribution instead of the version provided by
Hibernate Search in your classpath if you wish to.

Hibernate Search is not compatible with all versions of Hibernate Core and Hibernate
Annotations. It’s best to refer to the compatibility matrix available on the Hiber-
nate.org download page. At the time this book was written, the compatibility matrix
tells us that:

■ Hibernate Search 3.0.x is compatible with Hibernate Core 3.2.x starting from
3.2.2, Hibernate Annotations 3.3.x, and Hibernate EntityManager 3.3.x.

■ Hibernate Search 3.1.x is compatible with Hibernate Core 3.3.x, Hibernate
Annotations 3.4.x, and Hibernate EntityManager 3.4.x.

NOTE You can find dependencies that Hibernate Search has been built on and
initially tested on in the Hibernate Search distribution or in the Maven
dependency file (POM). Hibernate Search is published to the JBoss
Maven repository (http://repository.jboss.org/maven2/org/hibernate/
hibernate-search).

If you use Hibernate Annotations, hibernate-commons-annotations.jar is already pres-
ent in your classpath.

 Adding a JAR to your classpath depends on your deployment environment. It’s vir-
tually impossible to describe all likely deployments, but we’ll go through a few of
them.

 In an SE environment, the JAR list is provided to the virtual machine thanks to a
command-line argument:

on Windows platforms
java -classpath hibernate-search.jar;lucene-core.jar
 ➥;hibernate-commons-annotations.jar;solr-core.jar ... my.StartupClass

on Unix, Linux and Mac OS X platforms
java -classpath hibernate-search.jar:lucene-core.jar:
 ➥ hibernate-commons-annotations.jar:solr-core.jar ... my.StartupClass

If you happen to deploy your Hibernate application in a WAR (Web Archive) either
deployed in a naked servlet container or a full-fledged Java EE application server,
things are a bit simpler; you just need to add the necessary JARs into the lib directory
of your WAR.

<WAR ROOT>
 WEB-INF
 classes
 [contains your application classes]
 lib
 hibernate-search.jar
 lucene-core.jar
 hibernate-commons-annotations.jar
 solr-core.jar

http://repository.jboss.org/maven2/org/hibernate/hibernate-search
http://repository.jboss.org/maven2/org/hibernate/hibernate-search

33Setting up Hibernate Search

 solr-common.jar
 lucene-snowball.jar
 [contains other third party libraries]
...

You could also put Hibernate Search-required JARs as a common library in your serv-
let container or application server. The authors don’t recommend such a strategy
because it forces all deployed applications to use the same Hibernate Search version.
Some support or operation teams tend to dislike such a strategy, and they’ll let you
know it.

 If you deploy your application in an EAR (Enterprise Archive) in a Java EE applica-
tion server, one of the strategies is to put the third-party libraries in the EAR’s lib direc-
tory (or in the library-directory value in META-INF/application.xml if you happen
to override it).

<EAR_ROOT>
 myejbjar1.jar
 mywar.war
 META-INF
 ...
 lib
 hibernate-search.jar
 lucene-core.jar
 hibernate-commons-annotations.jar
 solr-core.jar
 solr-common.jar
 lucene-snowball.jar
 [contains other third party libraries]
...

Unfortunately, this solution works only for Java EE 5 application servers and above. If
you’re stuck with a J2EE application server, you’ll need to add a Class-Path entry in
each META-INF/MANFEST.MF file of any component that depends on Hibernate
Search. Listing 2.1 and listing 2.2 describe how to do it.

 Manifest-Version: 1.0
Class-Path: lib/hibernate-search.jar lib/lucene-core.jar
 ➥lib/hibernate-commons-annotations.jar lib/solr-core.jar ...

 <EAR_ROOT>
 myejbjar1.jar
 META-INF/MANIFEST.MF (declaring the dependency on Hibernate Search)
 mywar.war
 META-INF
 ...
 lib
 hibernate-search.jar
 lucene-core.jar

Listing 2.1 MANIFEST.MF declaring a dependency on Hibernate Search

Listing 2.2 Structure of the EAR containing Hibernate Search

34 CHAPTER 2 Getting started with Hibernate Search

 hibernate-commons-annotations.jar
 solr-core.jar
 solr-common.jar
 lucene-snowball.jar
 [contains other third party libraries]
 ...

The Class-Path entry is a space-separated list of JARs or directory URLs relative to
where the referencing archive is (in our example, EAR root).

 Believe it or not, you just did the hardest part of the configuration! The next step
is to tell Hibernate Search where to put the Lucene index structure.

2.2.2 Providing configuration

Once Hibernate Search is properly set up in your classpath, the next step is to indicate
where the Apache Lucene indexes will be stored. You will place your Hibernate
Search configuration in the same location where you placed your Hibernate Core
configuration. Fortunately, you do not need another configuration file.

 When you use Hibernate Core (possibly with Hibernate Annotations), you can
provide the configuration parameters in three ways:

■ In a hibernate.cfg.xml file
■ In the /hibernate.properties file
■ Through the configuration API and specifically configuration.setProp-

erty(String, String)

The first solution is the most commonly used. Hibernate Search properties are regu-
lar Hibernate properties and fit in these solutions. When you use Hibernate Entity-
Manager, the standard way to provide configuration parameters is to use the META-
INF/persistence.xml file. Injecting Hibernate Search properties into this file is also
supported. This is good news for us, in that there’s no need to think about yet another
configuration file to package!

 What kind of configuration parameters does Hibernate Search need? Not a lot by
default. Hibernate Search has been designed with the idea of configuration by excep-
tion in mind. This design concept uses the 80 percent-20 percent rule by letting the
80 percent scenarios be the default configuration. Of course, it’s always possible to
override the default in case we fall into the 20 percent scenarios. The configuration-
by-exception principle will be more visible and more useful when we start talking
about mapping. Let’s look at a concrete example. When using Hibernate Search, you
need to tell the library where to find Apache Lucene indexes. By default, Hibernate
Search assumes you want to store your indexes in a file directory; this is a good
assumption because it provides a good trade-off between performance and index
size. However, you’ll probably want to define the actual directory where the indexes
will be stored. The property name is hibernate.search.default.indexBase, so
depending on the configuration strategy used, the configuration will be updated as
shown in listing 2.3.

35Setting up Hibernate Search

#hibernate.properties

#regular Hibernate Core configuration
hibernate.dialect org.hibernate.dialect.PostgreSQLDialect
hibernate.connection.datasource jdbc/test

#Hibernate Search configuration
hibernate.search.default.indexBase /users/application/indexes

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<!-- hibernate.cfg.xml -->
<hibernate-configuration>
 <session-factory name="dvdstore-catalog">

 <!-- regular Hibernate Core configuration -->
 <property name="hibernate.dialect">
 org.hibernate.dialect.PostgreSQLDialect
 </property>
 <property name="hibernate.connection.datasource">
 jdbc/test
 </property>

 <!-- Hibernate Search configuration -->
 <property name="hibernate.search.default.indexBase">
 /users/application/indexes
 </property>

 <!-- mapping classes -->
 <mapping class="com.manning.dvdstore.model.Item"/>

 </session-factory>
</hibernate-configuration>

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">

 <!-- example of a default persistence.xml -->
 <persistence-unit name="dvdstore-catalog">
 <jta-data-source>jdbc/test</jta-data-source>

 <properties>
 <!-- regular Hibernate Core configuration -->
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.PostgreSQLDialect"/>

 <!-- Hibernate Search configuration -->

Listing 2.3 Hibernate Search configuration

hibernate.properties file Define your Hibernate
Core properties

Define Hibernate Search-
specific properties

hibernate.cfg.xml file

Hibernate Search
properties

List your entities

META-INF/persistence.xml

http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

36 CHAPTER 2 Getting started with Hibernate Search

 <property name="hibernate.search.default.indexBase"
 value="/users/application/indexes"/>

 </properties>

 </persistence-unit>
</persistence>

This is the last time you’ll see the XML headers (doctype and schema) in this book.
They should always be there, but for conciseness we’ll drop them in future examples.

 This is the only configuration property we need to set to get started with Hibernate
Search. Even this property is defaulted to ./, which is the JVM current directory, but
the authors think it’s more appropriate to explicitly define the target directory.

 Another property can be quite useful, especially in test environments: the Lucene
directory provider. Hibernate Search stores your indexes in a file directory by default.
But it can be quite convenient to store indexes only in memory when doing unit tests,
especially if, like the authors, you prefer to use in-memory databases like HSQLDB, H2,
or Derby to run your test suite. It makes the tests run faster and limits side effects
between tests. We’ll discuss this approach in section 5.1.3 and section 9.5.2.

NOTE IN-MEMORY INDEX AND UNIT TESTING We’d like to warn you of a classic
error we’re sure you’ll be bitten by that can cost you a few hours until you
figure it out. When you run a test on your index, make sure it is on par
with the database you’re testing on. Classically, unit tests clear the data-
base and add a fresh set of data. Every so often you’ll forget to update or
clear your file system’s Lucene directory. Your results will look confusing,
returning duplicate or stale data. One elegant way to avoid that is to use
in-memory directories; they’re created and destroyed for every test, prac-
tically isolating them from one another.

As you can see, configuring Hibernate Search is very simple, and the required param-
eters are minimal. Well, it’s not entirely true—we lied to you. If your system uses
Hibernate Annotations 3.3.x and beyond, these are truly the only parameters
required. But if your system uses Hibernate Core only, a few additional properties are
required.

NOTE HOW DO I KNOW WHETHER TO USE HIBERNATE ANNOTATIONS OR SIMPLY

HIBERNATE CORE? There are three very simple rules:

■ If your domain model uses Hibernate Annotations or Java Persistence anno-
tations, you’re using Hibernate Annotations.

■ If your application uses the Hibernate EntityManager API (the Java Persis-
tence API really), you’re also using Hibernate Annotations under the cover.

■ If you’re still unsure, check whether you create a Configuration object or an
AnnotationConfiguration object. In the former case, you’re using Hibernate
Core. In the latter case, you’re using Hibernate Annotations.

Hibernate Search
properties

37Setting up Hibernate Search

Why is that? Hibernate Annotations detects Hibernate Search and is able to autowire
Hibernate event listeners for you. Unfortunately this is not (yet) the case for Hiber-
nate Core. If you’re using only Hibernate Core, you need to add the event listener
configuration, as shown in listing 2.4.

 <hibernate-configuration>
 <session-factory>
 ...
 <event type="post-update">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-insert">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-delete">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-collection-recreate">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-collection-remove">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-collection-update">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 </session-factory>
</hibernate-configuration>

Now each time Hibernate Core inserts, updates, or deletes an entity, Hibernate
Search will know about it.

NOTE If you use Hibernate Search 3.0.x, you need a slightly different configura-
tion. Listing 2.5 describes it.

<hibernate-configuration>
 <session-factory>
 ...
 <event type="post-update">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-insert">

Listing 2.4 Enable event listeners if you don’t use Hibernate Annotations

Listing 2.5 Enable event listeners for Search 3.0 if you don’t use Annotations.

38 CHAPTER 2 Getting started with Hibernate Search

 <listener
class="org.hibernate.search.event.FullTextIndexEventListener"/>

 </event>
 <event type="post-delete">
 <listener

class="org.hibernate.search.event.FullTextIndexEventListener"/>
 </event>
 <event type="post-collection-recreate">
 <listener

class="org.hibernate.search.event.FullTextIndexCollectionEventListener"/>
 </event>
 <event type="post-collection-remove">
 <listener

class="org.hibernate.search.event.FullTextIndexCollectionEventListener"/>
 </event>
 <event type="post-collection-update">
 <listener

class="org.hibernate.search.event.FullTextIndexCollectionEventListener"/>
 </event>
 </session-factory>
</hibernate-configuration>

This event listener configuration looks pretty scary, but remember: You don’t even
need to think about it if you use Hibernate Annotations or Hibernate EntityManager
3.3.x or above, a good reason to move to these projects!

 We’ll discuss additional Hibernate Search parameters when the need arises, but
what you know right now is more than enough to get started and suits a great many
production systems.

2.3 Mapping the domain model
Now that Hibernate Search is configured properly, we need to decide which entity
and which property will be usable in our full-text searches. Indexing every single
entity and every single property doesn’t make much sense. Putting aside that such a
strategy would waste CPU, index size, and performance, it doesn’t make a lot of busi-
ness sense to be able to search a DVD by its image URL name. Mapping metadata will
help define what to index and how: It will describe the conversion between our object-
oriented domain object and the string-only flat world of Lucene indexes.

 Hibernate Search expresses this mapping metadata through annotations. The
choice of annotations was quite natural to the Hibernate Search designers because
the metadata is closely related to the Java class structure. Configuration by exception
is used extensively to limit the amount of metadata an application developer has to
define and maintain.

2.3.1 Indexing an entity

Let’s go practical now. What’s needed to make a standard entity (a mapped plain old
Java object [POJO] really) full-text searchable? Let’s have a look at listing 2.6.

Collection event
listener differs

39Mapping the domain model

package com.manning.hsia.dvdstore.model;

@Entity
@Indexed
public class Item {

 @Id @GeneratedValue
 @DocumentId
 private Integer id;

 @Field
 private String title;

 @Field
 private String description;

 @Field(index=Index.UN_TOKENIZED, store=Store.YES)
 private String ean;

 private String imageURL;
 //public getters and setters
}

The first thing to do is to place an @Indexed annotation on the entity that will be
searchable through Hibernate Search. In the previous section, you might have
noticed that nowhere did we provide a list of indexed entities. Indeed, Hibernate
Search gathers the list of indexed entities from the list of persistence entities marked
with the @Indexed annotation, saving you the work of doing it manually. The index for
the Item entity will be stored in a directory named com.manning.hsia.dvd-
store.model.Item in the indexBase directory we configured previously. By default,
the index name for a given entity is the fully qualified class name of the entity.

 The second (and last) mandatory thing to do is to add a @DocumentId on the
entity’s identity property. Hibernate Search uses this property to make the link
between a database entry and an index entry. Hibernate Search will then know
which entry (document in the Lucene jargon) to update in the index when an item
object is changed. Likewise, when reading results from the index, Hibernate Search
will know to which object (or database row) it relates. That’s it for the necessary
steps: Add @Indexed on the entity, and add @DocumentId on the identifier property.
But of course, as it is, it wouldn’t be really useful since none of the interesting prop-
erties are indexed.

2.3.2 Indexing properties

To index a property, we need to use an @Field annotation. This annotation tells
Hibernate Search that the property needs to be indexed in the Lucene document.
Each property is indexed in a field that’s named after the property name. In our
example, the title, description, and ean properties are indexed by Lucene in,
respectively, the title, description, and ean fields. While it’s possible to change the

Listing 2.6 Mapping a persistent POJO

Mark for indexing

Mark id property shared
by Core and Search

Mark for indexing using
tokenization

Mark for
indexing
without
tokenization

This property is not
indexed (default)

40 CHAPTER 2 Getting started with Hibernate Search

default Lucene field name of a property, it’s considered a bad practice and will make
querying more unnatural, as you’ll see in the query section of this chapter. imageURL,
which is not marked by @Field, won’t be indexed in the Lucene document even if
Hibernate stores it in the database.

NOTE An object instance mapped by Hibernate roughly corresponds to a table
row in the database. An object property is roughly materialized to a table
column. To make the same analogy in the Lucene index, an object
instance mapped by Hibernate roughly corresponds to a Lucene docu-
ment, and an object property is roughly materialized to a Lucene field in
the document. Now take this analogy with a grain of salt because this one-
to-one correspondence isn’t always verified. We’ll come to these more
exotic cases later in this book.

The ean property is indexed slightly differently than the others. While we still use
@Field to map it, two new attributes have been defined. The first one, index, specifies
how the property value should be indexed. While we have decided to chunk title and
description into individual words to be able to search these fields by word (this pro-
cess is called tokenization), the ean property should be treated differently. EAN, which
stands for European Article Number, is the article bar code that you can see on just
about any product sold nowadays. EAN is a superset of the UPC (Universal Product
Code) used in North America. It would be fairly bad for the indexing process to
tokenize a unique identifier because it would be impossible to search by it. That’s why
the index attribute is set to Index.UN_TOKENIZED; the EAN value won’t be chunked
during the indexing process.

 The second particularity of the ean property is that its value will be stored in the
Lucene index. By default, Hibernate Search doesn’t store values in the index because
they’re not needed in most cases. As a result, the Lucene index is smaller and faster.
In some situations, though, you want to store some properties in the Lucene index,
either because the index is read outside of Hibernate Search or because you want to
execute a particular type of query—projection—that we’ll talk about later in the book.
By adding the store attribute to Store.YES in the @Field annotation, you ask Hiber-
nate Search to store the property value in the Lucene index.

 The example shows annotations placed on fields. This isn’t mandatory; you can
place annotations on getters as well. If the annotation is on the getter, Hibernate
Search will access the property value through the getter method. Indeed, this is the
authors’ preferred access strategy. To keep the example as short and readable as possi-
ble, this book will show annotations only on fields.

NOTE SHOULD I USE GETTER OR FIELD ACCESS? There’s no performance impact
in using one or the other, nor is there any advantage with regard to
Hibernate Search. Choosing is more a matter of architectural taste. The
authors tend to prefer getter access because it allows an abstraction over
the object state. Also, the Java Persistence specification requires accessing
data through getters for maximum portability. In any case, consistency is

41Mapping the domain model

the rule you should follow. Try to use the same access strategy for both
Hibernate Core and Hibernate Search, because it will save you from
some unwanted surprises.

We’ll now show how to use Hibernate Search on an existing XML-based mapping
structure (hbm.xml files).

2.3.3 What if I don’t use Hibernate Annotations?

The previous example shows the use of Hibernate Search in conjunction with Hiber-
nate Annotations, but the same example would work perfectly with hbm.xml files as
well. This is particularly useful if you try to use Hibernate Search on an existing
Hibernate Core–based application where the mapping is defined in XML. Have a
look at listing 2.7.

package com.manning.hsia.dvdstore.model;

@Indexed
public class Item {

 @DocumentId
 private Integer id;

 @Field
 private String title;

 @Field
 private String description;

 @Field(index=Index.UN_TOKENIZED, store=Store.YES)
 private String ean;

 private String imageURL;
 //public getters and setters
}

<hibernate-mapping package="com.manning.hsia.dvdstore.model">
 <class name="Item">
 <id name="id">
 <generator class="native"/>
 </id>
 <property name="title"/>
 <property name="description"/>
 <property name="ean"/>
 <property name="imageURL"/>
 </class>
</hibernate-mapping>

It’s currently not possible to express the Hibernate Search metadata using an XML
descriptor, but it might be added to a future version of the product, depending on
user demand.

Listing 2.7 Mapping a persistent POJO using an hbm.xml file

No Java Persistence
annotations are
present

Mapping externalized
in hbm.xml files

42 CHAPTER 2 Getting started with Hibernate Search

2.4 Indexing your data
We’ve just shown how the object model will be mapped into the index model, but we
haven’t addressed when the object model is indexed. Hibernate Search listens to
Hibernate Core operations. Every time an entity marked for indexing is persisted,
updated, or deleted, Hibernate Search is notified. In other words, every time you per-
sist your domain model to the database, Hibernate Search knows it and can apply the
same changes to the index. The index stays synchronized with the database state auto-
matically and transparently for the application. That’s good news for us because we
don’t have anything special to do!

 What about existing data? Data already in the database may never be updated, and
so Hibernate Search will then never be able to receive a notification from Hibernate
Core. Because in most scenarios the index needs to be initially populated with exist-
ing and legacy data, Hibernate Search proposes a manual indexing API.

 This is our first look at the Hibernate
Search API. Hibernate Search extends the
Hibernate Core main API to provide
access to some of the full-text capabilities.
A FullTextSession is a subinterface of
Session. Similarly, a FullTextEntityMan-
ager is a subinterface of EntityManager
(see figure 2.1). Those two subinterfaces
contain the same methods and especially
the one interesting us at the moment: the
ability to manually index an object.

 Where can we get an instance of theses interfaces? Internally, the FullTextEnti-
tyManager and FullTextSession implementations are wrappers around an Entity-
Manager implementation or a Session implementation. Hibernate Search provides a
helper class (org.hibernate.search.jpa.Search) to retrieve a FullTextEntityMan-
ager from a Hibernate EntityManager as well as a helper class to retrieve a Full-
TextSession from a Session (org.hibernate.search.Search). Listing 2.8 shows
how to use these helper classes.

Session session = ...;
FullTextSession fts =
 org.hibernate.search.Search.getFullTextSession(session);

EntityManager em = ...;
FullTextEntityManager ftem =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

Listing 2.8 Retrieving a FullTextSession or a FullTextEntityManager

Figure 2.1 FullTextSession and
FullTextEntityManager extend Session
and EntityManager, respectively.

Wrap a
Session
object

Wrap an
EntityManager

object

43Querying your data

NOTE getFullTextSession and getFullTextEntityManager were named cre-
ateFullTextSession and createFullTextEntityManager in Hibernate
Search 3.0.

The two full-text APIs have a method named index whose responsibility is to index or
reindex an already persistent object. Let’s see in listing 2.9 how we would index all the
existing items.

FullTextEntityManager ftem = Search.getFullTextEntityManager(em);

ftem.getTransaction().begin();

@SuppressWarnings("unchecked")
List<Item> items = em.createQuery("select i from Item i").getResultList();

for (Item item : items) {
 ftem.index(item);
}

ftem.getTransaction().commit();

In this piece of code, items is the list of Item objects to index. You’ll discover in sec-
tion 5.4.2 a more efficient solution to massively indexing data, but this one will be
good enough for now. The index method takes an item instance and indexes it. The
Lucene index will thus contain the necessary information to execute full-text queries
matching these items. The initial dataset indexed, subsequent changes, and whether it
is item creation, item update, or item deletion will be taken care of by the Hibernate
event system. The index and the database stay synchronized.

 We now have an up-to-date index ready to be queried, which leads to the next
question: How do I query data using Hibernate Search?

2.5 Querying your data
Hibernate Search tries to achieve two somewhat contradictory goals:

■ Provide a seamless integration with the Hibernate Core API and programmatic
model

■ Give the full power and flexibility of Lucene, the underlying full-text engine

To achieve the first goal, Hibernate Search’s query facility integrates into the Hiber-
nate query API (or the Java Persistence query API if you use the EntityManager). If
you know Hibernate Core, the query-manipulation APIs will look very familiar to you;
they’re the same! The second key point is that Hibernate Search returns Hibernate
managed objects out of the persistence context; in more concrete terms it means that
the objects retrieved from a full-text query are the same object instances you would
have retrieved from an HQL query (had HQL the same full-text capabilities). In partic-
ular, you can update those objects, and Hibernate will synchronize any changes to the

Listing 2.9 Manually indexing object instances

Manually index an
item instance

Index is written at
commit time

44 CHAPTER 2 Getting started with Hibernate Search

database. Your objects also benefit from lazy loading association and transparent
fetching with no additional work on the application programmer’s side.

NOTE WHAT IS A PERSISTENCE CONTEXT? While the Hibernate Session is the
API that lets you manipulate the object’s state and query the database, the
persistence context is the list of objects Hibernate is taking care of in the
current session lifecycle. Every object loaded, persisted, or reattached by
Hibernate will be placed into the persistence context and will be checked
for any change at flush time. Why is the persistence context important?
Because it’s responsible for object unicity while you interact with the ses-
sion. Persistence contexts guarantee that a given entry in the database is
represented as one object and only one per session (that is, per persis-
tence context). While usually misunderstood, this is a key behavior that
saves the application programmer a lot of trouble.

To achieve the second goal, Hibernate Search doesn’t try to encapsulate how Lucene
expresses queries. You can write a plain Lucene query and pass it to Hibernate Search
as it is.

 Let’s walk through the steps to create a query and retrieve the list of matching
objects. For Lucene beginners, don’t worry; no prerequisite knowledge of Lucene is
necessary. We’ll walk with you each and every step.

2.5.1 Building the Lucene query

The first thing we need to do is determine
what query we’re willing to execute. In
our example, we want to retrieve all items
matching a given set of words regardless
of whether they are in the title proper-
ties or the description properties. The
next step is to write the Lucene query
associated with this request. We have a few
ways to write a Lucene query. For starters,
we’ll use the simpler-to-understand query parser solution. Lucene comes bundled with
an example of a query parser that takes a string as a parameter and builds the underly-
ing Lucene query from it. The full description of the query syntax is available in any
Lucene distribution at docs/queryparsersyntax.html, but let’s have a quick look at it.
Figure 2.2 describes the components of a query.

 A query is composed of terms to look for (words) targeted in a given Lucene docu-
ment field. The field name is followed by a colon (:) and the term to look for. To query
more than one term, Boolean operators such as OR, AND, or NOT (they must be capital-
ized) can be used between terms. When building a query parser, a default field name
is provided. If the term is not preceded by a field name, the default field name applies.
When you need to apply some approximation searching to a word (maybe because you
don’t know the exact spelling), it needs to be followed by a tilde (~). For example:

Figure 2.2 Query parser syntax

45Querying your data

title:hypernate~ OR description:persistence

To learn more about the Lucene query syntax, have a look at chapter 7, the Lucene
documentation, or the excellent book Lucene in Action by Erik Hatcher and Otis
Gospodnetic̀.

 How does a field map back to our domain model mapping? Hibernate Search
maps each indexed property into a field of the same name (unless you explicitly over-
ride the field name). This makes a query quite natural to read from an object-oriented
point of view; the property title in our Item class can be queried by targeting the
title field in a Lucene query. Now that we can express our queries, let’s see how to
build them (listing 2.10).

NOTE You might be afraid that the query syntax is not one your customer is will-
ing or even able to use. The Lucene query parser is provided here to give
you a quick start. Most public-faced applications define their own search
syntax and build their Lucene queries programmatically. We’ll explore
this approach later in this book.

String searchQuery = "title:Batman OR description:Batman";

QueryParser parser = new QueryParser(
 "title",
 new StandardAnalyzer()
);

org.apache.lucene.search.Query luceneQuery;
try {
 luceneQuery = parser.parse(searchQuery);
}
catch (ParseException e) {
 throw new RuntimeException("Unable to parse query: " + searchQuery, e);
}

Once you’ve expressed the query as a string representation, building a Lucene query
with the query parser is a two-step process. The first step is to build a query parser,
define the default field targeted in the query, and define the analyzer used during the
query building. The default field is used when the targeted fields are not explicit in
the query string. It turns out that the authors don’t use this feature very often. Next
we’ll present a more interesting solution. Analyzers are a primary component of
Lucene and a key to its flexibility. An analyzer is responsible for breaking sentences
into individual words. We’ll skip this notion for now and come back to it in greater
detail in section 5.2, when you will be more familiar with Hibernate Search and
Lucene. The query parser is now ready and can generate Lucene queries out of any
syntax-compliant query string. Note that the query hasn’t yet been executed.

 Lucene provides an improved query parser that allows you to target more than one
field at a time automatically. Because Hibernate Search, by default, matches one prop-
erty to one Lucene field, this query parser turns out to be very useful as a way to finely
target which property to search by. Let’s see how to use it (see listing 2.11).

Listing 2.10 Building a Lucene query

Query string

Build a
query parserDefault

fieldAnalyzer
used

Build Lucene query

46 CHAPTER 2 Getting started with Hibernate Search

String searchQuery = "Batman";
String[] productFields = {"title", "description"};

Map<String,Float> boostPerField = new HashMap<String,Float>(2);
boostPerField.put("title", (float) 4);
boostPerField.put("description", (float) 1);

QueryParser parser = new MultiFieldQueryParser(
 productFields,
 new StandardAnalyzer(),
 boostPerField
);

org.apache.lucene.search.Query luceneQuery;
try {
 luceneQuery = parser.parse(searchQuery);
}
catch (ParseException e) {
 throw new RuntimeException("Unable to parse query: " + searchQuery, e);
}

The MultiFieldQueryParser allows you to define more than one default field at a
time. It becomes very easy to build queries that return all objects matching a given
word or set of words in one or more object properties. In our example, the query will
try to find Batman in either the title or the description field. The MultiFieldQuery-
Parser also allows you to express the intuitive idea that title is more important than
description in the query results. You can assign a different weight (also called boost fac-
tor) to each targeted field.

2.5.2 Building the Hibernate Search query

Our Lucene query is now ready to be executed. The next step is to wrap this query
into a Hibernate Search query so that we can live in the full object-oriented paradigm.
We already know how to retrieve a FullTextSession or FullTextEntityManager from
a regular Session or EntityManager. A FullTextSession or a FullTextEntityMan-
ager is the entry point for creating a Hibernate Search query out of a Lucene query
(see listing 2.12).

FullTextSession ftSession = Search.getFullTextSession(session);

org.hibernate.Query query = ftSession.createFullTextQuery(
 luceneQuery,
 Item.class);

query = ftSession.createFullTextQuery(
 luceneQuery);

query = ftSession.createFullTextQuery(
 luceneQuery,
 Item.class,
 Actor.class);

Listing 2.11 Using the MultiFieldQueryParser

Listing 2.12 Creating a Hibernate Search query

Targeted fields

Boost
factors

Build
multifield
query parser

Return matching Items

Return all matching indexed entities

Return matching
Items and Actors

47Querying your data

FullTextEntityManager ftEm =
Search.getFullTextEntityManager(entityManager);

javax.persistence.Query query = ftEm.createFullTextQuery(
 luceneQuery,
 Item.class);

javax.persistence.Query query = ftEm.createFullTextQuery(
 luceneQuery);

javax.persistence.Query query = ftEm.createFullTextQuery(
 luceneQuery,
 Item.class,
 Actor.class);

The query-creation method takes the Lucene query as its first parameter, which isn’t
really a surprise, but it also optionally takes the class targeted by the query as an addi-
tional parameter (see our first example). This method uses a Java 5 feature named
varargs. After the mandatory Lucene query parameter, the method can accept any
number of Class parameters (from zero to many). If no class is provided, the query
will target all entities indexed. If one or more classes are provided, the query will be
limited to these classes and their subclasses (Hibernate Search queries are polymor-
phic, just like Hibernate Query Language [HQL] queries). While most queries target
one class, it can be handy in some situations to target more than one entity type and
benefit from the unstructured capabilities of Lucene indexes. Note that by restricting
the query to a few entity types (and especially one entity type), Hibernate Search can
optimize query performance. This should be your preferred choice.

 The second interesting point to note is that the query objects are respectively of
type org.hibernate.Query or javax.persistence.Query (depending whether you
are targeting the Hibernate APIs or the Java Persistence APIs). This is very interesting
because it enables a smooth integration with existing Hibernate applications. Any-
body familiar with Hibernate or Java Persistence’s queries will have no problem exe-
cuting the query from this point.

2.5.3 Executing a Hibernate Search query

Executing and interacting with a Hibernate Search query is exactly like executing and
interacting with an HQL or Java Persistence Query Language (JPA-QL) query simply
because they share the same concepts and the same APIs.

 Listing 2.13 demonstrates this.

//Hibernate Core Query APIs
query.setFirstResult(20).setMaxResults(20);
List results = query.list();

//Java Persistence Query APIs
query.setFirstResult(20).setMaxResults(20);
List results = query.getResultList();

Listing 2.13 Executing a Hibernate Search query

Return
matching Items

Return all matching
indexed entities

Return matching
Items and Actors

Set pagination
Execute the query

Set pagination
Execute
the query

48 CHAPTER 2 Getting started with Hibernate Search

for (Item item : (List<Item>) results) {
 display("title: " + item.getTitle() + "\nDescription: " +

 item.getDescription());
}

There’s no difference here between executing an HQL or JPA-QL query and executing
a Hibernate Search query. Specifically, you can use pagination as well as execute the
query to return a list, an iterator, or a single result. The behavior and semantic are the
same as for the classic queries. Specifically, the returned result is composed of objects
from your domain model and not Documents from the Lucene API.

 The objects returned by the query are part of the Hibernate persistence context.
Hibernate will propagate every change made to the returned objects into the database
and the index transparently. And, more important, navigating through lazy associa-
tions (collections or single-ended associations) is possible transparently, thanks to
Hibernate.

 While building a query seems like a lot of steps, it’s a very easy process. In summary:

1 Build the Lucene query (using one of the query parsers or programmatically).
2 Wrap the Lucene query inside a Hibernate Search query.
3 Optionally set some query properties (such as pagination).
4 Execute the query.

Unfortunately (or fortunately. if you like challenges), queries don’t always return what
you expect them to return. This could be because indexing didn’t happen, or the
query you’ve written doesn’t do what you think it should. A tremendously useful tool
is available that allows you to have an inside look at the Lucene index and see what
queries return. Its name is Luke.

2.6 Luke: inside look into Lucene indexes
The most indispensable utility you can have in your arsenal of index troubleshooting
tools—in fact it may be the only one you need—is Luke. With it you can examine every
facet of an index you can imagine. Some of its capabilities are these:

■ View individual documents.
■ Execute a search and browse the results.
■ Selectively delete documents from the index.
■ Examine term frequency.

Luke’s author is Andrzej Bialecki, and he actively maintains Luke to keep up with
the latest Lucene version. Luke is available for download at http://www.getopt.org/
luke/, shown in figure 2.3. You can download Luke in several different formats. A
Java WebStart JNLP direct download of the most current version is the easiest to
retrieve; it’s basically automatic. You can also download several .jar file compilations
and place them in your classpath any way you want them.

■ lukeall.jar—Contains Luke, Lucene, Rhino JavaScript, plug-ins, and additional
analyzers. This JAR has no external dependencies. Run it with java -jar luke-
all.jar.

http://www.getopt.org/

49Luke: inside look into Lucene indexes

■ lukemin.jar—A standalone minimal JAR, containing Luke and Lucene. This JAR
has no external dependencies either. Run it with java -jar lukemin.jar.

■ Individual jars:
■ luke.jar
■ lucene-core.jar
■ lucene-analyzers.jar
■ lucene-snowball.jar
■ js.jar

Minimum requirements are that at least the core JARs be in your classpath, for exam-
ple, java -classpath luke.jar;lucene-core.jar org.getopt.luke.Luke. Be care-
ful to use the right Luke version for your Lucene version, or Luke might not be able
to read the Lucene index schema.

 Luke’s source code is also available for download from the website shown in
figure 2.3 for those of you who want to dig into the real workings of the application.

Figure 2.3 Luke’s website with download links in various formats along with source code downloads

50 CHAPTER 2 Getting started with Hibernate Search

 Let’s go on the fifty-cent tour of Luke. We’ll start with figure 2.4. The Overview tab
is the initial screen when Luke is first started.

B The Path field contains the operating system path to the index’s location and
modes you can choose to open the index. A convenient filesystem browser makes nav-
igation easier. Utilizing open modes, you can force unlock on an index that may be
locked. This could be useful from an administration point of view. Also, you can open
the index in read-only mode to prevent making accidental changes. An advanced
option allows you to open the index using an MMapDirectory instance, which uses
nonblocking I/O (NIO) to memory map input files. This mode uses less memory per
query term because a new buffer is not allocated per term, which may help applica-
tions that use, for example, wildcard queries.

 Behind this subwindow you can see the other tabs: Overview, Documents, Search,
Files, and Plugins, which are all coming up shortly. Let’s move on to the Overview tab.
Looking at figure 2.5, you can see a wealth of information in this tab alone.

Figure 2.4 Luke’s opening screen containing the index path and modes to open it

51Luke: inside look into Lucene indexes

B The top section is a comprehensive listing of the index’s statistics, including last
modification date, total number of documents in the index, number of fields, and so
on. C is the Re-open button.

NOTE Documents deleted or updated (a delete followed by an insert in
Lucene) are not seen until the index is reopened. When you open an
index, you have a snapshot of what was indexed at the time it was
opened.

A list of all available fields in the documents is shown at D. The field name is the
string enclosed in brackets.

 E is an ordered listing, from the most frequently occurring to the least, of the top
terms in the index. From this quadrant of the tab you can do several things. Double-
clicking a term transfers you to the Documents tab (we’ll talk about that tab next) and
automatically inserts the term you double-clicked into the Browse by Term text box.
Right-clicking a term in this quadrant gives you several options. Browse Term Docs
does the same thing as double-clicking the term: It transfers you to the Documents tab
and automatically inserts the term you double-clicked into the Browse by Term text

Figure 2.5 The Overview tab showing the index’s statistics, fields, and an order ranking of the top
terms in the index

52 CHAPTER 2 Getting started with Hibernate Search

box. Show All Term Docs transfers you to the Search tab (we’ll talk about that shortly)
and automatically inserts a search based on the Field and Text data in D.

 Let’s move on to the next tab in Luke, the Documents tab. This is shown in
figure 2.6.

C allows you to browse the index’s documents by stepping through them one at a
time. They are ordered by Lucene’s internal document number. You can even add,
edit, and delete individual documents by using this quadrant of the tab. The Edit Doc-
ument screen is shown in figure 2.7. Here you can edit any field in the document. The
Stored Original tab will show you the data stored in the index for this document’s
selected field.

NOTE If the data is not stored in the index via the Store.YES or Store.COM-
PRESS setting, you won’t be able to access that data because it’s simply not
there! You’ll see <not available> instead.

Figure 2.6 The Documents tab, where documents can be stepped through, deleted, and examined

53Luke: inside look into Lucene indexes

One of the really neat features here is the Tokenized tab. For fields that do store their
data in the index, this tab shows the tokenized text based on the analyzer used to
index the field.

 This is all well and good, but suppose we wanted to browse the index by its terms in
term order and not in the order of frequency, as listed in the Documents tab. This is
done in the upper-right quadrant D (in figure 2.6) of the tab, Browse by Term, but is
not as straightforward as it sounds. Clicking First Term takes you to the first term for
that field in the index (alphabetical, numbers first). Of course, Next Term continues
forward. Below this button is the document browser. Clicking First Doc takes you to the
first document B containing the term in the Browse by Term text box we just talked
about. The Show All Docs button takes you to the Search Tab and automatically inserts
a search for that field and term in the search window.

NOTE Be careful with the Delete All Docs button. Be positive about which index
you have open before clicking this button. It would be a sad day if you
forgot you were looking at the production index!

You may have noticed several terms scattered about this tab like Doc freq of this term and
Term freq in this doc. We’ll explain these terms and use them a lot in chapter 12, but for
now, don’t worry about them. Their meaning will become clear, and they’ll mean a lot
more then.

Figure 2.7 The Luke Edit Document screen showing the Stored Original tab

54 CHAPTER 2 Getting started with Hibernate Search

 We’re finally going to discuss the Search tab. This is important because the authors
find themselves on this tab the vast majority of time when they’re testing the effect of
different analyzers, what the stop word effect will be, and the general behavior of a
query. Figure 2.8 shows this tab.

B is the search window. Here you enter search expressions based on the current
index. Searches are expressed utilizing the Lucene query parser syntax. In this exam-
ple the search is for two terms, both of which must occur in the Description field, and
both terms are required (that’s what the + signs indicate). A complete discussion of
the syntax is given on the Lucene website at http://lucene.apache.org/java/docs/
queryparsersyntax.html or in the Lucene documentation available in each distribu-
tion. We’ll also cover the essential part of this syntax in chapter 7. You must specify the
field name of a term (using the field_name: syntax) if you wish to query a different
field than the one specified in the Default field just under E. The uses of the +, -, ~
and other symbols are explained on the website.

Figure 2.8 The Search tab showing the search window, details, and the results window

http://lucene.apache.org/java/docs/

55Luke: inside look into Lucene indexes

 After you enter your query in B, select the analyzer E to use to parse your query.
The default analyzers supported by Luke are:

■ StandardAnalyzer
■ StopAnalyzer
■ WhitespaceAnalyzer
■ SimpleAnalyzer

When Luke initializes, it looks in the classpath for any additional analyzers and adds
them to the drop-down list. That’s how you can test any analyzer that you may have
written. All you have to do then is select it from the drop-down list. Then click the
Update button between B and C, and the parsed query will be shown in the Parsed
window C. We strongly recommend you get into the habit of doing this because,
many times, the analyzer does things a little differently than you think it would. This
will save you from heartaches.

 The Search button F executes the search displayed in C against the current
index and displays the search results in D. In this example, a search on the Descrip-
tion field for salesman and reeves resulted in one matching document, with Lucene ID
108. Double-clicking any matching document will take you back to the Documents
tab, with the appropriate information concerning that document being displayed,
such as the document number and a vertical listing of the document’s fields. Also at
F is the Explain button. Clicking this button brings up the Explain window, shown in
figure 2.9.

 This window shows how the score of a document was calculated against a particular
query and what factors were considered. This may not mean much to you now, but
when you get into the middle of chapter 12 and we show you exactly what this pro-
vides, you’ll appreciate it much more. This is especially true if you’re one of those who
want to modify the way documents are scored.

 The next-to-last tab of Luke is the Files tab, shown in figure 2.10. From an adminis-
tration point of view, this presents a lot of information. First, the Total Index Size
value could be important for disk space considerations. Below that is a listing of all the

Figure 2.9 The Explain window
showing how the document’s
score was calculated

56 CHAPTER 2 Getting started with Hibernate Search

files associated with the index. There are no right-clicks or double-clicks here. What
you see is what you get. This file listing helps with determining whether or not the
index needs to be optimized.

Remember, the greater the number of segment files (.cfs), the slower searches
become, so be sure to optimize. How often you optimize depends on several factors,
but this tab will help you determine how often you will need to do it. For more infor-
mation about optimization, check out section 9.3.

Figure 2.10 This is a listing of all files associated with the currently open index

57Luke: inside look into Lucene indexes

 Our last Luke tab is the Plugins tab. This is the developer’s tab. Five items on this
tab will help you accomplish several things. We’re going to show only two of these tabs
because they apply more to the discussions we’re going to have later in the book.
Figure 2.11 shows the Custom Similarity plug-in; this allows you to design and test
your own Similarity object which enables you to implement your own document scor-
ing mechanism. You will learn all about this in detail in chapter 12.

Figure 2.11 The Custom Similarity Designer selection on the Plugins tab

58 CHAPTER 2 Getting started with Hibernate Search

 Figure 2.12 shows the Analyzer Tool. This lets you examine exactly how a particu-
lar analyzer affects the text that’s put into an index.

B is a drop-down list of all analyzers found in the classpath. Picking a particular ana-
lyzer and clicking the Analyze button will display a list of tokens D generated by that
analyzer from the text you enter in the text window C. This makes it quite easy to test
an analyzer to see if it generates the tokens you thought it would. Clicking one of the
tokens, then clicking the Hilite button will cause that token to be highlighted in the
Original Text window E.

WARNING Luke has several known issues when the Java Network Launching Pro-
tocol (JNLP) version is used. These are enumerated on the Luke
download page. One of these issues is recognizing analyzers on the
classpath. When you work with analyzers, the authors recommend
that you download one of the standalone Luke versions and work
with it.

Figure 2.12 The Analyzer Tool tab for examining how analyzers change text put into indexes

59Summary

The best recommendation we can give you for learning how these plug-ins work (and
in case you want to write one yourself) is to study Luke’s documentation and especially
the various plug-ins’ source code. Remember, Luke’s source code is also available for
download from the website.

 That’s all for Luke right now. Luke is your best friend in the full-text query jungle,
so use it!

2.7 Summary
In chapter 1 you saw some of the issues that arise when you try to integrate domain
model-centric applications and full-text search technologies (and in particular
Lucene). These problems were threefold: a structural mismatch, a synchronization
mismatch, and a retrieval mismatch. From what you’ve seen so far, does Hibernate
Search address all these problems?

 The first problem we faced was the structural mismatch. The structural mismatch
comes in two flavors:

■ Convert the rich object-type structure of a domain model into a set of strings.
■ Express the relationship between objects at the index level.

Hibernate Search addresses the first problem by allowing you to annotate which prop-
erty and which entity need to be indexed. From them, and thanks to sensitive defaults,
Hibernate Search builds the appropriate Lucene indexes and converts the object
model into an indexed model. The fine granularity is a plus because it helps the appli-
cation developer to precisely define what Lucene needs to process and in which con-
dition. This getting-started guide did not show how Hibernate Search solves the
relationship issue, because we have to keep a few subjects for the rest of the book.
Don’t worry; this problem will be addressed.

 The second mismatch involved synchronization: how to keep the database and the
index synchronized with each other. Hibernate Search listens to changes executed by
Hibernate Core on indexed entities and applies the same operation to the index.
That way, the database and index are kept synchronized transparently for the applica-
tion developer. Hibernate Search also provides explicit indexing APIs, which are very
useful for filling the index initially from an existing data set.

 The third mismatch was the retrieval mismatch. Hibernate Search provides a
match between the Lucene index field names and the property names (out of the
box), which helps you to write Lucene queries. The same namespace is used in the
object world and the index world. The rest of the Lucene query is entirely up to the
application developer. Hibernate Search doesn’t hide the underlying Lucene API in
order to keep intact all the flexibility of Lucene queries. However, Hibernate Search
wraps the Lucene query into a Hibernate query, reusing the Hibernate or Java Persis-
tence APIs to provide a smooth integration into the Hibernate query model. Hiber-
nate Search queries return domain model objects rather than Lucene Document
instances. Beyond the API alignment, the semantics of the retrieved objects are similar

60 CHAPTER 2 Getting started with Hibernate Search

between an HQL query and a full-text query. This makes the migration from one strat-
egy to the other very simple and targeted.

 Other than the fundamental mismatches, Hibernate Search doesn’t require any
specific configuration infrastructure as it integrates into the Hibernate Core configu-
ration scheme and lifecycle. It doesn’t require you to list all the indexed entities.
We’ve only started our exploration of Hibernate Search, but you can already feel that
this tool focuses on ease of use, has a deep integration with the persistence services,
and addresses the mismatch problems of integrating a full-text solution like Lucene
into a domain model-centric application.

 Hopefully, you want to know more about Hibernate Search and explore more of its
functionalities, and there’s a lot more to explore. The next chapters of the book are
all about making you an expert in Hibernate Search and helping you discover what it
can solve for you!

