
HID Control of a Web Page a learn.sparkfun.com
tutorial

Available online at: http://sfe.io/t177

Contents

HID Communication
Teensy Setup
Receiving HID Packets
Sending HID Packets
Changing the Hardware
Resources and Going Further

HID Communication

Moving data between a microcontroller and a computer is tricky. Up to this point the serial protocol and
USB-to-Serial converters have filled the gap. Today we will show you how to listen to and control a
USB HID based board via a webpage. This is very helpful if you're designing an interactive webpage
that needs to respond to the physical world.

Human Interface Devices, or HID, was created to allow lots of different types of hardware to pass
information back and forth over USB. A keyboard is a good HID example but a keyboard only passes
data in one direction ('you pressed the k button'). Full duplex is more complicated but is much more
valuable once you have it up and running.

Page 1 of 17

https://learn.sparkfun.com/tutorials
http://sfe.io/t177
https://learn.sparkfun.com/tutorials/serial-communication
https://www.sparkfun.com/products/9716
http://en.wikipedia.org/wiki/USB_human_interface_device_class
https://cdn.sparkfun.com/assets/7/8/f/3/2/52d080adce395fd33d8b4568.jpg

HID Control of a Webpage Parts SparkFun Wish

List

It's not pretty, but the sky is the limit when you can read and control hardware from a web page!

Covered in This Tutorial

This is not a 'turn your Leonardo into a keyboard' example. This tutorial demonstrates full two-way HID
communication. This technique is helpful if you need to control outputs such as motors, LEDs, and
buzzers. We apologize, but certain tools used in this tutorial are Windows only. If you have similar tool
chains to get RawHID working on Linux and Mac please let us know.

This tutorial is based heavily on the Teensy RawHID library by PJRC. None of this would be possible
without Paul's awesome work developing the RawHID library. If you're thinking about making a true
USB device, consider developing it with a Teensy from PJRC or from SparkFun. They are truly easy-to-
use little devices.

The idea behind this tutorial came from a project where we needed to create a board the could output
sensor data (analog values, digital values) to a web page. We also needed to control motors and LEDs
based on where the user clicked on that same page. To do this we needed the board to be able to
pass HID packets back and forth. Again, there are plenty of tutorials out there showing how to
implement a joystick or a keyboard, but these are often one way and rarely talk directly to a webpage.

Required Materials

Here's a list of parts you may want to gather:

Teensy++ 2.0
DEV-11781

The Teensy is a breadboard-friendly development board with loads of features in a, well, teensy package. The Tee…

Breadboard - Self-Adhesive (White)
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power buses, 10 columns, and 30 rows - a total of 4…

SparkFun USB Mini-B Cable - 6 Foot
CAB-11301

This is a USB 2.0 type A to Mini-B 5-pin cable. You know, the mini-B connector that usually comes with USB Hubs,…

Trimpot 10K Ohm with Knob
COM-09806

There are lots of trimpots out there. Some are very large, some so small they require a screwdriver. Here at SparkF…

Jumper Wires Standard 7" M/M - 30 AWG (30 Pack)
PRT-11026

If you need to knock up a quick prototype there's nothing like having a pile of jumper wires to speed things up, and…

Diffused LED - Red 10mm
COM-10632

Check out these big 10mm through-hole LEDs! The opaque epoxy package causes these LEDs to have a soft, diffu…

Transistor - NPN, 60V 200mA (2N3904)You can add all these parts to your cart then remove any you already have.
Page 2 of 17

https://learn.sparkfun.com/tutorials/hid-control-of-a-web-page/feedback
http://www.pjrc.com/teensy/rawhid.html
http://www.pjrc.com/teensy/index.html
https://www.sparkfun.com/search/results?term=teensy&what=products
https://www.sparkfun.com/wish_lists/83077
https://www.sparkfun.com/products/11781
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/11301
https://www.sparkfun.com/products/9806
https://www.sparkfun.com/products/11026
https://www.sparkfun.com/products/10632

Suggested Reading/Viewing:

Hexidecimal
Trimpots as Voltage Dividers
HID and USB Devices

Teensy Setup

Let's start by having the Teensy report HID packets. At this point we only need to attach a USB cable
to the Teensy.

To get use RawHID you'll need to install Teensyduino. For help installing Teensyduino see the PJRC
site.

Page 3 of 17

https://www.sparkfun.com/products/521
https://www.sparkfun.com/products/11507
https://www.sparkfun.com/products/11696
https://www.sparkfun.com/wish_lists/83077
https://learn.sparkfun.com/tutorials/voltage-dividers
https://www.youtube.com/watch?v=1unTKKGd8qs
https://cdn.sparkfun.com/assets/a/1/f/3/3/52ed1cbdce395fe67a8b4568.jpg
https://www.sparkfun.com/products/11301
https://www.sparkfun.com/products/11781
http://www.pjrc.com/teensy/td_download.html
http://www.pjrc.com/teensy/teensyduino.html

Once Teensyduino is installed, you'll have access to the Raw HID USB type as well as a basic example
sketch. Before we continue there are some settings that can be modified. Find the usb_private.h file
located in the \Arduino\hardware\teensy\cores\usb_rawhid folder, and open it in a text editor. The usb_private
file contains the VID/PID, device string, and frame settings when using the RawHID library.

Vendor ID / Product ID

If you're just learning how to control HID there is no need to change the VID/PID settings. If you are
rolling your own hardware you'll need to tweak the vendor ID and product ID. Don't have your own
Vendor ID? That's kind of a problem, but, if you're just playing around, don't worry about it too much. If
you're planning on selling 10,000 of your device then you'll need to spend the $5,000 to get your own
VID.

Device String

This is the human readable string that is commonly shown when the USB is plugged in. It may sound
fun to attach the 'NSA Webcam Controller' to your friend's computer, but let's leave the
STR_PRODUCT alone for now.

Frame Size

The frame size (RAWHID_TX_SIZE and RAWHID_RX_SIZE) is what you should focus on within
usb_private.h. How much data do you need to pass back and forth? For this tutorial, we are going to
show how to read up to eight, 16-bit sensors, so we define RAWHID_TX_SIZE to be 16 bytes. To
make things symetrical, let's set the size of the RAWHID_RX_SIZE to 16 bytes as well. These buffers
can be any size (256 byte max), but try to be economical with your settings. Don't define a 256 byte

Page 4 of 17

https://cdn.sparkfun.com/assets/b/7/1/4/6/52d080a8ce395fd33d8b4567.jpg
http://www.oshwa.org/2013/11/19/new-faq-on-usb-vendor-id-and-product-id/

array if you're just reading a temperature sensor. Edit usb_private.h, and set the TX/RX buffers to 16.

After you've edited the buffer sizes, save the file. If you're using Windows, you may need to save a
local copy to your desktop, then copy/paste back into the \Arduino\hardware\teensy\cores\usb_rawhid directory.

Receiving HID Packets

Upload the HID_TX_Example onto the Teensy.

language:c
 /*
 Example HID to Webcontrol - Basic transmit over HID
 By: Nathan Seidle (SparkFun Electronics)
 Date: January 6th, 2014
 This code is public domain but you buy me a beer if you use this and we meet someday (Beerware license).

 This example shows how to transmit a counter over Raw HID.
*/

//Declare hardware pins
byte statLED = 6; //Teeny 2.0++ has status LED on pin 6

long readingTime; //Controls how often we send our trimpot value to the computer
unsigned int counter = 0; //Used to show packet count sent to computer

byte outgoingBuffer[16];

void setup()
{
 //Blink to show we're alive
 pinMode(statLED, OUTPUT);
 for(int i = 0 ; i < 5 ; i++)
 {
 digitalWrite(statLED, HIGH);
 delay(25);
 digitalWrite(statLED, HIGH);
 delay(25);
 }
 digitalWrite(statLED, HIGH); //Turn off LED

 //Fill the buffer with static numbers
 for(int x = 0 ; x < 16 ; x++)
 outgoingBuffer[x] = x;

 readingTime = millis();
}

void loop()
{
 //Send sensor readings to computer every 30ms, about 33Hz
 if (millis() - readingTime > 30) {
 readingTime += 30;

 //Fill the tail end with a counter
 outgoingBuffer[14] = counter >> 8; //MSB
 outgoingBuffer[15] = counter & 0xFF; //LSB

Page 5 of 17

 counter++;

 //Send the read frame to the computer
 int response = RawHID.send(outgoingBuffer, 100);

 }
}

Upon uploading the code, you'll notice nothing is happening. The problem is that we can't easily see
USB packets. In the old serial world days, we could open a terminal window and watch a COM port. In
HID land we need to view packets on the USB bus. A handy Windows tool to do this is the
SimpleHIDWrite.exe program developed by Jan Axelson. Open up SimpleHIDWrite, and select
'Teensyduino RawHID' from the device list.

Here we see packets streaming by. The computer is receiving HID from the Teensy! We can see these
16 read bytes displayed in HEX. The last two bytes are our counter and increase with each read.

Don't see 16 bytes? That's probably because you weren't able to edit and save the frame setting in the
usb_private.h file. Go back to the previous section, and double check that you have successfully edited
the file.

Page 6 of 17

http://www.lvr.com/files/SimpleHIDWrite3.zip
http://www.lvr.com/hidpage.htm
https://cdn.sparkfun.com/assets/0/e/1/8/2/52ed2d27ce395f8f748b4567.jpg
https://learn.sparkfun.com/tutorials/hid-control-of-a-web-page/hardware-setup

Passing Variables

Now let's transmit the value of a trim pot. Attach a trimpot to pin A7 (labeled F7) on the Teensy. Not
sure which Arduino pins are what on the Teensy? Check out this image or this page for a handy PDF.

Once you have the trimpot connected, upload the HID_TXTrimpot_Example to your Teensy.

language:c
/*
 Example HID to Webcontrol - Transmit analog value over HID
 By: Nathan Seidle (SparkFun Electronics)
 Date: January 6th, 2014
 This code is public domain but you buy me a beer if you use this and we meet someday (Beerware license).

 This example shows how to read a trimpot and send the value over Raw HID.
 */

//Declare hardware pins
byte statLED = 6; //Teeny 2.0++ has status LED on pin 6
byte trimpot = A7; //For the trimpot. This is labeled F7 on the Teensy2.0++

int trimpotValue; //Contains analog to digital value of the trimpot
long readingTime; //Controls how often we send our trimpot value to the computer
unsigned int counter = 0; //Used to show packet count sent to computer

byte outgoingBuffer[16]; //Holds the 16 bytes sent to computer

void setup()
{
 //Setup input/sensor ports
 pinMode(trimpot, INPUT_PULLUP);

Page 7 of 17

https://cdn.sparkfun.com/assets/f/4/c/4/1/52ed1cbfce395f15058b4567.jpg
https://www.sparkfun.com/products/9806
https://cdn.sparkfun.com/assets/1/b/8/0/8/52d087bbce395fb7778b4567.png
http://www.pjrc.com/teensy/pinout.html

 //Blink to show we're alive
 pinMode(statLED, OUTPUT);
 for(int i = 0 ; i < 5 ; i++)
 {
 digitalWrite(statLED, HIGH);
 delay(75);
 digitalWrite(statLED, LOW);
 delay(75);
 }
 digitalWrite(statLED, LOW); //Turn off LED

 //Fill the buffer with zeros
 for(int x = 0 ; x < 16 ; x++)
 outgoingBuffer[x] = 0;

 readingTime = millis();

}

void loop()
{
 //Send sensor readings to computer every 30ms, about 33Hz
 if (millis() - readingTime > 30) {
 readingTime += 30;

 //Read inputs
 trimpotValue = averageAnalogRead(trimpot);

 //Fill the head with the analog value
 outgoingBuffer[0] = trimpotValue >> 8;
 outgoingBuffer[1] = trimpotValue & 0xFF;

 //Fill the tail end with a counter
 outgoingBuffer[14] = counter >> 8; //MSB
 outgoingBuffer[15] = counter & 0xFF; //LSB
 counter++;

 //Send the read frame to the computer
 int response = RawHID.send(outgoingBuffer, 100);

 }
}

//Takes a series of readings on a given pin
//Returns the average
int averageAnalogRead(int pinToRead)
{
 byte numberOfReadings = 8;
 unsigned int runningValue = 0;

 for(int x = 0 ; x < numberOfReadings ; x++)
 runningValue += analogRead(pinToRead);
 runningValue /= numberOfReadings;

 return(runningValue);
}

Page 8 of 17

This example takes an analog reading of the trimpot and passes the 10-bit number out bytes 0 and 1.

Open SimpleHID. You'll have to re-select the Teensy each time you load new code because it re-
enumerates as an HID device. Twist the trimpot, and you'll see the values of the first two bytes change!

Pushing Values to a Webpage

Now that we can gather values and push them onto the HID bus, let's pipe them to a webpage. Milan
Pipersky created a driver that allows a webpage to access HID hardware. Download and install the HID
API Browser Plugin. This was created using FireBreath to allow multiple platforms and browsers get
access to hardware. From their website:

FireBreath is a framework that allows easy creation of powerful browser plugins. A plugin
built on FireBreath works as an NPAPI plugin or as an ActiveX control (windows only) and
support could be added for other plugin types built in C++ as well.

Page 9 of 17

https://cdn.sparkfun.com/assets/e/4/4/1/0/52d080aece395fe7368b4568.jpg
https://cdn.sparkfun.com/assets/5/5/4/2/a/52d08c20ce395f12358b4567.zip
http://www.firebreath.org/display/documentation/About+FireBreath

Gimme access?

Next, open the example control html page. You will need to give permission to the plugin to run.

A web page that responds to hardware

You should see a few messages and warnings to allow the plugin to function. Now twist the trimpot.
You should see the progress bar change!

Page 10 of 17

https://cdn.sparkfun.com/assets/0/6/a/e/f/52ed228cce395f4a208b456b.jpg
https://cdn.sparkfun.com/assets/f/2/1/c/d/52d08b3fce395f931f8b4567.zip
https://cdn.sparkfun.com/assets/7/8/f/3/2/52d080adce395fd33d8b4568.jpg

To me, controlling HTML from hardware is magic! From here you can begin to see the power that is
possible. Any sensor that we can hook up to an Arduino can be directly displayed on a web page.

You could create a web-based game that responds to how loud the user yells at their controller or how
hard they pound their desk. You could record sensor data such as temperature, UV light, sound and
vibration levels. You could monitor buttons, switches on doors or movement in a room. Kind of fun to
think about... But the real power is in controlling outputs!

Sending HID Packets

We've shown how to read sensors and display the readings. Now, let's control a motor from a
webpage!

Download and compile the HID_TXRX_Example code onto the Teensy.

language:c
 /*
 Example HID to Webcontrol - Basic transmit and receive over HID
 By: Nathan Seidle (SparkFun Electronics)
 Date: January 6th, 2014
 This code is public domain but you buy me a beer if you use this and we meet someday (Beerware license).

 This example shows how to control output pins based on the incoming HID packets.
*/

//Declare hardware pins
byte statLED = 6; //Teeny 2.0++ has status LED on pin 6
byte trimpot = A7; //For the trimpot. This is labeled F7 on the Teensy2.0++

byte port1Pin = 16; //PWM output for motor. Labeled C6 on Teensy 2.0++
byte port2Pin = 15; //PWM output for LED. Labaled C5 on Teensy 2.0++

//Global variables
int trimpotValue; //Contains analog to digital value of the trimpot
long readingTime; //Controls how often we send our trimpot value to the computer
unsigned int counter = 0; //Used to show packet count sent to computer

byte outgoingBuffer[16]; //Holds the 16 bytes sent to computer

//These variables contain the commands from the computer
int port1Value;
int port2Value;

//These keep track of what has changed. We don't want to update analogWrites at 33Hz
int oldPort1Value;
int oldPort2Value;

//These defines help break the incoming 16 byte frame into pieces
#define PORT1 0
#define PORT2 2

void setup()
{
 //Setup input/sensor ports
 pinMode(trimpot, INPUT_PULLUP);

Page 11 of 17

https://www.sparkfun.com/products/8630

 //Setup output ports
 pinMode(port1Pin, OUTPUT);
 pinMode(port2Pin, OUTPUT);
 analogWrite(port1Pin, 0);
 analogWrite(port2Pin, 15);

 //Blink to show we're alive
 pinMode(statLED, OUTPUT);
 for(int i = 0 ; i < 5 ; i++)
 {
 digitalWrite(statLED, HIGH);
 delay(25);
 digitalWrite(statLED, LOW);
 delay(25);
 }
 digitalWrite(statLED, LOW); //Turn off LED

 //Fill the buffer with zeros
 for(int x = 0 ; x < 16 ; x++)
 outgoingBuffer[x] = 0;

 readingTime = millis();
}

void loop()
{
 byte incomingBuffer[16];

 //Check to see if we have received a frame from the computer
 int response = RawHID.recv(incomingBuffer, 0); // 0ms timeout = do not wait
 if (response > 0)
 {
 //Toggle the status LED when we receive a frame from the computer
 if(digitalRead(statLED) == LOW)
 digitalWrite(statLED, HIGH);
 else
 digitalWrite(statLED, LOW);

 //Decode the incoming buffer
 port1Value = incomingBuffer[PORT1] << 8 | incomingBuffer[PORT1 + 1]; //Combine MSB/LSB into int
 port2Value = incomingBuffer[PORT2] << 8 | incomingBuffer[PORT2 + 1];

 //Push values to output pins
 updateOutputs();
 }

 //Send sensor readings to computer every 30ms, about 33Hz
 if (millis() - readingTime > 30) {
 readingTime += 30;

 //Read inputs
 trimpotValue = averageAnalogRead(trimpot);

 //Fill the head with the analog value
 outgoingBuffer[0] = trimpotValue >> 8;
 outgoingBuffer[1] = trimpotValue & 0xFF;

Page 12 of 17

 //Fill the tail end with a counter
 outgoingBuffer[14] = counter >> 8; //MSB
 outgoingBuffer[15] = counter & 0xFF; //LSB
 counter++;

 //Send the read frame to the computer
 response = RawHID.send(outgoingBuffer, 100);
 }
}

//Takes a series of readings on a given pin
//Returns the average
int averageAnalogRead(int pinToRead)
{
 byte numberOfReadings = 8;
 unsigned int runningValue = 0;

 for(int x = 0 ; x < numberOfReadings ; x++)
 runningValue += analogRead(pinToRead);
 runningValue /= numberOfReadings;

 return(runningValue);
}

//If the new port values are different from before then upate the output pins
void updateOutputs(void)
{
 //Port 1 - PWM control
 port1Value = map(port1Value, 0, 100, 0, 255); //Slider is 0 to 100. PWM goes from 0 to 255
 if(port1Value != oldPort1Value) //Only send new values to pin if the value is indeed new
 {
 oldPort1Value = port1Value; //Remeber this new value

 if(port1Value > 3) //Have a minimum threshold
 analogWrite(port1Pin, port1Value);
 else
 analogWrite(port1Pin, 0); //Turn off this pin if value is too close to zero
 }

 //Port 2 - PWM control
 port2Value = map(port2Value, 0, 100, 0, 255); //PWM goes from 0 to 255
 if(port2Value != oldPort2Value) //Only send new values to pin if the value is indeed new
 {
 oldPort2Value = port2Value; //Remeber this new value

 if(port2Value > 3) //Have a minimum threshold
 analogWrite(port2Pin, port2Value);
 else
 analogWrite(port2Pin, 0); //Turn off this pin if value is too close to zero
 }
}

Page 13 of 17

See the WR packet?

Let's double check that the proper code is running. Open SimpleHID, and select the Teensyduino from
the list. Once you see data scrolling past, type 32 in the fourth byte, and hit Write. The LED on the
Teensy should toggle. The status LED will toggle every time a HID frame is received from the
computer. And as a bonus, by writing 0x32 into the fourth byte, you just set pin C5 to a 50% duty cycle
(0x32 in HEX is 50 in decimal).

Page 14 of 17

https://cdn.sparkfun.com/assets/a/e/0/d/9/52ed27d0ce395fee738b4567.jpg

To prove it, add an LED to pin C5. The long leg of the LED is the anode and connects to pin C5. The
cathode (short leg) connects to GND. Next, write a few different values (for example 05, 32, FE, and
00) into the fourth byte, and send them from SimpleHID. You should see the brightness of the LED
change. Open the html page and slide the bottom slider up and down. You should see the brightness
of the LED change, as you move the slider.

The final example requires that we use a 2N3904 transistor to control the motor. The Teensy can't

Page 15 of 17

https://cdn.sparkfun.com/assets/7/f/9/9/a/52ed1cbdce395fb2738b456a.jpg
https://cdn.sparkfun.com/assets/4/b/3/4/7/52ed1cbdce395f66648b4567.jpg
https://www.sparkfun.com/products/521

drive the motor directly, but it can control the on/off valve of the 2N3904.

Grab the following parts:

2N3904 (or a similar NPN transistor that can handle 100mA or more)
330 ohm resistor (any resistor value from 100 to 5k should work)
DC motor

Wire the transistor as follows:

If you need a refresher on schematic symbols, visit How to read a schematic.

Once the motor has been wired to C6, use the top slider on the example HTML page to control the
speed of the motor. You can also control the speed of the motor by using SimpleHID to write values
(00, 05, FE, etc) to the 2nd byte.

For extra credit, think about how you would modify the code so that both the webpage and the trimpot
could control the motor speed. Think you've got it? Give it a try!

For super credit, how would you make the slider control the motor speed as well as direction? Hint:
You'll probably need an h-bridge.

Changing the Hardware

Page 16 of 17

https://www.sparkfun.com/products/521
https://www.sparkfun.com/products/11507
https://www.sparkfun.com/products/11696
https://cdn.sparkfun.com/assets/5/2/d/b/5/52ed2a87ce395fe6068b4569.jpg
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic
https://cdn.sparkfun.com/assets/b/b/e/6/2/52ed2af6ce395fc9188b4568.jpg
https://www.sparkfun.com/products/11890

The Teensyduino RawHID library works best with the Teensy hardware (Teensy2.0++ is used in this
tutorial). However, if you are a more adventurous user, you can use the RawHID library on any board
that uses the ATmega32u4 or AT90USB1286. The Arduino IDE will generate a HEX file that can be
located deep within the Arduino temporary compile folder. Using an external programmer (we prefer the
AVR Pocket Programmer but you can also use an Arduino), you can load this HEX file onto any board.
Using an external programmer is not as easy as the Teensy bootloader, but it means the LilyPad USB,
Fio v3, Arduino Leonardo, and a whole gaggle of other development boards can benefit from the
RawHID library. Roll your own hardware, and skip all the FTDI ICs and odd bit-bang USB libraries!

Resources and Going Further

Here's some additional tips and tricks we learned during this project:

Working with USB type A devices and the USB A breakout
Checkout this tutorial to change where the compiled HEX files are sent. This makes it a lot easier
to find and load a HEX file on the fly. Stop using AVR studio or a prompt to load HEX files!
Checkout AVRDUDESS for a great windows GUI to avrdude.
Need an h-bridge to control the motor's direction? Checkout the Minimoto or Ardumoto.

Check out these other Internet of Things tutorials:

WiFly Shield Hookup Guide
Electric Imp Breakout Hookup Guide
Wireless Arduino Programming with Electric Imp

learn.sparkfun.com | CC BY-SA 3.0 | SparkFun Electronics | Niwot, Colorado

Page 17 of 17

http://www.pjrc.com/teensy/teensyduino.html
https://www.sparkfun.com/products/11781
http://arduino.cc/en/Hacking/BuildProcess
https://www.sparkfun.com/products/9825
https://www.sparkfun.com/products/11168
https://www.sparkfun.com/products/11190
https://www.sparkfun.com/products/11520
https://www.sparkfun.com/products/11286
https://learn.sparkfun.com/tutorials/usb-type-a-female-breakout-hookup-guide
http://vcctoground.com/tutorials/changing-the-default-hex-file-build-path-in-the-arduino-ide/
http://blog.zakkemble.co.uk/avrdudess-a-gui-for-avrdude/
https://learn.sparkfun.com/tutorials/minimoto-drv8830-hookup-guide
https://learn.sparkfun.com/tutorials/ardumoto-shield-hookup-guide
https://learn.sparkfun.com/tutorials/wifly-shield-hookup-guide
https://learn.sparkfun.com/tutorials/electric-imp-breakout-hookup-guide
https://learn.sparkfun.com/tutorials/wireless-arduino-programming-with-electric-imp
https://learn.sparkfun.com
http://creativecommons.org/licenses/by-sa/3.0/

	HID Control of a Web Page a learn.sparkfun.com tutorial
	Available online at: http://sfe.io/t177
	Contents
	HID Communication
	Covered in This Tutorial
	Required Materials
	Suggested Reading/Viewing:

	Teensy Setup
	Vendor ID / Product ID
	Device String
	Frame Size

	Receiving HID Packets
	Passing Variables
	Pushing Values to a Webpage

	Sending HID Packets
	Changing the Hardware
	Resources and Going Further

