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Abstract

In 1981, Zagier explained how the Rankin-Selberg method, originally shown to work

with SL2(Z)-automorphic forms that decay rapidly at infinity, can be naturally ex-

tended to automorphic forms that behave like
ℓ∑

i=1

yαi

i logni y. The technique used is

called renormalization.

In this thesis, we identify the full group of functional equations for the renor-

malized Rankin-Selberg transform of a product of an Eisenstein series and a Hilbert

modular Eisenstein series associated to a real quadratic field.

From Zagier’s theory, 16 functional equations are trivially expected. The work

presented here shows that this object has exactly 48 functional equations.
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Preface

The present document is the final achievement of my work as a Ph.D. student

at Stanford University and I take great pride in writing it.

In the winter quarter of 2004, my second year at Stanford, I was at a loss in

my search for an advisor, as I could not find someone to work with, who met my

interest for abstract functional analysis and Banach space theory. I finally decided to

change fields, learn new material, and however difficult a decision this might have been

at first, it brought me together with Professor Bump.

While we had never met before, he welcomed me unquestioningly and proposed

that I start learning automorphic forms. Having explained him my strong interest

for “anything that mixes algebra and analysis”, however vague that may be, Professor

Bump very promptly told me about a problem he might have for me.

Twenty years ago, with Professor Goldfeld, in [4], he investigated the renorma-

lized Rankin-Selberg transform

R(s0, s1) = RN

∫

SL2(Z)\H

E⋆(z, s0)E
⋆
K(z, s1)

dz

y2

as defined by Zagier in [9], of a Hilbert modular Eisenstein series E⋆
K(z, s1) for a

totally real cubic field. They were able to show that this function actually is a period

of the SL3(Z) Eisenstein series, and inherits from it functional equations that would

be undetectable from Zagier’s sole definition for R.

In 2002, Professors Beineke and Bump considered this time the renormalized

Rankin-Selberg transform of a product of three SL2(Z) Eisenstein series and showed

that such a phenomenon happened again.
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My mission, would I accept it, would be to investigate the last remaining case

RN

∫

SL2(Z)\H

E⋆(z, s0)E
⋆(z, s1)E

⋆
K(z, s2)

dz

y2

where K is a totally real quadratic field. The group of functional equations for this

function is of order 48, while Zagier’s theory only predicts 16. And this is the main

result in the present thesis.

People who know me know that I like to present material that is self-contained.

Doing this here would be a difficult task given the amount of prerequisites to under-

stand what I have been working on. The volume, in the present thesis, devoted

to prerequirements would also overwhelm the part where original work is actually

presented. Thus I will usually direct the reader to the appropriate references. This

to the exception of a couple chapters devoted to the Hilbert modular group and the

Hilbert modular Eisenstein series.

Indeed, the only elementary reference that I found on the subject is Siegel’s

Lectures Notes on Advanced Analytic Number Theory [7]. This is a very old book,

out of publication, very well written but still hard to read because typewritten.

The parts relevant to the Eisenstein series are also pretty much scattered in many

places throughout the book. It is after reading it that I was finally able to un-

derstand all objects involved in my problem, and therefore get started solving it.

Since it meant so much to my work, I am reproducing the relevant parts here.

The reader who is already comfortable with this material can skip directly to the

third chapter, containing my original work.
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Chapter 1

The Hilbert modular group

In this chapter, we present the theory of the Hilbert modular group, as a group acting

on copies of the complex upper half-plane. This group generalizes the traditional

modular group SL2(Z), whose theory is presented for example in the beginning of

Bump’s Automorphic Forms and Representations [3]. We will define this action, study

it and show that it actually is discontinuous, and identify fundamental domains for

particular subgroups. Those results, already interesting as such, will be fundamental

to defining the Hilbert modular Eisenstein series studied in the next chapter.

1.1 First notations

In this chapter, K is a totally real algebraic number field of degree n over Q. This

means that all the conjugates of K are actually subfields of R. For example,

Q(
√

2) is a totally real quadratic field since its only conjugate is itself; while Q( 3
√

2)

is not a totally real cubic field, since its conjugates are Q( 3
√

2), Q(j 3
√

2) and Q(j2 3
√

2)

with j = e2πi/3. If α is in K, its conjugates are denoted by α(1) = α, α(2), . . . , α(n).

For our purposes, we need to add a point at infinity to K, thus forming

K̂ = K ∪ {∞}

as a subset of the completed complex plane Ĉ. Operations in K̂ between elements of K

work just as in K. And the element ∞ satisfies the following conditions:

1
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∀a ∈ C a+ ∞ = ∞
∀a ∈ C \ {0} a×∞ = ∞

∞×∞ = ∞
1

0
= ∞

1

∞ = 0

∀i ∈ {1, . . . , n} ∞(i) = ∞
K̂ can be embedded in n copies of the extended complex plane as follows:

Φ : K̂ −→ Ĉn

x 7−→ Φx =




x(1)

...

x(n)




An element x in K will often be identified with its image by Φ in what follows.

In Ĉn, we define the following maps :

∀z =




z1
...

zn


 ∈ Ĉn Tr z = z1 + · · ·+ zn and N (z) = z1 · · · zn

so that Tr ◦ Φ and N ◦ Φ are respectively the usual trace and norm on K̂.

These new notations are thus consistent with the identification we make between

x ∈ K and Φ(x).

Now, if z =




z1
...

zn


 is in Ĉn, we will note :

x = Re z =




Re z1
...

Re zn


 and y = Im z =




Im z1
...

Im zn




Let G be the group of 2 × 2 matrices with coefficients in K and determinant 1.

G naturally acts on Ĥ n, the n-fold product of copies of the extended upper-half

plane Ĥ as follows:
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∀M =



α β

γ δ



 ∀z ∈ H n Mz =




α(1)z1 + β(1)

γ(1)z1 + δ(1)

...

α(n)zn + β(n)

γ(n)zn + δ(n)




= xM + iyM

and M∞ =




α(1)

γ(1)

...

α(n)

γ(n)




Finally, the Hilbert modular group is the set of matrices in G with coefficients in o,

quotiented by the subgroup {±I2} of matrices that act trivially on H n. This group

will be noted M = SL2(o)/{±I2}.

1.2 Cusps of M and class number

Definition 1 Two elements λ and µ in K̂ are equivalent, and we note λ ∼ µ, if and

only if

∃M =

[
α β

γ δ

]
∈ M µ = Mλ =

αλ+ β

γλ+ δ

A cusp for M is an equivalence class in K̂ for ∼, and their collection is denoted by C .

Theorem 2

The number of cusps is the class number of K.

Proof: Let I be the group of fractional ideals of o and P be the group of principal

ideals. We know, from basic theory of Dedekind domains, that any fractional ideal a

can be generated by two elements.

Our first step is to show that if a = 〈α, β〉 = 〈α⋆, β⋆〉, then α
β
∼ α⋆

β⋆ . We know that

there exist elements γ, δ, γ⋆, δ⋆ in a−1 such that

αγ − βδ = 1 and α⋆γ⋆ − β⋆δ⋆ = 1
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Define then A =

[
α δ

β γ

]
and A⋆ =

[
α⋆ δ⋆

β⋆ γ⋆

]

These matrices have coefficients in K and determinant 1. Thus

A⋆A−1 =

[
α⋆ δ⋆

β⋆ γ⋆

][
γ −δ

−β α

]
=

[
α⋆γ − δ⋆β δ⋆α− α⋆δ

β⋆γ − γ⋆β γ⋆α− β⋆δ

]

has determinant 1. Remember that the α’s and β’s are in a, while the γ’s and δ’s

are in a−1. Thus A⋆A−1 has coefficients in o and is in the Hilbert modular group M .

It is now a simple computation to check that

A⋆A−1α

β
=
α⋆

β⋆

which proves that
α

β
∼ α⋆

β⋆

Thus the function ϕ : I −→ C , that associates to a fractional ideal a = 〈α, β〉
the cusp α

β
, is well defined: its value at an ideal a does not depend on the choice of

generators for this ideal.

Next, we check that ϕ induces actually a function on I/P. Indeed, if A is an

ideal class represented by fractional ideals a or b, there exists an integer c such that

b = ca. If (α, β) is a set of generators for a, then b is generated by (cα, cβ). Thus

ϕ(b) =
cα

cβ
=
α

β
= ϕ(a)

So ϕ projects to a function ϕ : I/P −→ C , by defining ϕ(A) to be ϕ(a) for any

fractional ideal a ∈ A.

Of course, ϕ is surjective since if λ is a cusp represented by the algebraic number α
β
,

then ϕ(A) = λ where A is the ideal class of 〈α, β〉. If λ = ∞, just take A = P.

The last step consists in checking that ϕ is injective. Suppose that two frac-

tional ideals a and a⋆ are such that ϕ(a) and ϕ(a⋆) define the same cusp. Let (ρ, σ)

and (ρ⋆, σ⋆) be generators for a and a⋆ respectively. Because the cusps ρ
σ

and ρ⋆

σ⋆

are the same,

∃M =

[
α β

γ δ

]
∈ M

ρ⋆

σ⋆
= M

ρ

σ
=
α ρ

σ
+ β

γ ρ
σ

+ δ
=
αρ+ βσ

γρ+ δσ
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This is turn implies that, for some algebraic number c ∈ K, we have

ρ⋆ = c(αρ+ βσ) and σ⋆ = c(γρ+ δσ) (1)

Of course, the ideal 〈αρ+ βσ, γρ+ δσ〉 is included in 〈ρ, σ〉 = a. Conversely, because

αδ − βγ = 1, we have




ρ = δ(αρ+ βσ) − β(γρ+ δσ)

σ = −γ(αρ+ βσ) + α(γρ+ δσ)

which proves that a = 〈ρ, σ〉 = 〈αρ + βσ, γρ + δσ〉. This, together with (1),

shows that 〈ρ⋆, σ⋆〉 = c〈ρ, σ〉, or in other words, a⋆ and a are in the same ideal class.

Thus ϕ is injective. �

We now know that M has finitely many cusps, since the class number of K

is finite. Let h be this number. We fix for the remainder of the chapter a complete

set of representatives a1, . . . , ah of ideal classes, such that ai has minimum norm

in its class, and note the corresponding cusps λ1, . . . , λh. We convene that a1 = o,

so that λ1 = ∞.

Also, each ai can be written as 〈ρi, σi〉 and we have λi ∼ ρi

σi
. Because ρi and σi

are in ai, there exist ξi, ηi in a−1
i such that ρiηi − σiξi = 1. Those algebraic numbers

provide us with a matrix

Ai =

[
ρi ξi

σi ηi

]
∈ SL2(K)

1.3 The stabilizer of algebraic numbers

For λ ∈ K̂, we want to identify its stabilizer Γλ in M , that is

Γλ =
{
M ∈ M

∣∣ Mλ = λ
}

Since λ1, . . . , λh are a complete set of representatives for K/ ∼, there exists M ∈ M

and i ∈ {1, . . . , h} such that λ = Mλi. Thus

Γλ =
{
N ∈ M

∣∣ NMλi = Mλi

}
=
{
N ∈ M

∣∣ M−1NMλi = λi

}
= MΓλi

M−1

and it is sufficient to know Γλ1 , . . . ,Γλn
in order to know all Γλ’s.
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Theorem 3

If i ∈ {1, . . . , h},

Γλi
=

{
Ai

[
ε ζε−1

0 ε−1

]
A−1

i

∣∣∣ ε ∈ o× ζ ∈ a−2
i

}

Proof: Let M =

[
α β

γ δ

]
∈ Γλi

Then
αρi + βσi

γρi + δσi

=
ρi

σi

and σi(αρi + βσi) = ρi(γρi + δσi)

Just like in the proof of Theorem 2, the fact that M has determinant 1 and coeffi-

cients in o implies that (αρi + βσi, γρi + δσi) is another system of generators for ai:

ai = 〈ρi, σi〉 = 〈αρi + βσi, γρi + δσi〉 (2)

This implies that 〈ρi〉
ai

and 〈σi〉
ai

are relatively prime; as well as 〈αρi+βσi〉
ai

and 〈γρi+δσi〉
ai

.

This comes again from the theory of Dedekind domains, and I believe a quick

proof is required. The fundamental relationship needed is a consequence of the

unique factorization of ideals as a product of primes:

∀a, b ∈ I ∀p prime vp(a + b) = Min
(
vp(a), vp(b)

)
(3)

where vp is the p-adic valuation. This can be found in Frohlich’s Algebraic

Number Theory [5], for example. Because a ⊂ a+b, we have for every prime p:

vp

( a

a + b

)
> 0

Similarly vp

( b

a + b

)
> 0

But also, because of (3),

vp(a + b) = vp(a) or vp(b)

Thus vp

( a

a + b

)
· vp

( b

a + b

)
= 0

This being true for every prime p implies that a
a+b

and b
a+b

are relatively prime.
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Dividing both sides of (2) by a2
i yields

〈σi〉
ai

〈αρi + βσi〉
ai

=
〈ρi〉
ai

〈γρi + δσi〉
ai

The coprimality relationships stated above imply that

〈σi〉
ai

=
〈γρi + δσi〉

ai

and
〈ρi〉
ai

=
〈αρi + βσi〉

ai

and in turn, from this and the equality

σi(αρi + βσi) = ρi(γρi + δσi)

presented earlier, there exists a unit ε such that

αρi + βσi = ερi and γρi + δσi = εσi

Therefore MAi =

[
α β

γ δ

][
ρi ξi

σi ηi

]
=

[
ερi αξi + βηi

εσi γξi + δηi

]

Defining ξ⋆
i = ε(αξi + βηi) ∈ a−1

i and η⋆
i = ε(γξi + δηi) ∈ a−1

i

we have MAi =

[
ρi ξ⋆

i

σi η⋆
i

][
ε 0

0 ε−1

]
(4)

Furthermore ρiη
⋆
i − σiξ

⋆
i = 1

Since we had already ρiηi − σiξi = 1

it follows that ρi(ηi − η⋆
i ) = σi(ξi − ξ⋆

i ) (5)

or, in terms of ideals,
〈ρi〉
ai

〈ηi − η⋆
i 〉

a−1
i

=
〈σi〉
ai

〈ξi − ξ⋆
i 〉

a−1
i

But 〈ρi〉
ai

and 〈σi〉
ai

are relatively prime, therefore

〈ρi〉
ai

∣∣∣
〈ξi − ξ⋆

i 〉
a−1

i

and
〈σi〉
ai

∣∣∣
〈ηi − η⋆

i 〉
a−1

i

In particular ∃b integral ideal 〈ξi − ξ⋆
i 〉 ⊂ a−2

i 〈ρi〉b ⊂ a−2
i 〈ρi〉

and it follows that ∃ζ ∈ a−2
i ξ⋆

i = ξi + ζρi
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Because of (5), we get as well

η⋆
i = ηi + ζσi

Putting this information back in (4):

MAi =

[
ρi ξi + ζρi

σi ηi + ζσi

][
ε 0

0 ε−1

]
=

[
ρi ξi

σi ηi

][
1 ζ

0 1

][
ε 0

0 ε−1

]
= Ai

[
ε ζε−1

0 ε−1

]

and M = Ai

[
ε ζε−1

0 ε−1

]
A−1

i

Conversely, one easily checks by computation that such a matrix M, with ε ∈ o×

and ζ ∈ a−2
i stabilizes λi = ρi

σi
, has integral coefficients and determinant 1.

This achieves the proof of Theorem 3. �

1.4 Discontinuity of the action of M

We investigate in more details the action of M on the n-fold upper half-plane H n

defined in the first section of this chapter. We will find properties very similar

to those of SL2(Z) acting on H , which should help us describe a fundamental domain.

First, let’s define some notations.

Definition 4 If V is a subset of H n and M is a Hilbert modular transformation,

VM is the image M(V) of V under M.

Definition 5 For any z ∈ H n, the isotropy group of z is the subgroup Γz of M ,

consisting of those Hilbert modular transformations fixing z.

We start with a functional analysis lemma:

Lemma 6

Let B be a compact subset of the upper half-plane H . There exist positive numbers

c1, c2, depending only on B, such that

∀(u, v) ∈ R2 c1
(
u2 + v2

)
6 |uz + v|2 6 c2

(
u2 + v2

)
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Proof: Let S be the unit sphere in R2 for the euclidean norm:

S =
{
(u, v) ∈ R2 | u2 + v2 = 1

}

and define ∀z ∈ B ∀(u, v) ∈ S ϕ(u, v, z) = |uz + v|2

This function is continuous on the compact set B × S and therefore reaches its mini-

mum and maximum, that we call c1 and c2. These numbers are nonnegative since ϕ

is a nonnegative function. Because c1 is attained, there exist z ∈ B, (u, v) ∈ S so that

c1 = |uz + v|2

If c1 = 0, then uz + v = 0. Writing z = x+ iy, it follows that

ux+ v = 0 and uy = 0

B is a compact subset of the upper half-plane, therefore stays away from the real

axis. Which implies that y 6= 0, u = 0 and v = 0. This contradicts the fact that

u2 + v2 = 1. Therefore, c1 > 0 and as a consequence, c2 > 0 as well.

Now, let (u, v) 6= 0 be any couple of real numbers. Then (u,v)√
u2+v2 is in S and

therefore

c1 6
|uz + v|2
u2 + v2

6 c2

which proves the lemma. �

Theorem 7

Let B and B′ be any two compact sets in H n. There are only finitely many Hilbert

modular transformations M, such that BM ∩ B′ 6= ∅.

Proof: Since B and B′ are closed and bounded in H n, there exists a positive real

number c big enough such that

∀z ∈ B ∀j ∈ {1, . . . , n} 1

c
< yj < c (6)

and ∀z ∈ B′ ∀j ∈ {1, . . . , n} 1

c
< yj < c (7)
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Let Λ = {M ∈ M | BM ∩ B′ 6= ∅}

and take M =

[
α β

γ δ

]
∈ Λ

There exists z ∈ B such that Mz ∈ B′. Then we have in particular:

1

c
< Im (Mz)1 =

y1∣∣γ(1)z1 + δ(1)
∣∣2 < c

Thus
y1

c
< |γz1 + δ|2 < yjc

and by (6)
1

c2
< |γz1 + δ|2 < c2

Since z1 is in a compact subset of the upper half-plane, Lemma 6 implies that there

exists a positive constant c1, depending only on B, such that

c1
(
γ2 + δ2

)
6 |γz1 + δ|2 6 c2

Hence γ2 + δ2 6
c2

c1
But γ and δ are in o, which is discrete. So there are only finitely many possibilities

for those two integers. What we showed so far can be summarized as: Let B,B′

be two compact sets in H n. There are only finitely many possibilities for the bottom

rows of matrices M ∈ M such that BM ∩ B′ 6= ∅.

Let’s show now that the same happens with the top row. Let I =

[
0 1

−1 0

]
.

This matrix is in M and the sets BI and B′
I are both compact. Consider

ΛI = {M ∈ M | BMI ∩ B′
I 6= ∅}

We know then that bottom rows of elements of ΛI are taken from a finite set.

But, using the fact that I−1 = I,

ΛI = {M ∈ M |BIMI ∩ B′ 6= ∅} = IΛI

Observe that ∀M =

[
α β

γ δ

]
∈ Λ IMI =

[
−δ γ

β −α

]
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Thus, up to some sign changes, bottom rows of elements of ΛI are top rows of elements

of Λ. Hence there are, as well, only finitely many possibilities for the top rows

of elements of Λ. �

Corollary 8

For every z ∈ H n, the isotropy group Γz is finite.

Proof: Γz is the set of M ∈ M such that {z}M = {z}, thus finite by Theorem 7.�

Theorem 9

The Hilbert modular group M acts properly discontinuously on the n-fold upper half-

plane H n. In other words, for any z ∈ H n, there exists a neighbourhood U of z such

that the set of M ∈ M such that UM ∩ U 6= ∅ is the isotropy group Γz.

Proof: Let V be a relatively compact neighbourhood of z. By Theorem 7, the set Λ

of matrices M ∈ M such that VM ∩ V 6= ∅ is finite. Note that Λ also contains Γz,

so let’s write Λ as a disjoint union

Λ = {M1, . . . ,Mr} ∪ Γz (8)

Suppose that, for some i, there is no neighbourhood O of z such that OMi
∩O = ∅.

Then

∀p ∈ N⋆ B
(
z,

1

p

)

Mi

∩ B
(
z,

1

p

)
6= ∅

and thus contains a point wp = Mi(zp) with

‖zp − z‖ 6
1

p
and ‖wp − z‖ 6

1

p

Since Mi is continuous, letting p go to ∞ yields z = Mi(z), which contradicts the fact

that Mi is not z-isotropic.

Hence, for every i, there is a neighbourhood Wi of z such that Mi(Wi) ∩Wi = ∅.
Then W = W1 ∩ · · · ∩ Wr is a neighbourhood of z such that

∀i ∈ {1, . . . , r} WMi
∩ W = ∅

Finally, let U = V ∩ W. This is a neighbourhood of z. Let M ∈ M be such

that UM ∩ U 6= ∅. Then VM ∩ V 6= ∅, so M is in Λ. Given the disjoint union (8),
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either M ∈ Γz or M = Mi for some i. The latter case is impossible, since U ⊂ W and

WMi
∩ W = ∅. Therefore M is z-isotropic and U satisfies the requirements for the

theorem. �

Corollary 10

If z ∈ H n is such that Γz = {I2}, there exists a neighbourhood U of z such that

∀M ∈ M \ {I2} UM ∩ U = ∅

1.5 A fundamental domain for Γλ

Let λ = ρ
σ

represent a cusp of H n for the Hilbert modular group M , and a = 〈ρ, σ〉
be the ideal, among a1, . . . , ah representing λ. The fractional ideal a−2 is a free

Z-module of rank n and therefore has Z-bases; let (α1, . . . , αn) be one of them.

As explained in section 1.2, we associate with the cusp λ a matrix A =

[
ρ ξ

σ η

]

of determinant 1 with ξ and η in a−1.

As a consequence of the units theorem, applied to the special case of totally real

fields, there exist fundamental units ε1, . . . , εn−1 in o×, such that

o× =
{
± εk1

1 · · · εkn−1

n−1 | k1, . . . , kn−1 ∈ Z
}

In this section, we will construct a fundamental domain in H n for the group Γλ

identified in section 1.3. This set will be easier to describe in a different coordinate

system, which we shall present now.

Let z = (z1, . . . , zn) be any point in H n. We define z⋆ = x⋆ + iy⋆ to be simply

zA−1 and we write

z⋆ = (z⋆
1 , . . . , z

⋆
n) x⋆ = (x⋆

1, . . . , x
⋆
n) y⋆ = (y⋆

1, . . . , y
⋆
n)

We define the local coordinates of z at λ to be the 2n quantities

q,Y1, . . . ,Yn−1,X1, . . . ,Xn

determined by the relationships



CHAPTER 1. THE HILBERT MODULAR GROUP 13

q = N(y⋆)




ln
∣∣ε(1)

1

∣∣ · · · ln
∣∣ε(1)

n−1

∣∣
...

...

ln
∣∣ε(n−1)

1

∣∣ · · · ln
∣∣ε(n−1)

n−1

∣∣







Y1

...

Yn−1


 =




1

2
ln

y⋆
1

n
√

N(y⋆)
...

1

2
ln

y⋆
n−1

n
√

N(y⋆)




(9)

and




α
(1)
1 · · · α

(1)
n

...
...

α
(n)
1 · · · α

(n)
n







X1

...

Xn


 = x⋆ (10)

The matrix in (9) is invertible as a consequence of the units theorem; the matrix in

(10) is invertible because (α1, . . . , αn) is a Z-basis for a−2, which is an n-dimensional

lattice in K (see chapters 3 and 5 of Lang’s Algebraic Number Theory [6]). Therefore,

Y1, . . . ,Yn−1,X1, . . . ,Xn are well defined.

Furthermore, the correspondance between usual coordinates x1, . . . , xn, y1, . . . , yn

for z and local coordinates is bijective. Indeed, if the local coordinates are known,

(10) lets us recovers x⋆, while (9) lets us recover y⋆
1, . . . , y

⋆
n−1. The last number y⋆

n

is then obtained, using the fact that

q = N(y⋆) = y⋆
1 · · · y⋆

n−1y
⋆
n

We wish to know how local coordinates change, when z is changed through par-

ticular transformations.

Proposition 11

Let z ∈ H , ε = ±εk1
1 · · · εkn−1

n−1 ∈ o× and ζ = m1α1 + · · ·+mnαn ∈ a−2.

1. Under the modular transformation A

[
1 ζ

0 1

]
A−1, the local coordinates of z

become

N(y⋆),Y1, . . . ,Yn−1,X1 +m1, . . . ,Xn +mn

In other words, the first n local coordinates are unchanged, the last n are trans-

lated by (m1, . . . , mn).
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2. Under the modular transformation A

[
ε 0

0 ε−1

]
A−1, the first n local coordinates

of z become

N(y⋆),Y1 + k1, . . . ,Yn−1 + kn−1

In other words, the first local coordinate does not change and the next n− 1 are

translated by (k1, . . . , kn−1).

Proof: Let M = A

[
1 ζ

0 1

]
A−1, so that

A−1Mz =

[
1 ζ

0 1

]
A−1

Thus (Mz)⋆ =

[
1 ζ

0 1

]
z⋆ = z⋆ + ζ =




x⋆
1 + ζ (1)

...

x⋆
n + ζ (n)


+ i




y⋆
1
...

y⋆
n




Let q′,Y′
1, . . . ,Y

′
n−1,X

′
1, . . . ,X

′
n be the local coordinates of Mz. Since q′,Y′

1, . . . ,Y
′
n−1

are determined by Im (Mz)⋆, which is equal to Im z⋆, we get

q′ = q Y′
1 = Y1 · · · Y′

n−1 = Yn−1

The numbers X′
1, . . . ,X

′
n satisfy




α
(1)
1 · · · α

(1)
n

...
...

α
(n)
1 · · · α

(n)
n







X′
1
...

X′
n


 =




x⋆
1 + ζ (1)

...

x⋆
n + ζ (n)


 =




x⋆
1
...

x⋆
n


+




ζ (1)

...

ζ (n)




=




x⋆
1
...

x⋆
n


+




m1α
(1)
1 + · · ·+mnα

(1)
n

...

m1α
(n)
1 + · · ·+mnα

(n)
n




=




x⋆
1
...

x⋆
n


+




α
(1)
1 · · · α

(1)
n

...
...

α
(n)
1 · · · α

(n)
n







m1

...

mn
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and therefore




α
(1)
1 · · · α

(1)
n

...
...

α
(n)
1 · · · α

(n)
n







X′
1 −m1

...

X′
n −mn


 =




x⋆
1
...

x⋆
n




It follows that




X′
1 −m1

...

X′
n −mn


 =




X1

...

Xn




which proves the first part of the proposition.

The second part is proved along the same lines. �

Of course, it is not for random reasons that we restricted our attention to matri-

ces such as A

[
1 ζ

0 1

]
A−1 and A

[
ε 0

0 ε−1

]
A−1. For one, according to Theorem 3,

they belong to Γλ. But also, any element of Γλ can be decomposed as a product of

those, as was seen during the proof of that theorem:

A

[
ε ε−1ζ

0 ε−1

]
A−1 = A

[
1 ζ

0 1

]
A−1 × A

[
ε 0

0 ε−1

]
A−1 (11)

This decomposition, together with Proposition 11, are key to constructing a funda-

mental domain for Γλ, and prompt us to introduce the notion of a point reduced with

respect to λ:

Definition 12 A point z in H n is called reduced with respect to λ if and only if all

local coordinates, except the first one, are between −1
2

and 1
2
:

−1

2
6 Y1, . . . ,Yn−1,X1, . . . ,Xn <

1

2

Proposition 13

Any z in H n is Γλ-equivalent to a reduced point for λ.

Proof: z has local coordinates q,Y1, . . . ,Yn−1,X1, . . . ,Xn. We first find integers

k1, . . . , kn−1 such that

∀i ∈ {1, . . . , n− 1} − 1

2
6 Yi + ki <

1

2
(12)
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and then define M1 = A

[
ε 0

0 ε−1

]
A−1 with ε = εk1

1 · · · εkn−1

n−1

Let’s call q′,Y′
1, . . . ,Y

′
n−1,X

′
1, . . . ,X

′
n the local coordinates of M1z. According to

Proposition 11 and (12), Y′
1, . . . ,Y

′
n−1 are reduced.

Next, find integers m1, . . . , mn such that

∀i ∈ {1, . . . , n− 1} − 1

2
6 X′

i +mi <
1

2
(13)

and define M2 = A

[
1 ζ

0 1

]
A−1 with ζ = m1α1 + · · ·+mnαn

Let’s call q′′,Y′′
1 , . . . ,Y

′′
n−1,X

′′
1, . . . ,X

′′
n the local coordinates of the point M2M1z.

Proposition 11 tells us that the Y′′’s are equal to the Y′’s, and together with (13),

shows as well that the X′′’s are reduced. Hence M2M1z is reduced with respect to λ

and Γλ-equivalent to z since M2M1 ∈ Γλ. �

Proposition 14

Any two reduced points which are Γλ-equivalent are equal.

Proof: Let z and w be reduced with respect to λ, and such that for some M ∈ Γλ,

we have z = Mw. According to Theorem 3, M can be written as

M = A

[
ε ε−1ζ

0 ε−1

]
A−1 ζ ∈ a−2 ε ∈ o×

Let q,Y1, . . . ,Yn−1,X1, . . . ,Xn be the local coordinates of z; let p,U1, . . . ,Un−1,

V1, . . . ,Vn be the local coordinates of w; write ε = ±εk1
1 · · · εkn

n . Because of the

decomposition (11) and Proposition 11, we have

∀i ∈ {1, . . . , n− 1} Yi = Ui + ki

Since the Y’s and the U’s are all in [−1
2
, 1

2
), it follows that all the k’s are equal to 0.

Therefore ε = ±1.

If we write ζ =
n∑

k=1

mkαk, we obtain through the same reasoning that all the m’s

are 0. Therefore M = ±I2 and it follows that z = (±I2)w = w. �
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As a consequence,

Theorem 15

The set Gλ of reduced points in H n is a fundamental domain for Γλ.

As we can see, Gλ is easy to describe in terms of local coordinates at λ. One can

check that, if the field K is actually Q, our construction provides us with the strip

[−1
2
, 1

2
)× [0,∞), the usual fundamental domain for Γ∞, the stabilizer of the only cusp

for PSL2(Z).

1.6 Distance of a point to a cusp

In this final section, we want to associate to every cusp λ and z ∈ H n a number

∆(z, λ) that indicates how close z is from λ. This intuitive notion of a distance should

be such that, if z is “close” to a cusp λ, than it cannot be “close” to another cusp µ.

In some sense, this will indicate that cusps are well separated from each other.

Definition 16 For every z ∈ H n and every cusp λ = ρ
σ
, the distance of z to λ

is defined as

∆(z, λ) =
1√

N(ImA−1z)
= N

| − σz + ρ|√
y

For every positive number r, the r-neighbourhood of λ is

Uλ,r =
{
z ∈ H | ∆(z, λ) < r

}

Proposition 17

For any M ∈ M , λ = ρ
σ

and z ∈ H n, we have ∆(z, λ) = ∆(zM, λM).

Proof: This is really just a computation. Let Aλ =

[
ρ ⋆

σ ⋆

]
be the matrix associated

to λ as usual, and let M =

[
α β

γ δ

]
∈ M . We have

λM =
αρ+ βσ

γρ+ δσ
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and MAλ =

[
α β

γ δ

][
ρ ⋆

σ ⋆

]
=

[
αρ+ βσ ⋆

γρ+ δσ ⋆

]

Since the numerator and denominator of λM form the first column of MAλ, this matrix

is a good candidate for AλM
. This done, the computation unfolds easily:

Im (A−1
λM

zM) = Im
(
(MAλ)

−1zM

)
= Im (A−1

λ M−1zM) = Im (A−1
λ z)

and it follows that ∆(zM, λM) = ∆(z, λ) �

Proposition 18

There exists a positive number d, depending only on K, such that

∀z ∈ H n ∀λ, µ ∈ K
(
∆(z, λ) < d and ∆(z, µ) < d

)
=⇒ λ = µ

Proof: Let λ = ρ
σ

and µ = ρ1

σ1
be in K. Let z ∈ H n and let d be any positive real

number. Assume that

∆(z, λ) < d and ∆(z, µ) < d

This means that N
(−σx + ρ)2 + σ2y2

y
< d2 (14)

and N
(−σ1x + ρ1)

2 + σ2
1y

2

y
< d2 (15)

It is a consequence of the units theorem (see Lang’s Algebraic Number Theory [6],

chapter 5) that there exists a constant C depending only on K such that, for every

r = (r1, . . . , rn) ∈ Rn with Nr 6= 0, there exists a unit ε that satisfies

∀i ∈ {1, . . . , n}
∣∣riε

(i)
∣∣ 6 C n

√
Nr

Of course, multiplying ρ and σ by the same unit won’t change the expression (14),

since units have norm ±1. Nor will it change the ratio ρ
σ
. Therefore, up to such an

operation, we can assume that

∀i ∈ {1, . . . , n}
(
− σ(i)xi + ρ(i)

)2
+ σ(i)2y2

i

yi
< Cd

2
n

Similarly, ∀i ∈ {1, . . . , n}
(
− σ

(i)
1 xi + ρ

(i)
1

)2
+ σ

(i)
1

2
y2

i

yi
< Cd

2
n
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can be assumed as well. This in turn implies that for every i,
(
− σ(i)xi + ρ(i)

)2

yi
< Cd

2
n

σ(i)2yi < Cd
2
n

(
− σ

(i)
1 xi + ρ

(i)
1

)2

yi
< Cd

2
n

σ
(i)
1

2
yi < Cd

2
n

But ρ(i)σ
(i)
1 − ρ

(i)
1 σ

(i) =
−σ(i)xi + ρ(i)

√
yi

× σ
(i)
1

√
yi −

−σ(i)
1 xi + ρ

(i)
1√

yi
× σ(i)√yi

which implies
∣∣ρ(i)σ

(i)
1 − ρ

(i)
1 σ

(i)
∣∣ < 2Cd

2
n

Hence
∣∣N(ρσ1 − ρ1σ)

∣∣ < 2nCnd2

Now, if we choose d small enough so that the righthandside is less than 1, we get
∣∣N(ρσ1 − ρ1σ)

∣∣ < 1

Since the norm of an algebraic integer is an integer, it follows that ρσ1 − ρ1σ = 0,

and in turn

λ =
ρ

σ
=
ρ1

σ1

= µ �



Chapter 2

The Hilbert modular Eisenstein series

In this chapter, we define the Hilbert modular Eisenstein series for the totally real

field K, show that it has analytic continuation and functional equation.

Simply put, if A is an ideal class for the field K, the Hilbert modular Eisenstein

series associated to A is the function defined by the series expansion

∀z ∈ H n ∀s ∈ C Re s > 1 EK,A(z, s) = N(a)2s
∑

(γ,δ)∈a2/o×

〈γ,δ〉=a

n

Π
j=1

(Im zj)
s

∣∣γ(j)zj + δ(j)
∣∣2s

where a is any ideal in A−1, and the sum is over nonassociated pairs (γ, δ) generating a

as an ideal. Of course, this definition raises issues: why does this series converge?

Does it depend on the choice for a ∈ A−1, or on the choice for representatives

(γ, δ) ∈ a2/o×?

We will start by answering these questions, and the previous chapter will be key

in proving convergence for EK,A(z, s). Then we proceed to computing the Fourier

expansion of EK,A in terms of characters of Rn/o, which will prove at the same time

that this function has analytic continuation and functional equation under s 7−→ 1−s.

2.1 Convergence and automorphicity

We let A be an ideal class, a = 〈ρ, σ〉 be an integral ideal in A−1 and λ = ρ
σ

the corresponding cusp for M . We choose a Z-basis (α1, . . . , αn) of a−2, and a system

20
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of fundamental units ε1, . . . , εn−1. We also find ξ, η in a−1 such that ρη − σξ = 1

and form the matrix A =

[
ρ ξ

σ η

]
.

The Hilbert modular Eisenstein series will be shown to converge by a very clever

argument: its sum is comparable to the volume of a subset of the fundamental

domain Gλ constructed in the previous chapter.

Of course, as we saw, Gλ is easily described in terms of the local coordinates

q,Y1, . . . ,Yn−1,X1, . . . ,Xn as some sort of vertical strip:

Gλ =
{
z ∈ H n | q > 0 − 1

2
6 Yi,Xi <

1

2
for all i

}

and therefore we would like to privilege this coordinate system. This requires the Jaco-

bian computation for the transformation from usual coordinates x1, . . . , xn, y1, . . . , yn

to local coordinates. We remind the reader that we have:

q = N(y⋆) = y⋆
1 · · · y⋆

n (1)




ln
∣∣ε(1)

1

∣∣ · · · ln
∣∣ε(1)

n−1

∣∣
...

...

ln
∣∣ε(n−1)

1

∣∣ · · · ln
∣∣ε(n−1)

n−1

∣∣







Y1

...

Yn−1


 =




1

2
ln

y⋆
1

n
√

N(y⋆)
...

1

2
ln

y⋆
n−1

n
√

N(y⋆)




(2)

and




α
(1)
1 · · · α

(1)
n

...
...

α
(n)
1 · · · α

(n)
n







X1

...

Xn


 = x⋆ (3)

where z⋆ = x⋆ + iy⋆ = A−1z

Proposition 19

Let D and R be respectively the discriminant and the regulator of K. We have

dqdY1 · · · dYn−1dX1 · · · dXn =
Na2

2n−1R
√

D

∣∣N(−σz + ρ)
∣∣−4

dxdy
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Proof: We first find the relationship between dx⋆dy⋆ and dxdy. Since z⋆ = A−1z,

we have for every i ∈ {1, . . . , n}:

z⋆
i = x⋆

i + iy⋆
i = A(i)−1

zi =

[
η(i) −ξ(i)

−σ(i) ρ(i)

]
zi =

η(i)zi − ξ(i)

−σ(i)zi + ρ(i)

In particular y⋆
i =

yi∣∣− σ(i)zi + ρ(i)
∣∣2

Now, we know from the theory of SL2(R) acting on the upper half-plane that the

measure dxdy
y2 is SL2(R)-invariant. Thus

dxidyi

y2
i

=
dx⋆

i dy
⋆
i

y⋆
i
2

and dxidyi =
y2

i

y⋆
i
2 dx⋆

i dy
⋆
i =

∣∣− σ(i)zi + ρ(i)
∣∣4 dx⋆

i dy
⋆
i

Taking the product over i of such measures yields:

dxdy =
∣∣N(−σz + ρ)

∣∣4 dx⋆dy⋆ (4)

Next, we relate dqdY1 · · ·dYn−1dX1 · · ·dXn to dx⋆dy⋆. Because of (3), which is

simply a linear relationship between x⋆ and the X’s, we have
∣∣∣∣∣∣∣∣

α
(1)
1 · · · α

(1)
n

...
...

α
(n)
1 · · · α

(n)
n

∣∣∣∣∣∣∣∣
dX1 · · ·dXn = dx⋆

The determinant on the left is simply N(a−2)
√

D, from known results in algebraic

number theory (see chapter 3 of Lang’s Algebraic Number Theory [6]). Thus

dX1 · · ·dXn =
Na2

√
D

dx⋆ (5)

The definition (2) tells us that

∀i ∈ {1, . . . , n− 1}
n−1∑

k=1

Yk ln
∣∣ε(i)

k

∣∣ =
1

2
ln

y⋆
i

n
√

N(y⋆)
=

1

2
ln y⋆

i −
1

2n
ln q

Therefore ∀i ∈ {1, . . . , n− 1} ln y⋆
i =

1

n
ln q +

n−1∑

k=1

2Yk ln
∣∣ε(i)

k

∣∣ (6)
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Summing these relations for all values of i between 1 and n− 1 gives:

ln(y⋆
1 · · · y⋆

n−1) =
n− 1

n
ln q +

n−1∑

k=1

2Yk

n−1∑

i=1

ln
∣∣ε(i)

k

∣∣ (7)

But y⋆
1 · · · y⋆

n−1 =
q

y⋆
n

and

n−1∑

i=1

ln
∣∣ε(i)

k

∣∣ = − ln
∣∣ε(n)

k

∣∣

due to the product formula
n

Π
i=1

∣∣ε(i)
k

∣∣ = 1. So, pluging this back into (7) yields

ln q − ln y⋆
n =

n− 1

n
ln q −

n−1∑

k=1

2Yk ln
∣∣ε(n)

k

∣∣

so that ln y⋆
n =

1

n
ln q +

n−1∑

k=1

2Yk ln
∣∣ε(n)

k

∣∣

This formula, together with (6) allow us to recover completely the y⋆’s in terms of q

and the Y’s:

∀i ∈ {1, . . . , n} y⋆
i = q

1
n e

n−1
P

k=1
2Yk ln |ε(i)

k
|

Thus
∂y⋆

i

∂q
=

1

n
q

1
n
−1e

n−1
P

k=1

2Yk ln |ε(i)
k

|
=
y⋆

i

nq

and
∂y⋆

i

∂Yj
= 2 ln

∣∣ε(i)
j

∣∣q 1
n e

n−1
P

k=1
2Yk ln |ε(i)

k
|
= 2y⋆

i ln
∣∣ε(i)

j

∣∣y⋆
i

Finally dy⋆ =

∣∣∣∣∣∣∣∣∣∣∣

y⋆
1

nq
2y⋆

1 ln
∣∣ε(1)

1

∣∣ · · · 2y⋆
1 ln
∣∣ε(1)

n−1

∣∣

...
...

...
y⋆

n

nq
2y⋆

n ln
∣∣ε(n)

1

∣∣ · · · 2y⋆
n ln

∣∣ε(n)
n−1

∣∣

∣∣∣∣∣∣∣∣∣∣∣

dqdY1 · · ·dYn−1

dy⋆ =
2n−1y⋆

1 · · · y⋆
n

nq

∣∣∣∣∣∣∣∣∣

1 ln
∣∣ε(1)

1

∣∣ · · · ln
∣∣ε(1)

n−1

∣∣

...
...

...

1 ln
∣∣ε(n)

1

∣∣ · · · ln
∣∣ε(n)

n−1

∣∣

∣∣∣∣∣∣∣∣∣

dqdY1 · · ·dYn−1
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and this determinant is precisely nR (see Lang’s [6], chapter 5). Putting this result

together with formulas (5) and (4) yields the announced result:

dqdY1 · · ·dYn−1dX1 · · ·dXn =
Na2

2n−1R
√

D

∣∣N(−σz + ρ)
∣∣−4

dxdy �

For convenience, in the remainder of the chapter, the volume element in the local

coordinates system will be denoted dτ

dτ = dqdY1 · · ·dYn−1dX1 · · ·dXn

and we let c =
Na2

2n−1R
√

D

To see how dτ is modified under a Hilbert modular substitution, it will be conve-

nient to first relate it to the invariant measure dω = dxdy

N(y)2
:

Proposition 20

dτ = cN(y⋆)2 dω

The measure dτ
q2 is M -invariant.

Proof: Everything we need has already been proven in Proposition 19. We already

know that

dω =
dxdy

N(y)2
=

dx⋆dy⋆

N(y⋆)2

and it has been shown that

dτ = c dx⋆dy⋆ �

This done, we are almost ready to show the existence of the Hilbert modular

Eisenstein series. We announced earlier that it would be related to an integral com-

putation over a piece of the fundamental domain Gλ for Γλ constructed in the first

chapter. To see that, we need somehow to relate the Eisenstein series to the group Γλ.

This is done through the following lemma:
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Lemma 21

Let (Mj)j∈N be a complete set of representatives for the quotient Γλ\M . Define

∀j ∈ N Pj = A−1Mj =

[
αj βj

γj δj

]

The collection P =
{
(γj, δj) | j ∈ N} is a complete set of nonassociated pairs of

generators for the ideal a.

Proof: We recall that, saying that (Mj)j∈N is a complete set of representatives for

Γλ\M means that we have the disjoint union

M =
⋃

j∈N

ΓλMj

We also recall that two pairs (γ, δ), (γ′, δ′) that generate a as an ideal are associated

if they can be obtained one from the other through a unit, that is

∃ε ∈ o γ′ = εγ and δ′ = εδ

We first show that each pair in P generates a as an ideal. Let M =

[
α β

γ δ

]

be any matrix in M . We have

A−1M =

[
η −ξ

−σ ρ

][
α β

γ δ

]
=

[
ηα− ξγ ηβ − ξδ

ργ − ασ ρδ − βσ

]
(8)

Let u = ργ − ασ and v = ρδ − βσ

Since ρ, σ ∈ a and α, β, γ, δ ∈ o, the integers u and v are in a. Therefore

〈u, v〉 ⊂ a

For the converse, using the fact that αδ − βγ = 1, we get
{
βu− αv = ρ

γv − δu = σ

so that a = 〈ρ, σ〉 ⊂ 〈u, v〉

Hence 〈u, v〉 = a
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The matrix M was an arbitrary Hilbert modular function. So in particular, each pair

in P generates a as an ideal.

Now we show that those pairs are not associated. Suppose that for some non-

negative integers i and j, there exists a unit ε such that

γj = εγi and δj = εδi (9)

Because Pi has determinant 1, either γi or δi is not zero. Assume it is γi and let

ζ =
αj − ε−1αi

εγi

This number has been chosen so that

ε−1αi + εζγi = αj (10)

It also satisfies another nice relation, though this one requires more work to see:

ε−1βi + εζδi = ε−1βi +
αjδi − ε−1αiδi

γi

=
αjδi − ε−1(αiδi − βiγi)

γi

Using the facts that

αiδi − βiγi = 1 γi = ε−1γj and δi = ε−1δj

we get ε−1βi + εζδi =
αjδj − 1

γj

But we also have αjδj − βjγj = 1 so that αjδj − 1 = βjγj

Finally: ε−1βi + εζδi = βj (11)

Formulas (9), (10) and (11) can be summarized in the following matrix form:
[
ε−1 εζ

0 ε

]
Pi =

[
ε−1 εζ

0 ε

][
αi βi

γi δi

]
=

[
αj βj

γj δj

]
= Pj

Since Pi = A−1Mi and Pj = A−1Mj , we see from the computation (8) that αi and αj

are both in a−1 (remember that ξ and η are in a−1). Therefore, ζ belongs to a−2.

Thus [
ε−1 εζ

0 ε

]
A−1Mi = A−1Mj
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or A

[
ε−1 εζ

0 ε

]
A−1Mi = Mj

In view of Theorem 3, it appears that Mi and Mj are in the same right coset for Γλ.

It follows that Mi = Mj , Pi = Pj and therefore γi = γj, δi = δj : if two pairs in P are

associated, they must be equal. �

The following, long-awaited theorem, is the achievement of everything done so far:

Theorem 22

The Hilbert modular Eisenstein series

EK,A(z, s) = N(a)2s
∑

(γ,δ)∈a2/o×

〈γ,δ〉=a

n

Π
j=1

ys
j∣∣γ(j)zj + δ(j)

∣∣2s = N(a)2s
∑

(γ,δ)∈a2/o×

〈γ,δ〉=a

N(y)2

∣∣N(γz + δ)
∣∣2s

converges absolutely for every z ∈ H n and s ∈ C with real part bigger than 1.

The convergence is uniform in s in half planes {σ1 > Re s > σ0 > 1}, and uniform

in z in every compact subset of H n.

Furthermore, this definition does not depend on the choice of non-associated pairs

(γ, δ) of generators of a, nor does it depend on the choice for a in A−1.

Proof: Fix an ideal a = 〈ρ, σ〉 in A−1 and a complete set of representatives (Mj)j∈N

for the right cosets in Γλ\M . Up to renaming them, we can assume that M0 = I2.

According to Proposition 18, there is a positive number d such that, for every

z ∈ H and every cusp µ, if ∆(z, λ) and ∆(z, µ) are both less than d, then µ = λ.

The Hilbert modular group M is countable, since o is countable. Besides, every

nontrivial modular transformation has at most two fixed points. Therefore, the set

of points z ∈ H n such that Mz = z for some M ∈ M different than I2 is countable.

Since the neighbourhood

Uλ,d ∩
◦

Gλ =
{
z ∈ H n | 1√

q
= ∆(z, λ) < d − 1

2
< Xi,Yi <

1

2
for all i

}

is uncountable, we can certainly find z0 in there that is only fixed by I2. According

to Corollary 10, there is a neighbourhood U of z0, such that

∀M ∈ M \ {I2} UM ∩ U = ∅ (12)
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And up to choosing U smaller, we can make it relatively compact and suppose that it

is entirely contained in Uλ,d ∩Gλ. There is also a positive number d0 such that q < d2
0

for all z in U, which can also be restated as ∆(z, λ) > 1
d0

.

Because of (12), the sets (UMj
)j∈N are pairwise disjoint. Indeed, suppose that

Mi(U)∩Mj(U) is not empty. Then M−1
j Mi(U)∩U is not empty as well, which implies

that M−1
j Mi = I2, and in turn that i = j.

Next, up to multiplying each Mj on the left by an element of Γλ, we can suppose

that UMj
sits entirely in the fundamental domain Gλ.

Notice now that by Proposition 17 and by definition of d, if z is in U, we have

for every positive integer j,

∆(zMj
, λ) = ∆(z, λM−1

j
) > d >

1

d0

Indeed, Mj 6= I2, so Mj /∈ Γλ and therefore λM−1
j

6= λ. Thus

∀z ∈
⋃

j∈N

UMj
q(z) =

1

∆(z, λ)2
6 d2

0

Let’s consider the following integral, where s is a real number:

Js =

∞∑

j=0

∫

UMj

N(y⋆)s−2 dτ

Since the (UMj
)j∈N are pairwise disjoint,

Js =

∫

S

j∈N

UMj

qs−2dτ

We were careful enough to make sure that each UMj
is inside Gλ. And the q-

coordinates of elements in those sets are bounded by d2
0. Thus if s is a real number

bigger than 1,

Js 6

d2
0∫

0

1
2∫

− 1
2

· · ·

1
2∫

− 1
2

qs−2 dqdY1 · · ·dYn−1dX1 · · ·dXn =

d2
0∫

0

qs−2 dq =
d2s−2

0

s− 1
<∞

The convergence of this integral will imply the convergence of the Eisenstein series.



CHAPTER 2. THE HILBERT MODULAR EISENSTEIN SERIES 29

Let’s fix for now real numbers s1 > s > s0 > 1. Since U is compact, Lemma 6

provides us with positive constants c1 and c2 such that

∀z ∈ U ∀u,v ∈ Rn c1
∣∣N(ui + v)

∣∣2 6
∣∣N(uz + v)

∣∣2 6 c2
∣∣N(ui + v)

∣∣2

Also, because U is included in Uλ,d,

∀z ∈ U N(y) =
1

∆(z, λ)2
>

1

d2

Thus, for every integer j,

1
∣∣N(γji + δj)

∣∣2s 6
N(y)s

∣∣N(γjz + δj)
∣∣2s c

s
2d

2s = cs2d
2sN(Im Pjz)s = cs2d

2sN(Im A−1Mjz)
s

Integrating this inequality over U for the invariant measure gives

1
∣∣N(γji + δj)

∣∣2s

∫

U

dω 6 cs2d
2s

∫

U

N(Im A−1Mjz)s dω

The integral on the left is simply the volume of U, which is finite since U is compact;

we simply denote it by V. In the integral on the righthandside, we make the substi-

tution Mjz −→ z and use the invariance of the measure dω:

V
∣∣N(γji + δj)

∣∣2s 6 cs2d
2s

∫

UMi

N(y⋆)s dω

We proved with Lemma 20 that dω = dτ
cq2 where c is just a constant depending on

the field K. Thus

V
∣∣N(γji + δj)

∣∣2s 6
cs2d

2s

c

∫

UMi

qs−2 dτ

Finally, we sum over all values of j:

∑

(γj ,δj)∈P

1
∣∣N(γji + δj)

∣∣2s 6
cs2d

2s

cV Js =
cs2d

2sd2s−2
0

c(s− 1)V 6
cs1
2 d

2s1d2s1−2
0

c(s0 − 1)V

But we proved in Lemma 21 that our sum is precisely over all non-associated pairs

(γ, δ) generating a. Thus, we have just shown that the Hilbert modular Eisenstein

series converges at (i, . . . , i).
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Getting the convergence at every z is now straightforward, thanks to Lemma 6.

Indeed, if K is compact in H n, there exist positive constants c3 and c4 such that

∀z ∈ K ∀u,v ∈ Rn c3
∣∣N(ui + v)

∣∣2 6
∣∣N(uz + v)

∣∣2 6 c4
∣∣N(ui + v)

∣∣2

Thus
∑

(γj ,δj)∈P

1
∣∣N(γjz + δj)

∣∣2s 6
1

cs3

∑

(γj ,δj)∈P

1
∣∣N(γji + δj)

∣∣2s 6
cs1
2 d

2s1d2s1−2
0

cs0
3 c(s0 − 1)V

The Hilbert modular Eisenstein series converges uniformly in K. The bound on the

righthandside, independent of s, shows that the convergence is also uniform in s in

the strip {s1 > Re s > s0 > 1}.
Now, on to checking that the definition does not depend on the choices for a ∈ A−1

and for the non-associated pairs of generators for a. The second claim is an immediate

consequence of the product formula for units:

∀ε ∈ o×
∣∣N(ε)

∣∣ =
n

Π
i=1

∣∣ε(i)
∣∣ = 1

so the product in the Eisenstein series is unchanged when replacing any pair (γ, δ)

by an associated one (εγ, εδ).

As for the first claim, suppose that a1 is another ideal in A−1. Then, for some

a ∈ K, we have

a = aa1

Thus Na =
∣∣N(a)

∣∣Na1

Also,
{
(γ, δ) ∈ a2/o× | 〈γ, δ〉 = a

}
=
{
(aγ, aδ) | (γ, δ) ∈ a1/o

× 〈γ, δ〉 = a1}

Hence N(a)2s
∑

(γ,δ)∈a2/o×

〈γ,δ〉=a

N(y)s

∣∣N(γz + δ)
∣∣2s =

∣∣N(a)N(a1)
∣∣2s

∑

(γ,δ)∈a2
1/o×

〈γ,δ〉=a1

N(y)s

∣∣N(aγz + aδ)
∣∣2s

= N(a1)
2s

∑

(γ,δ)∈a2
1/o×

〈γ,δ〉=a1

N(y)s

∣∣N(γz + δ)
∣∣2s

The proof is now complete. �
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Now that the existence of the Eisenstein series has been shown, we can investigate

its properties. In particular:

Theorem 23

The Hilbert modular Eisenstein series EK,A is SL2(o)-automorphic in the variable z,

for every given s such that Re s > 1.

Proof: In view of Lemma 21, we know that for every z ∈ H n and s with real part

greater than 1,

EK,A(z, s) = N(a)2s
∑

M∈Γλ\M
Im (A−1Mz)s

If N is in SL2(o), the operation

Γλ\M −→ Γλ\M
ΓλM 7−→ ΓλMN−1

simply reorganizes the cosets and is a bijection. Therefore,

EK,A(Nz, s) = N(a)2s
∑

M∈Γλ\M
Im (A−1MNz)s = EK,A(z, s)

after replacing M by MN−1. �

In particular, EK,A

(
(x + o) + iy, s

)
= EK,A(x + iy, s) for every algebraic integer

o ∈ o. In other words, EK,A is o-periodic in the variable x and it is natural to

investigate its Fourier coefficients as a function on the group Rn/o.

2.2 Fourier expansion and functional equation

In this section, we compute the Fourier expansion of the Eisenstein series. This will

be useful in two ways: first, it will provide us with a meromorphic continuation in s

to C, as well as a functional equation; second, this expansion will be required in the

next chapter, in order to express the renormalized Rankin-Selberg that is central to

this thesis.
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2.2.1 Normalization of the Eisenstein series

We wish to modify slightly the Hilbert modular Eisenstein series, in order to make

its functional equation easier to express. To give a simple example where something

similar is done, let’s look at the usual Riemann zeta function. It is defined as

∀s ∈ C Re s > 1 ζ(s) =

∞∑

n=1

1

n2

The functional equation for ζ is

ζ(1 − s) = πs− 1
2

Γ( s
2
)

Γ(1−s
2

)
ζ(s)

which means that, if we define the normalized ζ function

ζ⋆(s) = π
s
2 Γ
(s

2

)
ζ(s)

then ζ⋆(1 − s) = ζ⋆(s) (13)

Finding the right Γ factors and powers of π to put in front of the zeta function is called

finding the right normalization. It turns out that the Hilbert modular Eisenstein

series has to be normalized as well in order to get a nice functional such as (13).

This normalization involves zeta functions of ideal classes for K.

We remind the reader of the definition of the normalized zeta function of an ideal

class A of K:

ζ⋆
K,A(z, s) = D

s
2π−ns

2 Γ
(s

2

)n ∑

b integral ∈A

1

N(b)s

Its thorough study is done in Lang’s Algebraic Number Theory, chapter 8 and 13 [6].

If a is an ideal in A−1, by definition of an ideal class, we have

A =
{
ξa−1 | ξ ∈ K/o×

}

A fractional ideal in a will be integral if and only if

ξa−1 ⊂ o ⇐⇒ 〈ξ〉 ⊂ a

Therefore, we get all integral ideals b in A as ξa−1, where ξ ∈ a/o×:

ζ⋆
K,A(z, s) = D

s
2π−ns

2 Γ
(s

2

)n ∑

b integral ∈A

1

N(a−1ξ)s
= D

s
2π−ns

2 Γ
(s

2

)n ∑

ξ∈a/o×

N(a)s

∣∣N(ξ)
∣∣s

We remind the reader that C denotes the ideal class group of K.
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Definition 24 Let A be an ideal class of K. The normalized Hilbert modular Eisenstein

series associated to A is defined as

E⋆
K,A(z, s) =

∑

B∈C

ζ⋆
K,AB−1(2s)EK,B(z, s) z ∈ H

n Re s > 1

We want to prove that E⋆
K,A can actually be rewritten in a nicer fashion:

Proposition 25

Let A be an ideal class of K and a an ideal in A−1. Then

E⋆
K,A(z, s) = N(a)2sDsπ−nsΓ(s)n

∑

(α,β)∈a2/o×

(α,β)6=0

N(y)s

∣∣N(αz + β)
∣∣2s

This is merely a computation, except for one technicality taken care of by the following

Lemma 26

Let A and B be two ideal classes in K, let a, b be ideals respectively in A−1 and B−1.

The map

ϕ : ab−1/o× ×
{
(γ, δ) ∈ b2/o× | 〈γ, δ〉 = b

}
−→ a × a

(ξ, γ, δ) 7−→ (ξγ, ξδ)

is a bijection onto a set of representatives for a2/o×, that generate an ideal of B−1.

Proof: Of course, if ξ ∈ ab−1 and γ, δ are in b and generate it as an ideal, then

ξγ, ξδ ∈ ab−1 b = a

Furthermore 〈ξγ, ξδ〉 = ξ〈γ, δ〉 = ξb ∈ B−1

Now, let (α, β) be in a2/o×, such that 〈α, β〉 is in the ideal class B−1. Thus there

exists a ξ ∈ K such that 〈α, β〉 = ξb. But

〈α, β〉 ⊂ a

so ξ ∈ 〈α, β〉b−1 ⊂ ab−1 and ξ−1 ∈ a−1b
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Thus γ =
α

ξ
and δ =

β

ξ

are both in b, and satisfy

〈γ, δ〉 = ξ−1〈α, β〉 = ξ−1ξb = b

This shows that ϕ is surjective, which was the easier part.

Suppose now that we have two triples (ξ, γ, δ) and (ξ′, γ′, δ′) in

ab−1/o× ×
{
(γ, δ) ∈ b2/o× | 〈γ, δ〉 = b

}

such that (ξγ, ξδ) and (ξ′γ′, ξ′δ′) are associated. There exists a unit ε such that

ξγ = εξ′γ′ and ξδ = εξ′δ′ (14)

It follows that

γδ′ = γ′δ (15)

and
〈γ〉
b

〈δ′〉
b

=
〈γ′〉
b

〈δ〉
b

But, for reasons already explained while proving Theorem 3, the ideals 〈γ〉
b

and 〈δ〉
b

are relatively prime because 〈γ, δ〉 = b. The same holds for 〈γ′〉
b

and 〈δ′〉
b

. Thus

〈γ〉
b

=
〈γ′〉
b

and
〈δ〉
b

=
〈δ′〉
b

So there exist units ε1 and ε2 such that

γ′ = ε1γ and δ′ = ε2δ

But by (15), ε2γδ = ε1γδ

which implies ε1 = ε2 and (γ′, δ′) = ε1(γ, δ)

Since (γ, δ) and (γ′, δ′) are in b2/o×, they are equal. This in turn implies, because

of (14), that ξ and ξ′ are associated, thus equal. So ϕ is injective. �

Proof of Proposition 25: For every ideal class B ∈ C , we let bB (or b when there

is no ambiguity) be an ideal in B−1.
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We let A be a particular one of those classes, and note a = bA. If z ∈ H n and s

has real part bigger than 1, Definition 24 tells us that

E⋆
K,A(z, s) =

∑

B∈C

ζK,AB−1(2s)EK,B(z, s)

= Dsπ−nsΓ(s)n
∑

B∈C

∑

ξ∈ab−1/o×

N(ab−1)2s

∣∣N(ξ)
∣∣2s × N(b)2s

∑

(γ,δ)∈b2/o×

〈γ,δ〉=b

N(y)s

∣∣N(γz + δ)
∣∣2s

E⋆
K,A(z, s) = N(a)2sDsπ−nsΓ(s)n

∑

B∈C

∑

ξ∈ab−1/o×

∑

(γ,δ)∈b2/o×

〈γ,δ〉=b

N(y)s

∣∣N(ξγz + ξδ)
∣∣2s

We now invoke Lemma 26 in order to collapse the two inner sums:

E⋆
K,A(z, s) = N(a)2sDsπ−nsΓ(s)n

∑

B∈C

∑

(α,β)∈a2/o×

〈α,β〉∈B

N(y)s

∣∣N(αz + β)
∣∣2s

And since the ideal classes partition the collection of fractional ideals, the conclusion

follows:

E⋆
K,A(z, s) = N(a)2sDsπ−nsΓ(s)n

∑

(α,β)∈a2/o×

(α,β)6=0

N(y)s

∣∣N(αz + β)
∣∣2s �

2.2.2 The Fourier expansion and its consequences

The inverse different D−1 of K is defined as

D−1 = {ξ ∈ K | Tr (ξo) ⊂ Z}

Therefore, a complete set of characters for the compact group Rn/o is the collection

of maps

x 7−→ e2πiTr (xξ) ξ ∈ D−1

We will need Bessel functions and divisor functions in order to express nicely the

Fourier coefficients of the Eisenstein series:

Kω(u) =
1

2

+∞∫

0

e−
u
2
(t+ 1

t
)tω

dt

t
ω ∈ C u > 0
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τK,A
ω (c) = N(c)−ω

∑

b ideal in A
b|c

N(b)2ω ω ∈ C c ideal in o

All we need to know about the divisor function is that it is invariant under ω 7−→ −ω,

which is evident from the definition. As for the Bessel function, it has the same

invariance; it has also rapid decay at +∞:

∀u > 2
∣∣Kω(u)

∣∣ 6 KReω(2)e−
u
2

And we will need the following integral formulas, valid for y > 0 and Re s > 1:

ysπ−sΓ(s)

∫

R

e−2πirx

(x2 + y2)s
dx =






π−s+ 1
2 Γ
(
s− 1

2

)
y1−s if r = 0

2|r|s− 1
2
√
yKs− 1

2
(2πy|r|) if r = 0

Those facts are rapidly proved in Bump’s Automorphic forms and Representations [3],

chapter 1.6. This last formula, in particular, implies that, for y1, . . . , yn > 0

and ξ ∈ D−1,

N(y)sπ−nsΓ(s)n

∫

Rn

e−2πiTrxξ

N(x2 + y2)s
dx =






π−n(s− 1
2
)Γ
(
s− 1

2

)n

N(y)1−s

2n
∣∣N(ξ)

∣∣s− 1
2 N(y)

1
2

n

Π
j=1

Ks− 1
2

(
2πyj|ξ(j)|

) (16)

respectively when ξ = 0 and when ξ 6= 0.

Theorem 27

For every z ∈ H n and s ∈ C with real part greater than 1, we have

E⋆
K,A(z, s) = N(y)sζ⋆

K,A(2s) + N(y)1−sζ⋆
K,A(2 − 2s)

+2nN(y)
1
2

∑

ξ∈D−1

τK,A

s− 1
2

(ξD)
n

Π
j=1

Ks− 1
2

(
2πyj|ξ(j)|

)
e2πiTr xξ

Proof: Let ξ ∈ D−1 and let’s compute the Fourier coefficient at ξ of the normalized

Eisenstein series:

c(ξ) =
1

Vol(Rn/o)

∫

Rn/o

E⋆
K,A(z, s)e−2πiTr (xξ) dx

We temporarily call Λ(s) the factors that don’t depend on x in the integrand:

Λ(s) =
N(a)2sDsπ−nsΓ(s)nN(y)s

Vol(Rn/o)
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so that c(ξ) = Λ(s)
∑

(α,β)∈a2/o×

(α,β)6=0

∫

Rn/o

e−2πiTr (xξ)

∣∣N(αz + β)
∣∣2s dx

We get out of the way the terms where α = 0, since the integrand is then just a

character of Rn/o, that integrates to 0 unless it is the trivial character:

∑

β∈a/o×

β 6=0

1
∣∣N(β)

∣∣2s

∫

Rn/o

e−2πiTrxξ dx =

{
Vol(Rn/o)N(a)−2sζK,A(2s) if ξ = 0

0 if ξ 6= 0

and Λ(s)
∑

β∈a/o×

β 6=0

1
∣∣N(β)

∣∣2s

∫

Rn/o

e−2πiTrxξ dx =

{
N(y)sζ⋆

K,A(2s) if ξ = 0

0 if ξ 6= 0
(17)

This done, we keep it aside until the computation of the other terms is completed.

For convenience, call them b(ξ):

b(ξ) = Λ(s)
∑

α∈a/o×

α6=0

∑

β∈a

∫

Rn/o

e−2πiTr (xξ)

∣∣N(αz + β)
∣∣2s dx

We can decompose a into cosets modulo 〈α〉 for each α:

b(ξ) = Λ(s)
∑

α∈a/o×

α6=0

∑

β∈a/〈α〉

∑

o∈o

∫

Rn/o

e−2πiTr (xξ)

∣∣N(αz + β + αo)
∣∣2s dx

Replacing x by x − o allows us to collapse the integrals together. Remember that

Tr (oξ) ∈ Z since ξ ∈ D−1;

b(ξ) = Λ(s)
∑

α∈a/o×

α6=0

∑

β∈a/〈α〉

∑

o∈o

∫

−o+Rn/o

e−2πiTr (xξ)

∣∣N(αz + β)
∣∣2s dx

= Λ(s)
∑

α∈a/o×

α6=0

∑

β∈a/〈α〉

∫

Rn

e−2πiTr (xξ)

∣∣N(αz + β)
∣∣2s dx

b(ξ) = Λ(s)
∑

α∈a/o×

α6=0

∑

β∈a/〈α〉

∫

Rn

e−2πiTr (xξ)

∣∣N(αx + β + iαy)
∣∣2s dx
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In each integral, factor out |N(α)|2s from the denominator, and replace x by x − β
α
:

b(ξ) = Λ(s)
∑

α∈a/o×

α6=0

1
∣∣N(α)

∣∣2s

∫

Rn

e−2πiTrxξ

∣∣N(x + iy)
∣∣2s dx

∑

β∈a/〈α〉
e2πiTr

βξ
α

The function β 7−→ e2πiTr
βξ
α

is clearly a character of a/〈α〉. It will be trivial if and only if

Tr
(

ξ
α

a
)
⊂ Z ⇐⇒ ξ

α
∈ a−1D−1 ⇐⇒ ξD ⊂ αa−1 ⇐⇒ αa−1|ξD

If this condition is satisfied, the sum on the right equals

Card
(
a/〈α〉

)
=

∣∣N(α)
∣∣

N(a)

Otherwise, it is simply 0. Thus

b(ξ) =
Λ(s)

N(a)

∫

Rn

e−2πiTrxξ

∣∣N(z)
∣∣2s dx ×

∑

α∈a/o×

αa−1|ξD

1
∣∣N(α)

∣∣2s−1

We explain already at the beginning of section 2.2.1, while presenting the zeta

function of an ideal class, that the (αa−1)α∈a/o× run through all integral ideals in the

class A. Thus, by letting b = αa−1 in the summation,

b(ξ) =
Λ(s)

N(a)

∫

Rn

e−2πiTrxξ

∣∣N(z)
∣∣2s dx ×

∑

b ideal in A
b|ξD

1

N(a)2s−1N(b)2s−1

=






Λ(s)

N(a)2s
×
τK,A

s− 1
2

(ξD)

N(ξD)s− 1
2

×
∫

Rn

e−2πiTrxξ

∣∣N(z)
∣∣2s dx if ξ 6= 0

Λ(s)

N(a)2s
ζK,A(z, 2s− 1)

∫

Rn

dx
∣∣N(z)

∣∣2s if ξ = 0

But remember that Λ(s) =
N(a)2sDsπ−nsΓ(s)nN(y)s

Vol(Rn/o)
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Reinjecting this in our last expression for b(ξ), and using the fact that Vol(Rn/o) is
√

N(D) =
√

D, we get

b(ξ) =






τK,A

s− 1
2

(ξD)
π−nsΓ(s)nN(y)s

∣∣N(ξ)
∣∣s− 1

2

∫

Rn

e−2πiTrxξ

∣∣N(z)
∣∣2s dx if ξ 6= 0

Ds− 1
2 ζK,A(2s− 1)N(y)sπ−nsΓ(s)n

∫

Rn

dx
∣∣N(z)

∣∣2s if ξ = 0

Next, according to formula (16),

b(ξ) =






2nN(y)
1
2 τK,A

s− 1
2

(ξD)
n

Π
j=1

Ks− 1
2

(
2πyj|ξ(j)|

)
if ξ 6= 0

Ds− 1
2 ζK,A(2s− 1)π−n(s− 1

2
)Γ
(
s− 1

2

)

︸ ︷︷ ︸
=ζ⋆

K,A(2s−1)

N(y)1−s if ξ = 0

Putting this together with formula (17),

c(ξ) =






N(y)sζ⋆
K,A(2s) + N(y)1−sζ⋆

K,A(2s− 1) if ξ = 0

2nN(y)
1
2 τK,A

s− 1
2

(ξD)
n

Π
j=1

Ks− 1
2

(
2πy|ξ(j)|

)
if ξ 6= 0

Because Bessel functions have rapid decay, the
(
c(ξ)

)
ξ∈D−1 form an absolutely

summable family; therefore, E⋆
K,A(z, s) is the sum of its Fourier series. �

Corollary 28

The Hilbert modular Eisenstein series can be analytically continued to C \ {0, 1} and

satisfies the functional equation

∀z ∈ H n ∀s ∈ C \ {0, 1} E⋆
K,A(z, 1 − s) = E⋆

K,A(z, s)

Proof: Those properties are clear, and inherited from the Bessel functions, the divisor

functions and ζ⋆
K,A.



Chapter 3

Hidden functional equations of

Rankin-Selberg transforms :

New results

This final chapter constitutes the original mathematical work on my part. After

a short introduction (Section 3.1) reminding the reader of the objects we will be

dealing with and stating our main theorem, we proceed to building the proof (Section

3.3) by laying down, in Section 3.2, some facts that will be required all along.

3.1 Introduction and first notations

3.1.1 The SL2(Z) Eisenstein series

The classical Eisenstein series for SL2(Z) is a function of two variables z = x+ iy, in

the complex upper half plane H , and s ∈ C \ {0, 1}. It has the following “explicit”

expression in the region {z ∈ H s ∈ C | Re s > 1} :

E⋆(z, s) = ζ⋆(2s)E(z, s)

where E(z, s) =
1

2

∑

(c,d)∈Z2

gcd(c,d)=1

ys

|cz + d|2s
(1)

40
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and ζ⋆(s) = π−s/2Γ
(

s
2

)
ζ(s).

This function is, for fixed s, automorphic in the variable z. When one actually fixes

z, the function s 7−→ E⋆(z, s) is analytic in the half plane {Re s > 1}, has analytic

continuation to C \ {0, 1} with simple poles at 0 and 1, and is invariant under the

transformation s 7−→ 1 − s.

3.1.2 The Hilbert modular Eisenstein series

We are given a finite field extension Q →֒ K of degree N with discriminant D, that

we suppose totally real. By definition, this means that the N distinct embeddings

σ1, . . . , σN of K into C have actually real range. If x is an element of K, we define

∀i ∈ {1, . . . ,N} x(i) = σi(x).

We write o to denote the ring of integers of K; we know that o is a free Z-module

of rank N. The Hilbert modular group is the group SL2(o) of 2 × 2 matrices with

coefficients in o and with determinant 1. It acts naturally on H N as follows:

∀γ =



a b

c d



 ∈ SL2(o) ∀z =




z1
...

zN


 ∈ H N γ(z) =




a(1)z1 + b(1)

c(1)z1 + d(1)

...

a(N)zN + b(N)

c(N)zN + d(N)




.

If A is an ideal class for K represented by a fractional ideal a−1, the Hilbert modular

Eisenstein series associated to A is the function of N + 1 variables z = (z1, . . . , zn)

in H N and s ∈ C \ {0, 1}, defined explicitely when Re s > 1 by

E⋆
K,A(z, s) = N(a)2sπ−NsΓ(s)N Ds

∑

(α,β)∈a2/o×

N

Π
j=1

(Im zj)
s

∣∣α(j)zj + β(j)
∣∣2s . (2)

The action of o× on a is simply

o× × a −→ a,

(ε, α) 7−→ εα.

This series, especially its convergence, has been the extensive subject of Chapter 2.

And one can check easily that the Hilbert modular Eisenstein series associated to A
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is well defined in {Re s > 1}: its value does not depend on the choices for a or for

representatives in the quotient a2/o×. Finally, just like the classical Eisenstein series,

E⋆
K,A is SL2(o)-invariant in the variable z, has analytic continuation in s to C \ {0, 1}

and is invariant under the transformation s 7−→ 1 − s.

After specializing E⋆
K,A(·, s) to the diagonal

{
(z, . . . , z)

∣∣ z ∈ H
}
, we obtain an

SL2(Z)-automorphic function which is denoted E⋆
K,A(z, s).

3.1.3 Zagier’s renormalization

If F is an SL2(Z)-automorphic function that decays faster than any polynomial for

large values of y, the following integral converges absolutely for Re s > 1:

R(F, s) =

∫

SL2(Z)/H

E⋆(z, s)F(z)
dx dy

y2
. (3)

It inherits, from the Eisenstein series, analytic continuation to C \ {0, 1} and an

invariance under s 7−→ 1 − s. It is called the Rankin-Selberg transform of F, due to

the fact that Rankin and Selberg noticed that this integral can be unfolded in order

to yield

R(F, s) = ζ⋆(2s)

∞∫

0

a0(y)y
s−2 dy, (4)

where a0(y) is the constant term in the Fourier expansion of F.

In [9], Zagier lifts the restriction about the rapid decay of F for large values of y,

defines the Rankin-Selberg transform for a much larger class of automorphic functions

and analyzes its properties. We recall here part of his main result.

Let F be an automorphic function and suppose there exists a function ϕ of the

form

ϕ(y) =

ℓ∑

i=1

ci
ni!
yαi logni y ci, αi ∈ C ℓ, ni ∈ N,

such that, for every positive integer n,

F(z) =
y→∞

ϕ(y) + O
(
y−n
)
.
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The renormalized Rankin-Selberg tranform of F is then defined as

RN

∫

SL2(Z)/H

E⋆(z, s)F(z)
dx dy

y2
= R(F, s) =

def
ζ⋆(2s)

∞∫

0

(
a0(y) − ϕ(y)

)
ys−2 dy.

Zagier shows that this function of s is meromorphic, with poles at 0, 1, the αi’s,

and the (1 − αi)’s; furthermore, it inherits the invariance s 7−→ 1 − s from the

Eisenstein series.

3.1.4 Previous results and present goal

In [9], Zagier presents a few examples to illustrate his renormalization technique.

Among them, one finds

RN

∫

SL2(Z)\H

E⋆(z, s0)E
⋆(z, s1)E

⋆(z, s2)E
⋆(z, s3)

dx dy

y2
, (5)

RN

∫

SL2(Z)\H

E⋆(z, s0)E
⋆
K,A(z, s1)

dx dy

y2
, (6)

where K is a totally real cubic field, and

RN

∫

SL2(Z)\H

E⋆(z, s0)E
⋆(z, s1)E

⋆
K,A(z, s2)

dx dy

y2
, (7)

where K is a (totally) real quadratic field and A an ideal class.

Zagier mentions that all those expressions now make sense and inherit obvi-

ous functional equations, under the transformations si 7−→ 1 − si, from the Eisen-

stein series involved. However, these integrals cannot be computed in closed form

(i.e. in terms of zeta functions or Eisenstein series).

In [4], Bump and Goldfeld study (6) in order to obtain a Kronecker limit formula

for totally real cubic fields. As part of their work, the full group of functional equations

for this integral is identified and, surprisingly, is bigger than expected as it has order 12

while there are only 4 (trivial) functional equations.

The article [1] is entirely devoted to showing that the same phenomenon occurs

again for the integral (5). The full group of functional equations has, this time,
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order 1152 while the trivial functional equations form a group of order 384. It has to

be noted that (5) is dramatically harder to study than (6).

Finally, our goal here is to show similar results for the integral (7). More precisely,

we will show

Theorem 1

Let K be a real quadratic field and A be an ideal class in K. The renormalized integral

RA(s0, s1, s2) = RN

∫

SL2(Z)\H

E⋆(z, s0)E
⋆(z, s1)E

⋆
K,A(z, s2)

dx dy

y2

has a group of functional equations of order 48. It is generated by the transformations

s0 7−→ 1 − s0 s1 7−→ 1 − s1 s2 7−→ 1 − s2 s0 7−→ s1

and w :




s0

s1

s2


 7−→




−s0

2
+
s1

2
+ s2

1 − s0

2
+
s1

2
− s2

1 − s0

2
− s1

2



.

Here is our strategy. The first step is to look at the polar divisor Π, provided by

Zagier’s theorem, for RA: if a transformation of C3 leaves RA invariant, the same

must happen with Π. We compute the order of the group of invariants for Π and

find 48. Therefore, the group of functional equations for RA has order at most 48.

Conversely, it is sufficient to show that RA ◦ w = RA. Indeed, there are 16 trivial

functional equations for RA, and w is a transformation of order 3. Hence, the trivial

functional equations together with w generate a group of order 48, which is the full

group of functional equations.

Showing that w leaves RA invariant is the main part of the present paper. This

is obtained by showing that RA miraculously relates very closely to a period for

the SL3(Z)-Eisenstein series; at least closely enough so that the (known) functional

equations for the latter series transfer to RA.
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3.2 Notations and definitions

Proving Theorem 1 requires a lot of computation and involves many notations. This

section regroups all the symbols used throughout the paper.

3.2.1 Ideals, bases

We elaborate here on the first three chapters of [6], in order to get results, about

ideals in number fields, of interest for our problem.

In the remainder of the paper, K is a (totally) real quadratic field with discriminant

D and ring of integers o. A is an ideal class in K and a an integral ideal in A−1.

A will denote a set of representatives of the nonzero principal ideals in o generated

by elements of a. Finally, D is the different of o.

Lemma 2

The map ψ : A ×
(
(aD)−1 \ {0}

)
−→ K2

(α, β) −→ (αβ, α)

is a bijection onto
{
(ξ, α) ∈ D−1 × A | ξ 6= 0 αa−1|ξD

}
.

Proof: The injectivity of ψ is clear since elements of A cannot be 0.

Remember that if b is a fractional ideal in K, we have

b−1 = {β ∈ K | βb ∈ o}.

So if α ∈ A and β ∈ (aD)−1, denoting αβ by ξ, we have

ξD = (αβ)D = β(αD) ⊂ β(aD) ⊂ o,

thus ξ ∈ D−1

Further, ξ
α

= β ∈ (aD)−1 ⇐⇒ (aD)−1|
(

ξ
α

)
⇐⇒ αa−1|ξD.

We just showed that the range of ψ is included in

{
(ξ, α) ∈ D−1 × A | ξ 6= 0 αa−1|ξD

}
.

That everything in this set is attained is clear. �
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Lemma 3

{αa−1 | α ∈ A } = {b integral ideal | b ∈ A}.

More precisely, for every integral ideal b ∈ A, there is a unique α ∈ A such that

b = αa−1.

Proof: Suppose that α is in A . Then α is in a, which is
(
a−1
)−1

. Hence αa−1 ⊂ o:

αa−1 is an integral ideal, in the same ideal class as a−1, that is A.

Conversely, given an ideal b in A, it is the product of a−1 by a principal ideal (α̃):

b = α̃a−1 α̃ ∈ o.

But then we have (α̃) = ab,

which implies in particular that α̃ belongs to a. Thus, by definition of A , there exists

a (unique) α ∈ A such that (α) = (α̃). �

Since a is a free Z-module of rank 2, it has a Z-basis (α1, α2) and we let (β1, β2)

be the dual basis for the trace bilinear form. It is thus a Z-basis for the ideal (aD)−1.

Up to renaming the α’s and β’s, we can assume that the determinant
∣∣∣∣∣∣

α1
(1) α1

(2)

α2
(1) α2

(2)

∣∣∣∣∣∣

is positive. Its value is therefore N(a)
√

D. Then we have a simple relationship between

the αi
(j)’s and the βi

(j)’s. Indeed, saying that (β1, β2) is the dual basis of (α1, α2)

for the trace form means precisely that the matrices


α1
(1) α1

(2)

α2
(1) α2

(2)



 and



β1
(1) β2

(1)

β1
(2) β2

(2)





are inverse of each other. Hence the relations between their coefficients:

β1
(1) =

α2
(2)

N(a)
√

D
β1

(2) = − α2
(1)

N(a)
√

D

β2
(1) = − α1

(2)

N(a)
√

D
β2

(2) =
α1

(1)

N(a)
√

D
.

(8)
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3.2.2 Complex parameters

We are given two triples of complex numbers (s0, s1, s2) and (ν1, ν2, s) that are related

to each other in the following way:






3ν1 = s0 + s1 + 2s2 − 1

3ν2 = s0 − s1 − 2s2 + 2

s = −2s1 + 2s2

⇐⇒






3ν1 + 3ν2

2
= s0 +

1

2
3ν1 − 3ν2 − 2s

6
= s1 −

1

2
3ν1 − 3ν2 + s

6
= s2 −

1

2

. (9)

These numbers will be fixed most of the time and we require that Re ν1 and Re ν2

be large, and that Re (ν1 − ν2) be large compared to Re s. The reasons for these

restrictions, as well as the relations (9), will be made obvious later. But one can

already notice that the transformation w, of (s0, s1, s2), presented in Theorem 1,

corresponds to (ν1, ν2, s) 7−→ (1 − ν1 − ν2, ν1, s).

3.2.3 Special functions

Special functions, such as Bessel functions and divisor sums, will be all over the place

and therefore we remind the reader of what they are:

Kω(u) =
1

2

+∞∫

0

e−
u
2
(t+ 1

t
)tω

dt

t
ω ∈ C u > 0,

τω(n) = n−ω
∑

d|n
d>0

d2ω ω ∈ C n ∈ N⋆,

and τK,A
ω (c) = N(c)−ω

∑

b ideal in A
b|c

N(b)2ω ω ∈ C c ideal in o.

In particular, Lemma 3 implies that

τK,A
ω (c) = N(c)−ω

∑

b ideal in A
b|c

N(b)2ω = N(c)−ω
∑

α∈A

αa−1|c

N(αa−1)2ω

=
∑

α∈A

αa−1|c

(
N(c)

N(αa−1)2

)−ω

.
(10)
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Notice that all these functions are unchanged when one replaces ω by −ω.

As explained above, we will be studying the renormalized integral (7) and therefore

it will be convenient to define for z ∈ H :

F(z) = E⋆(z, s1)E
⋆
K,A(z, s2).

3.2.4 The SL3(Z)-Eisenstein series

If t1 and t2 are positive real numbers, we define

M(t1, t2) =




cα1
(1) cα1

(2) 0

cα2
(1) cα2

(2) 0

0 0 1







t1 0 0

0 t2 0

0 0 (t1t2)
−1


 =




ct1α1
(1) ct2α1

(2) 0

ct1α2
(1) ct2α2

(2) 0

0 0 (t1t2)
−1


,

where c is chosen so that det M(t1, t2) = 1, namely c = N(a)−
1
2 D− 1

4 .

Because of the dual properties of the α’s and β’s, the inverse of M(t1, t2) can be

easily computed:

M(t1, t2)
−1 =




t1
−1 0 0

0 t2
−1 0

0 0 t1t2







c−1β1
(1) c−1β2

(1) 0

c−1β1
(2) c−1β2

(2) 0

0 0 1




=




(ct1)
−1β1

(1) (ct1)
−1β2

(1) 0

(ct2)
−1β1

(2) (ct2)
−1β2

(2) 0

0 0 t1t2




.

Since ν1 and ν2 are two complex numbers with real part strictly bigger that 2/3,

Bump showed in [2] that the SL3(Z)-Eisenstein series with weight (ν1, ν2) evaluated

at M(t1, t2)
tM(t1, t2) is given by

Gν1,ν2(t1, t2) =
1

4
π− 3ν1

2 Γ
(3ν1

2

)
π− 3ν2

2 Γ
(3ν2

2

)
ζ⋆(3ν1 + 3ν2 − 1)

×
∑

x,y∈Z3

x,y 6=0
x·y=0

∥∥tM(t1, t2)x
∥∥−3ν1

∥∥tM(t1, t2)
−1y
∥∥−3ν2 ,

where ‖ ‖ is the euclidean norm in R3. This function can be analytically continued

to C2 and is invariant under the transformation (ν1, ν2) 7−→ (1 − ν1 − ν2, ν1).
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Now, given two triples of integers

x =




x1

x2

x3


 and y =




y1

y2

y3




such that x · y = 0, we define

α = x1α1 + x2α2 ∈ a and β = y1β1 + y2β2 ∈ (aD)−1.

Because (α1, α2) is a basis for a over Z, this notation gives a bijective correspondance

between α’s in a and couples of integers (x1, x2). Similarly, we have a bijective

correspondance between β’s in (aD)−1 and couples of integers (y1, y2). Notice also

that

Tr (αβ) = x1y1 + x2y2 since

{
Tr (α1β1) = Tr (α2β2) = 1

Tr (α1β2) = Tr (α2β1) = 0
.

Thus the condition x·y = 0 can be rewritten as Tr (αβ)+x3y3 = 0. On the other hand,
∥∥tM(t1, t2)x

∥∥2
=
(
ct1α

(1)
)2

+
(
ct2α

(2)
)2

+
(
t1

−1t2
−1x3)

2

and
∥∥tM(t1, t2)

−1y
∥∥2

=
(
(ct1)

−1β(1)
)2

+
(
(ct2)

−1β(2)
)2

+ (t1t2y3)
2.

Therefore, we can rewrite our SL3(Z) Eisenstein series as

Gν1,ν2(t1, t2) =
1

4
π− 3ν1

2 Γ
(3ν1

2

)
π− 3ν2

2 Γ
(3ν2

2

)
ζ⋆(3ν1 + 3ν2 − 1)

×
∑

(α,β,ξ,η)∈Ω

[(
ct1α

(1)
)2

+
(
ct2α

(2)
)2

+
(
t1

−1t2
−1ξ)2

]− 3ν1
2

[(
(ct1)

−1β(1)
)2

+
(
(ct2)

−1β(2)
)2

+ (t1t2η)
2
]− 3ν2

2

,

with

Ω =
{
(α, β, ξ, η) ∈ a × (aD)−1 × Z × Z

∣∣ (α, ξ) 6= 0 (β, η) 6= 0 Tr (αβ) + ξη = 0
}
.

Whenever we need to restrict the summation to a subset Φ of Ω, which will happen

a lot, we will note GΦ
ν1,ν2

the corresponding part of the Eisenstein series.
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3.2.5 Action of o× on (R⋆
+)2

One can define an action of the units in o on the multiplicative group (R⋆
+)2 as follows:

ǫ(t1, t2) =
(
|ǫ(1)|t1, |ǫ(2)|t2

)
.

Proposition 4

The kernel for this action is {±1}. If ǫ ∈ o× and (t1, t2) ∈ (R⋆
+)2, then

ǫ(t1, t2) =
(
|ǫ|t1, |ǫ|−1t2

)
.

Moreover, if ε > 1 is a fundamental unit for o×, the set

W =
{
(t1, t2) ∈ (R⋆

+)2
∣∣ ε−1 6 t2

t1
6 ε
}

is a complete set of representatives for (R⋆
+)2/o×.

Proof: If ǫ is in the kernel, then |ǫ| = 1 and therefore ǫ = ±1 since K is totally real.

Now, let ǫ ∈ o×. The norm of ǫ is ǫ(1) ǫ(2) and is a unit in Z. It follows that
∣∣ǫ(1) ǫ(2)

∣∣ = 1.

Thus
∣∣ǫ(2)

∣∣ = |ǫ|−1

and the second claim follows.

We identify now a set of representatives for (R⋆
+)2/o×. Because K is a real

quadratic field, we know from the unit theorem that there exists ε ∈ o× such that

o× =
{
± εn | n ∈ Z

}
. Up to taking ±ε−1 instead of ε, one can suppose that ε > 1.

This is what we call a fundamental unit for o×.

Let (t1, t2) be a couple of positive real numbers. The sequence
(
ε2k+1

)
k∈Z

is increasing, tends to 0 at −∞, and to +∞ at +∞. Hence there exists a unique

integer n such that

ε2n−1 6
t2
t1
< ε2n+1.

Then ε−1 6
ε−nt2
εnt1

< ε

which shows that εn(t1, t2) ∈ W. Thus every (t1, t2) is in the orbit of W. �
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-

6

1 ε

1

ε

(R⋆
+)2/o×

3.3 Polar divisor considerations

3.3.1 Fourier expansions

According to Zagier’s theory, studying RA(s0, s1, s2) requires computing a0, the con-

stant term in the Fourier expansion of F and the part ϕ of F that is not of rapid

decay.

The Fourier expansion for E⋆ is computed, for example, in Bump [3]. The expan-

sion of E⋆
K,A was computed in Chapter 2, Theorem 27:

E⋆(z, s1) = ys1ζ⋆(2s1) + y1−s1ζ⋆(2 − 2s1)

+2
√
y
∑

n∈Z

n 6=0

τs1− 1
2
(n)Ks1− 1

2
(2πy|n|) e2πinx

(11)

and E⋆
K,A(z, s2) = y2s2ζ⋆

A(2s2) + y2(1−s2)ζ⋆
A(2 − 2s2)

+4y
∑

ξ∈D−1

ξ 6=0

τK,A

s2− 1
2

(ξD)Ks2− 1
2

(
2πy|ξ(1)|

)
Ks2− 1

2

(
2πy|ξ(2)|

)
e2πixTr ξ.

(12)

In each of these two expressions, the sums have rapid decay due to the presence

of Bessel functions, while the first two terms have polynomial growth in y. Hence ϕ

is immediately seen to be the product of these terms

ϕ(y) = ζ⋆(2s1)ζ
⋆
A(2s2)y

s1+2s2 + ζ⋆(2s1)ζ
⋆
A(2 − 2s2)y

2+s1−2s2

+ζ⋆(2 − 2s1)ζ
⋆
A(2s2)y

1−s1+2s2 + ζ⋆(2 − 2s1)ζ
⋆
A(2 − 2s2)y

3−s1−2s2.

(13)
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Finally, a0 is obtained by multiplying (11) by (12) and discarding what depends on x:

a0(y) = ϕ(y)

+4ζ⋆(2s1)y
1+s1

∑

ξ∈D−1

ξ 6=0,Tr ξ=0

τK,A

s2− 1
2

(ξD)Ks2− 1
2

(
2πy|ξ(1)|

)
Ks2− 1

2

(
2πy|ξ(2)|

)

+4ζ⋆(2 − 2s1)y
2−s1

∑

ξ∈D−1

ξ 6=0,Tr ξ=0

τK,A

s2− 1
2

(ξD)Ks2− 1
2

(
2πy|ξ(1)|

)
Ks2− 1

2

(
2πy|ξ(2)|

)

+8y
3
2

∑

ξ∈D−1,n∈Z

ξ,n 6=0
Tr ξ+n=0

τs1− 1
2
(n)τs2− 1

2
(ξD)Ks1− 1

2
(2π|n|y)Ks2− 1

2

(
2πy|ξ(1)|

)
Ks2− 1

2

(
2πy|ξ(2)|

)
.

(14)

3.3.2 Investigating the polar divisor of RA

Expression (13) is all we need to compute the polar divisor of RA. Indeed, according

to Zagier’s theorem recalled in Section 3.1.3, the latter is given by the following

collection of 14 hyperplanes in C3:

s0 = s1 + 2s2 s0 = 2 + s1 − 2s2 s0 = 1 − s1 + 2s2 s0 = 3 − s1 − 2s2

s0 = 1 − s1 − 2s2 s0 = −1 − s1 + 2s2 s0 = s1 − 2s2 s0 = −2 + s1 + 2s2

s0, s1, s2 = 0 and s0, s1, s2 = 1.

They cut out a polytope Π, a rhombic dodecahedron, displayed and described at

http://en.wikipedia.org/wiki/Rhombic_dodecahedron .

The order of the group of symetries Γ of Π can be computed in various ways.

For example, Γ acts transitively on the set of vertices of Π that are connected

to four other vertices. We count six such vertices, each of them being fixed by eight

transformations in Γ: four rotations and four reflexions. Hence |Γ| = 6 × 8 = 48 and

the group of functional equations for RA has order at most 48.
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3.4 Proof of Theorem 1

As explained in section 1.4, now that we know that the group of functional equations

for RA has order less than 48, we are left with showing that w leaves RA invariant.

In order to do that, the SL3(Z)-Eisenstein series (section 2.4) is integrated over

(R⋆
+)2/o× (described in section 2.5).

As seen in formula (8), the Eisenstein series Gν1,ν2 consists in a sum over the set

Ω =
{
(α, β, ξ, η) ∈ a × (aD)−1 × Z × Z

∣∣ (α, ξ) 6= 0 (β, η) 6= 0 Tr (αβ) + ξη = 0
}
,

which we break up into smaller subsets that come up naturally when one investigates

what indices, among α, β, ξ and η, can be simultaneously zero. This is all summarized

in the following table:

α = 0 ξ = 0 α = 0 ξ 6= 0 α 6= 0 ξ = 0 α 6= 0 ξ 6= 0

β = 0 η = 0 Excluded Excluded Excluded Excluded

β = 0 η 6= 0 Excluded Excluded Ω6 Excluded

β 6= 0 η = 0 Excluded Ω5 Ω4 Ω2

β 6= 0 η 6= 0 Excluded Excluded Ω3 Ω1

Some terms in our integral will be computed without trouble; some others will be

modified through Poisson’s summation formula. And some will be discarded because

they are not integrable. This will give us precisely RA but at this point, the functional

equation w won’t be immediately apparent because terms from the Eisenstein series

have been removed: more manipulations will be required to exhibit the symmetry w

for RA.

3.4.1 First computations

We begin by defining an action of o× on the set Ω1 defined in the table above:

ǫ(α, β, ξ, η) =
(
ǫα, ǫ−1β, ξ, η

)
.
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And the following proposition identifies a fundamental domain:

Proposition 5

Let A be a set of representatives of the principal ideals generated by elements of a.

Then a complete, nonredundant, set of representatives of Ω1/o
× is given by

Ω̃1 =
{
(α, β, ξ, η) ∈ A × (aD)−1 × Z × Z | Tr (αβ) + ξη = 0 α, β, ξ, η 6= 0

}
.

Proof: Let (α, β, ξ, η) be an element of Ω1. This means that

α ∈ a β ∈ (aD)−1 ξ, η ∈ Z α, β, ξ, η 6= 0

and Tr (αβ) + ξη = 0.

Then there exists an α̃ in A such that (α) = (α̃) and therefore, α and α̃ differ by a

unit:

∃ǫ ∈ o× α = ǫα̃.

From the definition of the action of o×, we have

(α, β, ξ, η) = ǫ(α̃, ǫβ, ξ, η).

But (α̃, ǫβ, ξ, η) is in Ω̃1 since

Tr (α̃ǫβ) + ξη = Tr ( ǫα̃︸︷︷︸
=α

β) + ξη = 0.

So any coset in Ω1/o
× can be represented by an element of Ω̃1.

To ensure there is no redundancy, suppose that (α1, β1, ξ1, η1) and (α2, β2, ξ2, η2)

are in Ω̃1 and represent the same coset of Ω1. Then

∃ǫ ∈ o× (α2, β2, ξ2, η2) = ǫ(α1, β1, ξ1, η1) = (ǫα1, ǫ
−1β1, ξ1, η1).

So α1 and α2 generate the same principal ideal of o and by definition of A , they are

equal. It follows that ǫ is actually equal to 1 and therefore

(α1, β1, ξ1, η1) = (α2, β2, ξ2, η2). �
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Proposition 6

Let s0, s1, s2, ν1, ν2 and s be complex numbers defined as in Section 3.2.2. Then

∫∫

(R⋆
+)2/o×

GΩ1

(ν1,ν2)
(t1, t2) (t1t2)

s dt1 dt2
t1 t2

=
4

3
ζ⋆(2s0)

∑

ξ∈D−1,n∈Z

ξ,n 6=0
Tr ξ+n=0

τs1− 1
2
(|n|)τK,A

s2− 1
2

(ξD)

×
∞∫

0

y
3
2 Ks1− 1

2
(2π|n|y)Ks2− 1

2

(
2πy|ξ(1)|

)
Ks2− 1

2

(
2πy|ξ(2)|

)
ys0−1 dy

y
.

Proof: Given (α, β, ξ, η) ∈ Ω1 and t1, t2 > 0, define

H(α, β, ξ, η, t1, t2) = (t1t2)
s
[(
ct1α

(1)
)2

+
(
ct2α

(2)
)2

+
(
t1

−1t2
−1ξ)2

]− 3ν1
2

×
[(

(ct1)
−1β(1)

)2
+
(
(ct2)

−1β(2)
)2

+ (t1t2η)
2
]− 3ν2

2

and Λ =
1

4
π− 3ν1

2 Γ
(3ν1

2

)
π− 3ν2

2 Γ
(3ν2

2

)
ζ⋆(3ν1 + 3ν2 − 1),

so that GΩ1
ν1,ν2

(t1, t2)(t1t2)
s = Λ

∑

(α,β,ξ,η)∈Ω1

H(α, β, ξ, η, t1, t2).

The function H is the object that ties together the two different actions of o×, respec-

tively on (R⋆
+)2 and Ω1. Indeed, if ǫ is a unit in o, one checks easily that

H
(
ǫ(α, β, ξ, η), t1, t2

)
= H

(
α, β, ξ, η, ǫ(t1, t2)

)
.

This allows us to unfold and collapse the following integral:
∫∫

(R×

+)2/o×

GΩ1
ν1,ν2

(t1, t2)(t1t2)
s dt1dt2
t1t2

= Λ
∑

(α,β,ξ,η)∈Ω1

∫∫

(R×

+)2/o×

H(α, β, ξ, η, t1, t2)
dt1dt2
t1t2

= Λ
∑

(α,β,ξ,η)∈Ω̃1

∑

ε∈o×

∫∫

(R⋆
+)2/o×

H
(
ε(α, β, ξ, η), t1, t2

) dt1dt2
t1t2

= Λ
∑

(α,β,ξ,η)∈Ω̃1

∑

ε∈o×

∫∫

ε−1(R×

+)2/o×

H(α, β, ξ, η, t1, t2)
dt1dt2
t1t2

∫∫

(R×

+)2/o×

GΩ1
ν1,ν2

(t1, t2)(t1t2)
s dt1dt2
t1t2

= 2Λ
∑

(α,β,ξ,η)∈Ω̃1

∫∫

(R⋆
+)2

H(α, β, ξ, η, t1, t2)
dt1dt2
t1t2

.
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The factor of 2 comes out in the end because, as explained in Proposition 2,

the action of o× on (R⋆
+)2 has a kernel of cardinality 2. Moreover, this computa-

tion is made possible because of our assumption on the sizes of Re ν1, Re ν2 and

Re (ν1 − ν2) since any courageous person can check that
∫∫

(R⋆
+)2

∣∣H(α, β, ξ, η, t1, t2)
∣∣ dt1dt2
t1t2

<∞.

We now attack the computation of the integral Λ

∫∫

(R⋆
+)2

H(α, β, ξ, η, t1, t2)
dt1dt2
t1t2

.

The parameters (α, β, ξ, η) will be fixed in Ω̃1 and we let

H⋆(t1, t2) =
1

4
π− 3ν1

2 Γ
(3ν1

2

)
π− 3ν2

2 Γ
(3ν2

2

)
× H(α, β, ξ, η, t1, t2).

After replacing the Gamma factors in Λ by their integral value, we get

H⋆(t1, t2) =
(t1t2)

s

4

∞∫

0

e−r1

(
r1

π
[(
ct1α(1)

)2
+
(
ct2α(2)

)2
+
(
t1

−1t2
−1ξ
)2]

) 3ν1
2

dr1
r1

×
∞∫

0

e−r2

(
r2

π
[(

(ct1)−1β(1)
)2

+
(
(ct2)−1β(2)

)2
+ (t1t2η)2

]

) 3ν2
2

dr2
r2
.

It is then natural to perform the substitutions



r1 7−→ r1π

[(
t1α

(1)
)2

+
(
t2α

(2)
)2

+
(
t1

−1t2
−1ξ
)2]

r2 7−→ r2π
[(
t1

−1β(1)
)2

+
(
t2

−1β(2)
)2

+ (t1t2η)
2
]
,

respectively in the first and second integral to obtain

H⋆(t1, t2) =
(t1t2)

s

4

∞∫

0

∞∫

0

e
−r1π

»

(ct1α(1))2+(ct2α(2))2+
(

ξ
t1t2

)2
–

−r2π

»(
β(1)

ct1

)2

+
(

β(2)

ct2

)2

+(t1t2η)2
–

×r1
3ν1
2 r2

3ν2
2

dr1 dr2
r1 r2

.

Thus
∫∫

(R⋆
+)2

H⋆(t1, t2)
dt1dt2
t1t2

=
1

4

∫

(R⋆
+)4

e
−r1π

»

(ct1α(1))2+(ct2α(2))2+
(

ξ
t1t2

)2
–

×e
−r2π

»(
β(1)

ct1

)2
+
(

β(2)

ct2

)2

+(t1t2η)2
–

r1
3ν1
2 r2

3ν2
2 (t1t2)

s dr1 dr2 dt1 dt2
r1 r2 t1 t2

.
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We make then the variable change

u =
√
r1r2 v = t1

2

√
r1
r2

w = t2
2

√
r1
r2

x = t1
−2t2

−2

√
r1
r2
.

This transformation is C 1 on (R⋆
+)4, and invertible since we can recover r1, r2, t1 and

t2 from u, v, w and x in the following way:

r1 = u(vwx)
1
3 r2 =

u

(vwx)
1
3

t1 =
v

1
3

(wx)
1
6

t2 =
w

1
3

(vx)
1
6

.

This is again obviously a C 1 transformation on R4: we have, therefore, defined a

C 1-diffeomorphism from (R⋆
+)4 onto itself. The Jacobian is tedious to compute,

but in the end we obtain the very simple

dr1 dr2 dt1 dt2
r1 r2 t1 t2

=
1

6

du dv dw dx

u v w x
,

so that after rearranging everything, we get
∫∫

(R⋆
+)2

H⋆(t1, t2)
dt1 dt2
t1 t2

=
1

24

∫

(R⋆
+)4

e
−πu

»

vc2α(1)2+wc2α(2)2+xξ2+v−1 β(1)2

c2
+w−1 β(2)2

c2
+x−1η2

–

×u 3ν1+3ν2
2 v

3ν1−3ν2+s

6 w
3ν1−3ν2+s

6 x
3ν1−3ν2−2s

6
du dv dw dx

u v w x

We finally see Bessel functions appearing. Indeed, we know that for positive numbers

a and b,
∞∫

0

e−at−bt−1
tν

dt

t
= 2

(
b

a

) ν
2

Kν

(
2
√
ab
)
,

so that, for example,
∞∫

0

e−πuvc2α(1)2−πuv−1 β(1)2

c2 v
3ν1−3ν2+s

6
dv

v
= 2

∣∣∣∣c−2 β
(1)

α(1)

∣∣∣∣

3ν1−3ν2+s

6

K 3ν1−3ν2+s

6

(
2πu

∣∣α(1)β(1)
∣∣).

Hence,

∫∫

(R⋆
+)2

H⋆(t1, t2)
dt1 dt2
t1 t2

=
1

3

(
c−4

∣∣∣∣N
β

α

∣∣∣∣
) 3ν1−3ν2+s

6

×
∣∣∣∣
η

ξ

∣∣∣∣

3ν1−3ν2−2s

6

∞∫

0

K 3ν1−3ν2−2s

6

(
2πu|ξη|

)

×K 3ν1−3ν2+s

6

(
2πu

∣∣α(1)β(1)
∣∣)K 3ν1−3ν2+s

6

(
2πu

∣∣α(2)β(2)
∣∣)u

3ν1+3ν2
2

du

u
.
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Using the relationships (9) and the definition of c,

∫∫

(R⋆
+)2

H⋆(t1, t2)
dt1 dt2
t1 t2

=
1

3

(
N(a)2D

∣∣∣∣N
β

α

∣∣∣∣
)s2− 1

2

×
∣∣∣∣
η

ξ

∣∣∣∣
s1− 1

2

∞∫

0

u
3
2 Ks1− 1

2

(
2πu|ξη|

)

×Ks2− 1
2

(
2πu

∣∣α(1)β(1)
∣∣)Ks2− 1

2

(
2πu

∣∣α(2)β(2)
∣∣)us0−1 du

u
.

Thus

∫∫

(R⋆
+)2/o×

GΩ1

(ν1,ν2)
(t1, t2) (t1t2)

s dt1 dt2
t1 t2

=
2

3
ζ⋆(2s0)

∑

ξ∈Z

ξ 6=0

∑

η∈Z

η 6=0

∑

α∈A

∑

β∈(aD)−1

β 6=0
Tr (αβ)+ξη=0

(
N(a)2D

∣∣∣∣N
β

α

∣∣∣∣
)s2− 1

2

×
∣∣∣∣
η

ξ

∣∣∣∣
s1− 1

2

∞∫

0

y
3
2 Ks1− 1

2
(2πy|ξη|)Ks2− 1

2

(
2πy|α(1)β(1)|

)

×Ks2− 1
2

(
2πy|α(2)β(2)|

)
ys0−1 dy

y
.

Consider the map

(Z⋆)2 −→
{
(n,m) ∈ Z2 | n 6= 0 m > 0 m|n

}

(ξ, η) 7−→ (ξη, |η|).
It is surjective, by definition; and if (n,m) is any element in the set on the right,

it has exactly two preimages, which are
(
n

m
,m

)
and

(
− n

m
,−m

)
.

Therefore, when we change indices in the quadruple sum above by putting n = ξη

and m = |η|, the divisor sum τs1− 1
2

appears and a factor 2 is pulled out:

∫∫

(R⋆
+)2/o×

GΩ1

(ν1,ν2)
(t1, t2) (t1t2)

s dt1 dt2
t1 t2

=
4

3
ζ⋆(2s0)

∑

n∈Z

n 6=0

τs1− 1
2
(n)

×
∑

α∈A

∑

β∈(aD)−1

β 6=0
Tr (αβ)+n=0

(
N(a)2D

∣∣∣∣N
β

α

∣∣∣∣
)s2− 1

2

×
∞∫

0

y
3
2 Ks1− 1

2
(2πy|n|)Ks2− 1

2

(
2πy|α(1)β(1)|

)
Ks2− 1

2

(
2πy|α(2)β(2)|

)
ys0−1 dy

y
.
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The next change of indices consists in defining ξ = αβ, leaving α alone and invoking

Lemma 2:
∫∫

(R⋆
+)2/o×

GΩ1

(ν1,ν2)
(t1, t2) (t1t2)

s dt1 dt2
t1 t2

=
4

3
ζ⋆(2s0)

∑

n∈Z,ξ∈D−1

n,ξ 6=0
Tr ξ+n=0

τs1− 1
2
(n)

×
∑

α∈A

αa−1|ξD

(
N(a)2D

∣∣∣∣N
ξ

α2

∣∣∣∣
)s2− 1

2

∞∫

0

y
3
2 Ks1− 1

2
(2πy|n|)Ks2− 1

2

(
2πy|ξ(1)|

)
Ks2− 1

2

(
2πy|ξ(2)|

)
ys0−1 dy

y
.

Remembering that the discriminant is the norm of the different and using the multi-

plicative properties of the norms of ideals, we get
∫∫

(R⋆
+)2/o×

GΩ1

(ν1,ν2)
(t1, t2) (t1t2)

s dt1 dt2
t1 t2

=
4

3
ζ⋆(2s0)

∑

n∈Z,ξ∈D−1

ξ,n 6=0
Tr ξ+n=0

τs1− 1
2
(n)

×
∑

α∈A

αa−1|ξD

(
N(ξD)

N(αa−1)2

)s2− 1
2

∞∫

0

y
3
2 Ks1− 1

2
(2πy|n|)Ks2− 1

2

(
2πy|ξ(1)|

)
Ks2− 1

2

(
2πy|ξ(2)|

)
ys0−1 dy

y
.

Finally, applying formula (10) achieves the proof of Proposition 6. �

The same techniques would allow us to show

Proposition 7

Let s0, s1, s2, ν1, ν2 and s be complex numbers defined as in section 3.2.2. Then

∫∫

(R⋆
+)2/o×

GΩ2

(ν1,ν2)
(t1, t2)(t1t2)

s dt1 dt2
t1t2

=
2

3
ζ⋆(2s0)ζ

⋆(2s1 − 1)
∑

ξ∈D−1

ξ 6=0

τK,A

s2− 1
2

(ξD)

∞∫

0

y2−s1Ks2− 1
2

(
2πy|ξ(1)|

)
Ks2− 1

2

(
2πy|ξ(2)|

)
ys0−1 dy

y
.
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3.4.2 Where Poisson’s summation formula comes into play

Comparing the formulas proved in Propositions 6 and 7 with the expression (14),

we see that we have obtained already a good amount of terms of RA(s0, s1, s2). So

far, the tediousness of the computation has been the only difficulty: the integrals

considered were absolutely convergent given our choices for the parameters ν1, ν2

and s.

The natural thing would be to expect that the remaining terms of RA come from
∫∫

(R⋆
+)2/o×

GΩi
ν1,ν2

(t1, t2)(t1t2)
s dt1 dt2
t1t2

i = 3, 4, 5 or 6.

However it is not quite the case because none of these integrals makes sense with our

choices of ν1, ν2 and s. But Poisson’s summation formula will allow us to transform

GΩ3∪Ω4
ν1,ν2

and separate the integrable part from the non-integrable one. Of course,

the former, once integrated, will give us the last remaining terms of RA(s0, s1, s2).

Proposition 8

Let s0, s1, s2, ν1, ν2 and s be complex numbers defined as in section 3.2.2. Then

∫∫

(R⋆
+)2/o×

(
GΩ3∪Ω4

(ν1,ν2)
(t1, t2) − Vν1,ν2(t1, t2)

)
(t1t2)

s dt1 dt2
t1t2

=
2

3
ζ⋆(2s0)ζ

⋆(2s1)

×
∑

ξ∈D−1

ξ 6=0

τK,A

s2− 1
2

(ξD)

∞∫

0

ys1+1Ks2− 1
2

(
2πy|ξ(1)|

)
Ks2− 1

2

(
2πy|ξ(2)|

)
ys0−1 dy

y
,

where

Vν1,ν2(t1, t2) = ζ⋆(3ν1)ζ
⋆(3ν2 − 1)(t1t2)

− 3ν1−3ν2+3
2 E⋆

(
t1α1

(1) − it2α1
(2)

t1α2
(1) − it2α2

(2)
, 3ν1 + 3ν2 − 1

)
.

Proof: Remember that

Ω3 ∪ Ω4 =
{
(α, β, 0, η) ∈ a × (aD)−1 × Z × Z

∣∣ α 6= 0 β 6= 0 Tr (αβ) + ξη = 0
}
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and

GΩ3∪Ω4
ν1,ν2

(t1, t2) =
1

4
π− 3ν1

2 Γ
(3ν1

2

)
π− 3ν2

2 Γ
(3ν2

2

)
ζ⋆(3ν1 + 3ν2 − 1)

×
∑

06=α∈a

06=β∈(aD)−1

Tr (αβ)=0

∑

η∈Z

[(
ct1α

(1)
)2

+
(
ct2α

(2)
)2]− 3ν1

2
[(β(1)

ct1

)2

+
(β(2)

ct2

)2

+ (ηt1t2)
2
]− 3ν2

2
.

Let us fix α and β and focus on the sum over η. More precisely, define

ϕ(t1, t2) = π− 3ν2
2 Γ
(3ν2

2

)∑

η∈Z

[(β(1)

ct1

)2

+
(β(2)

ct2

)2

+ (ηt1t2)
2
]− 3ν2

2
.

Using the integral expression of the Gamma function, we obtain

ϕ(t1, t2) =

∞∫

0

∑

η∈Z

e
−r2π

[(
β(1)

ct1

)2

+
(

β(2)

ct2

)2

+η2t12t22
]
r2

3ν2
2

dr2
r2
.

Poisson’s summation formula tells us that
∑

η∈Z

e−πr2η2t12t22

=
1

t1t2
√
r2

∑

η∈Z

e
− πη2

r2t1
2t2

2 ,

so that ϕ(t1, t2) =
1

t1t2

∞∫

0

∑

η∈Z

e
−r2π

[(
β(1)

ct1

)2

+
(

β(2)

ct2

)2]
− πη2

r2t1
2t2

2 r2
3ν2−1

2
dr2
r2
.

The term corresponding to η = 0 in the sum can be rewritten as

1

t1t2
π− 3ν2−1

2 Γ
(3ν2 − 1

2

)[(β(1)

ct1

)2

+
(β(2)

ct2

)2]− 3ν2−1
2
.

Its contribution to the expression of GΩ3∪Ω4
ν1,ν2

is denoted by V:

Vν1,ν2(t1, t2) =
1

4t1t2
π− 3ν1

2 Γ
(3ν1

2

)
π− 3ν2−1

2 Γ
(3ν2 − 1

2

)
ζ⋆(3ν1 + 3ν2 − 1)

×
∑

α∈a
α6=0

∑

β∈(aD)−1

β 6=0
Tr (αβ)=0

[(
t1α

(1)
)2

+
(
t2α

(2)
)2]− 3ν1

2
[(β(1)

ct1

)2

+
(β(2)

ct2

)2]− 3ν2−1
2

(15)

and GΩ3∪Ω4
ν1,ν2

(t1, t2) − Vν1,ν2(t1, t2) =
1

4
ζ⋆(3ν1 + 3ν2 − 1)

∑

α∈a
α6=0

∑

β∈(aD)−1

β 6=0
Tr (αβ)=0

∑

η∈Z

η 6=0

1

t1t2

∞∫

0

∞∫

0

e
−r1π

[
(t1α(1))2+(t2α(2))2

]
−r2π

[(
β(1)

ct1

)2
+
(

β(2)

ct2
)2
]
− πη2

r2t1
2t2

2 r1
3ν1
2 r2

3ν2−1
2

dr1 dr2
r1 r2

.
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Computing the integral of this expression over (R⋆
+)/o× is an almost exact copy of the

proof of Proposition 6 – only the details of the computation change. Ultimately,

we get the formula displayed in the current proposition. What remains to show at this

point is that the V defined in (15) can indeed be rewritten as a classical Eisenstein

series.

We focus on the double sum in (15), that we call Σ(t1, t2). Because (α1, α2) and

(β1, β2) are Z-bases respectively for a and (aD)−1, we have

Σ(t1, t2) =
∑

x∈Z
2

x 6=0

∑

y∈Z
2

y 6=0
x·y=0

[
c2t1

2
(
x1α1

(1) + x2α2
(1)
)2

+ c2t2
2
(
x1α1

(2) + x2α2
(2)
)2]− 3ν1

2

×
[
c−2t1

−2
(
y1β1

(1) + y2β2
(1)
)2

+ c−2t2
−2
(
y1β1

(2) + y2β2
(2)
)2]− 3ν2−1

2

.

We can transform this sum by factoring out the gcds of each (x1, x2) and (y1, y2) and

summing over all the possible values of these gcds. This pulls out two zeta functions:

Σ(t1, t2) = ζ(3ν1)ζ(3ν2 − 1)

×
∑

x∈Z
2

gcd(x1,x2)=1

∑

y∈Z
2

gcd(y1,y2)=1
x1y1+x2y2=0

[
c2t1

2
(
x1α1

(1) + x2α2
(1)
)2

+ c2t2
2
(
x1α1

(2) + x2α2
(2)
)2]− 3ν1

2

×
[
c−2t1

−2
(
y1β1

(1) + y2β2
(1)
)2

+ c−2t2
−2
(
y1β1

(2) + y2β2
(2)
)2]− 3ν2−1

2
.

Now, let (x1, x2) and (y1, y2) be two couples of integers, each with gcd equal to 1

and such that x1y1 + x2y2 = 0. Then

x1y1 = −x2y2.

Because x1 and x2 are relatively prime, we get on the one hand

x1|y2 and x2|y1.

On the other hand, because y1 and y2 are relatively prime, we get

y2|x1 and y1|x2.

Hence, either y2 = x1 and y1 = −x2

or y2 = −x1 and y1 = x2.
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Either way, the values of the corresponding summands in Σ(t1, t2) are the same. So

Σ(t1, t2) = 2ζ(3ν1)ζ(3ν2 − 1)

×
∑

x∈Z2

gcd(x1,x2)=1

[
c2t1

2
(
x1α1

(1) + x2α2
(1)
)2

+ c2t2
2
(
x1α1

(2) + x2α2
(2)
)2]− 3ν1

2

×
[
c−2t1

−2
(
x2β1

(1) − x1β2
(1)
)2

+ c−2t2
−2
(
x2β1

(2) − x1β2
(2)
)2]− 3ν2−1

2
.

It is now time to make use of the relations (8) between the α’s and β’s, replace c

by its value N(a)−
1
2 D− 1

4 , and factor out (t1t2)
−2 from the expression in brackets on

the third line. We obtain:

Σ(t1, t2) = 2ζ(3ν1)ζ(3ν2 − 1)(t1t2)
3ν2−1

×
∑

x∈Z
2

gcd(x1,x2)=1

[
c2t1

2
(
x1α1

(1) + x2α2
(1)
)2

+ c2t2
2
(
x1α1

(2) + x2α2
(2)
)2]− 3ν1+3ν2−1

2

.

We recognize here the zeta function of a quadratic form. Transforming these

objects in particular values of an Eisenstein series is a well-known technique that

yields ultimately

Σ(t1, t2) = 4ζ(3ν1)ζ(3ν2 − 1)(t1t2)
− 3ν1−3ν2+1

2 E

(
t1α1

(1) − it2α1
(2)

t1α2
(1) − it2α2

(2)
, 3ν1 + 3ν2 − 1

)
.

Thus

Vν1,ν2(t1, t2) =
1

4t1t2
π− 3ν1

2 Γ
(3ν1

2

)
π− 3ν2−1

2 Γ
(3ν2 − 1

2

)
ζ⋆(3ν1 + 3ν2 − 1)Σ(t1, t2)

= ζ⋆(3ν1)ζ
⋆(3ν2 − 1)(t1t2)

− 3ν1−3ν2+3
2 E⋆

(
t1α1

(1) − it2α1
(2)

t1α2
(1) − it2α2

(2)
,
3ν1 + 3ν2 − 1

2

)
.�

3.4.3 What have we got so far?

In this short paragraph, we do a quick recap of everything we’ve done so far. We are

interested in the renormalized integral

RA(s0, s1, s2) = RN

∫

SL2(Z)\H

E⋆(z, s0)E
⋆(z, s1)EK,A(z, s2)

dz

y2
.

By Zagier’s definition, RA(s0, s1, s2) = ζ⋆(2s0)

∞∫

0

(
a0(y) − ϕ(y)

)
ys0−1 dy

y
,
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where a0 − ϕ has been computed in formula (14). Thus Propositions 6, 7 and 8

can be summarized in the formula

RA(s0, s1, s2) =

6

∫∫

(R⋆
+)2/o×

(
Gν1,ν2(t1, t2) − Vν1,ν2(t1, t2) − GΩ5

ν1,ν2
(t1, t2) − GΩ6

ν1,ν2
(t1, t2)

)
(t1t2)

s dt1 dt2
t1t2

.

From the definition of Ω5, we have

GΩ5
ν1,ν2

(t1, t2) =
1

4
π− 3ν1

2 Γ
(3ν1

2

)
π− 3ν2

2 Γ
(3ν2

2

)
ζ⋆(3ν1 + 3ν2 − 1)

×
∑

ξ∈Z

ξ 6=0

∑

β∈(aD)−1

β 6=0

(t1t2
|ξ|
)3ν1

[(β(1)

ct1

)2

+
(β(2)

ct2

)2
]− 3ν2

2

=
(t1t2)

3ν1

2
ζ⋆(3ν1)ζ

⋆(3ν1 + 3ν2 − 1)π− 3ν2
2 Γ
(3ν2

2

)

×
∑

β∈(aD)−1

β 6=0

[(β(1)

ct1

)2

+
(β(2)

ct2

)2
]− 3ν2

2

.

This is again the zeta function of a quadratic form, which we rewrite as an Eisenstein

series:

GΩ5
ν1,ν2

(t1, t2) = (t1t2)
3ν1+

3ν2
2 ζ⋆(3ν1)ζ

⋆(3ν1 + 3ν2 − 1)E⋆

(
t1α1

(1) − it2α1
(2)

t1α2
(1) − it2α2

(2)
,
3ν2

2

)
.

Similarly,

GΩ6
ν1,ν2

(t1, t2) = (t1t2)
−3ν2− 3ν1

2 ζ⋆(3ν2)ζ
⋆(3ν1 + 3ν2 − 1)E⋆

(
t1α1

(1) − it2α1
(2)

t1α2
(1) − it2α2

(2)
,
3ν1

2

)
.

Hence we can summarize what we have so far in the following

Proposition 9

Let s0, s1, s2, ν1, ν2 and s be complex numbers defined as in Section 3.2.2. Then

RA(s0, s1, s2) = 6

∫∫

(R⋆
+)2/o×

(
Gν1,ν2(t1, t2) − fν1,ν2(t1, t2)

)
(t1t2)

s dt1 dt2
t1t2

, (16)

where
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fν1,ν2(t1, t2) = Vν1,ν2(t1, t2) + GΩ5
ν1,ν2

(t1, t2) + GΩ6
ν1,ν2

(t1, t2)

= (t1t2)
3ν1+

3ν2
2 ζ⋆(3ν1)ζ

⋆(3ν1 + 3ν2 − 1)E⋆

(
t1α1

(1) − it2α1
(2)

t1α2
(1) − it2α2

(2)
,
3ν2

2

)

+(t1t2)
−3ν2− 3ν1

2 ζ⋆(3ν2)ζ
⋆(3ν1 + 3ν2 − 1)E⋆

(
t1α1

(1) − it2α1
(2)

t1α2
(1) − it2α2

(2)
,
3ν1

2

)

+(t1t2)
− 3ν1−3ν2+3

2 ζ⋆(3ν1)ζ
⋆(3ν2 − 1)E⋆

(
t1α1

(1) − it2α1
(2)

t1α2
(1) − it2α2

(2)
, 3ν1 + 3ν2 − 1

)
.

The problem now is that, even though G is invariant under the transformation

(ν1, ν2) 7−→ (1 − ν1 − ν2, ν1), this symmetry cannot be transfered to RA because it is

not apparent in f . Some more work is thus required.

3.4.4 End of the proof

In section 2.5, we gave a description of a set of representatives for (R⋆
+)2/o×. This

set is the collection of all lines in the quarter plane (R⋆
+)2 that go through 0 and with

slopes between ε−1 and ε. Thus the map

(t1, t2) 7−→
(
t2
t1
, t1t2

)

is a C 1-difféomorphism from (R⋆
+)2/o× onto

[
ε−1, ε

]
× R⋆

+. So we make the variable

change

u =
t1
t2

v = t1t2 t1 =

√
v

u
t2 =

√
uv

dt1 dt2
t1t2

=
1

2

du dv

u v

in the integral (16), factor the t2’s on the numerator and denominator in the argument

of the Eisenstein series, and obtain

RA(s0, s1, s2) = 3

∞∫

0

ε∫

ε−1

(
Gν1,ν2

(√
v

u
,
√
uv

)

−v− 3ν1−3ν2+3
2 ζ⋆(3ν1)ζ

⋆(3ν2 − 1)E⋆

(
α1

(1) − iuα1
(2)

α2
(1) − iuα2

(2)
,
3ν1 + 3ν2 − 1

2

)

−v3ν1+
3ν2
2 ζ⋆(3ν1)ζ

⋆(3ν1 + 3ν2 − 1)E⋆

(
α1

(1) − iuα1
(2)

α2
(1) − iuα2

(2)
,
3ν2

2

)

−v−3ν2− 3ν1
2 ζ⋆(3ν2)ζ

⋆(3ν1 + 3ν2 − 1)E⋆

(
α1

(1) − iuα1
(2)

α2
(1) − iuα2

(2)
,
3ν1

2

))
vs du dv

u v
.
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The first integral with respect to u, between ε−1 and ε is not a problem and we define

Gν1,ν2(v) =

ε∫

ε−1

Gν1,ν2

(√
v

u
,
√
uv

)
du

u

and L(ω) =

ε∫

ε−1

E⋆

(
α1

(1) − iuα1
(2)

α2
(1) − iuα2

(2)
, ω

)
du

u
.

All that is important to know about these two functions is that they are invariant,

respectively under (ν1, ν2) 7−→ (1 − ν1 − ν2, ν1) and ω 7−→ 1 − ω.

Remark: Actually, one can say a little more about L. Indeed, using the

technique from Hecke, described by Zagier in [8], one can actually show that

2L(s) = ζ⋆
A(s). This identity constitutes, therefore, a proof for functional

equation ζ⋆
A(s) = ζ⋆

A(1 − s). Since we know already (see for example Lang [6])

that ζ⋆
A(1 − s) = ζ⋆

A−1D−1(s), we get the result that, in a real quadratic field

ζ⋆
A(1 − s) = ζ⋆

A−1D−1(s) = ζ⋆
A(s).

With these new notations, we get

RA(s0, s1, s2)

3
=

∞∫

0

(
Gν1,ν2(v) − v−

3ν1−3ν2+3
2 L

(
3ν1 + 3ν2 − 1

2

)
ζ⋆(3ν1)ζ

⋆(3ν2 − 1)

−v3ν1+
3ν2
2 L

(
3ν2

2

)
ζ⋆(3ν1)ζ

⋆(3ν1 + 3ν2 − 1)

−v−3ν2− 3ν1
2 L

(
3ν1

2

)
ζ⋆(3ν2)ζ

⋆(3ν1 + 3ν2 − 1)

)
vsdv

v
.

Now, we split this integral

∞∫

0

as

1∫

0

+

∞∫

1

and we perform the substitution v → v−1 in

the integral on (0, 1]. We regroup everything under a same integral over [1,∞) and

finally let x =
√
v, in order to get rid of these fractional powers:
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RA(s0, s1, s2)

6
=

∞∫

1

(
Gν1,ν2(x

2)x2s + Gν1,ν2

(
x−2
)
x−2s

−x−(3ν1−3ν2+3−2s)L

(
3ν1 + 3ν2 − 1

2

)
ζ⋆(3ν1)ζ

⋆(3ν2 − 1)

−x6ν1+3ν2+2sL

(
3ν2

2

)
ζ⋆(3ν1)ζ

⋆(3ν1 + 3ν2 − 1)

−x−(3ν1+6ν2−2s)L

(
3ν1

2

)
ζ⋆(3ν2)ζ

⋆(3ν1 + 3ν2 − 1)

−x3ν1−3ν2+3−2sL

(
3ν1 + 3ν2 − 1

2

)
ζ⋆(3ν1)ζ

⋆(3ν2 − 1)

−x−(6ν1+3ν2+2s)L

(
3ν2

2

)
ζ⋆(3ν1)ζ

⋆(3ν1 + 3ν2 − 1)

−x3ν1+6ν2−2sL

(
3ν1

2

)
ζ⋆(3ν2)ζ

⋆(3ν1 + 3ν2 − 1)

)
dx

x
.

Because of our choices for Re ν1, Re ν2 and Re (ν1 − ν2), some terms are integrable

(those on lines 2, 4 and 6) and can be taken out of the integral:

RA(s0, s1, s2)

6
=

∞∫

1

(
Gν1,ν2(x

2)x2s + Gν1,ν2

(
x−2
)
x−2s

−x6ν1+3ν2+2sL

(
3ν2

2

)
ζ⋆(3ν1)ζ

⋆(3ν1 + 3ν2 − 1)

−x3ν1−3ν2+3−2sL

(
3ν1 + 3ν2 − 1

2

)
ζ⋆(3ν1)ζ

⋆(3ν2 − 1)

−x3ν1+6ν2−2sL

(
3ν1

2

)
ζ⋆(3ν2)ζ

⋆(3ν1 + 3ν2 − 1)

)
dx

x

− 1

3ν1 − 3ν2 + 3 − 2s
L

(
3ν1 + 3ν2 − 1

2

)
ζ⋆(3ν1)ζ

⋆(3ν2 − 1)

− 1

3ν1 + 6ν2 − 2s
L

(
3ν1

2

)
ζ⋆(3ν2)ζ

⋆(3ν1 + 3ν2 − 1)

− 1

6ν1 + 3ν2 + 2s
L

(
3ν2

2

)
ζ⋆(3ν1)ζ

⋆(3ν1 + 3ν2 − 1).

(17)

Finally, the following formula holds:
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RA(s0, s1, s2)

3
=

∞∫

1

(
2Gν1,ν2(x

2)x2s + 2Gν1,ν2

(
x−2
)
x−2s

−x6ν1+3ν2+2sL

(
3ν2

2

)
ζ⋆(3ν1)ζ

⋆(3ν1 + 3ν2 − 1)

−x3ν1−3ν2+3−2sL

(
3ν1 + 3ν2 − 1

2

)
ζ⋆(3ν1)ζ

⋆(3ν2 − 1)

−x3ν1+6ν2−2sL

(
3ν1

2

)
ζ⋆(3ν2)ζ

⋆(3ν1 + 3ν2 − 1)

−x−(3ν1+6ν2−6−2s)L

(
3ν1

2

)
ζ⋆(3ν2 − 1)ζ⋆(3ν1 + 3ν2 − 2)

−x−(3ν1−3ν2−3−2s)L

(
3ν1 + 3ν2 − 1

2

)
ζ⋆(3ν1 − 1)ζ⋆(3ν2)

−x−(6ν1+3ν2−6+2s)L

(
3ν2

2

)
ζ⋆(3ν1 + 3ν2 − 2)ζ⋆(3ν1 − 1)

)
dx

x

− 1

3ν1 − 3ν2 + 3 − 2s
L

(
3ν1 + 3ν2 − 1

2

)
ζ⋆(3ν1)ζ

⋆(3ν2 − 1)

− 1

3ν1 + 6ν2 − 2s
L

(
3ν1

2

)
ζ⋆(3ν2)ζ

⋆(3ν1 + 3ν2 − 1)

− 1

6ν1 + 3ν2 + 2s
L

(
3ν2

2

)
ζ⋆(3ν1)ζ

⋆(3ν1 + 3ν2 − 1)

+
1

3ν1 + 6ν2 − 6 − 2s
L

(
3ν1

2

)
ζ⋆(3ν2 − 1)ζ⋆(3ν1 + 3ν2 − 2)

+
1

3ν1 − 3ν2 − 3 − 2s
L

(
3ν1 + 3ν2 − 1

2

)
ζ⋆(3ν1 − 1)ζ⋆(3ν2)

+
1

6ν1 + 3ν2 + 2s− 6
L

(
3ν2

2

)
ζ⋆(3ν1 + 3ν2 − 2)ζ⋆(3ν1 − 1).

(18)

From (17) to (18), we have added the terms on lines 5, 6, 7, 11, 12 and 13. It turns

out that when one integrates the terms on lines 5, 6 and 7, they cancel the terms on

lines 11, 12 and 13. So nothing really happened here.

Until now, we had restrictions on the real parts of our parameters ν1, ν2 and s.

Those are now lifted by meromorphic continuation and formula (18) holds in fact for
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all values of our paramaters away from the polar divisor of RA.

Finally, as a courageous reader can check, everything that is inside and outside

the integral is invariant when one replaces ν1 by 1 − ν1 − ν2 and ν2 by ν1. So this

invariance transfers to RA. And this achieves showing that w is a functional equation

for RA, since (ν1, ν2) 7−→ (1−ν1−ν2, ν2) translates into w for s0, s1 and s2, considering

the relations (9). �



Appendix A

More computations

In this last chapter, we present two computations that were alluded to, but now

explained, during the proof of our main theorem. We want to explain

• how one can transform the zeta function of a positive definite quadratic form

into a particular value of the classical Eisenstein series. This will be done with

the particular example of Vν1,ν2 (page 63) but the strategy can be applied to

prove the formulas on the bottom of page 64.

• how the function L(ω) introduced on page 66 relates to the zeta function of the

ideal class A.

A.1 Quadratic forms and Eisenstein series

In the proof of Proposition 8, we encounter the series

Σ(t1, t2) = 2ζ(3ν1)ζ(3ν2 − 1)(t1t2)
3ν2−1

×
∑

x∈Z2

gcd(x1,x2)=1

[
c2t1

2
(
x1α1

(1) + x2α2
(1)
)2

+ c2t2
2
(
x1α1

(2) + x2α2
(2)
)2]− 3ν1+3ν2−1

2

and we claim that it can be rewritten as

Σ(t1, t2) = 4ζ(3ν1)ζ(3ν2 − 1)(t1t2)
− 3ν1−3ν2+1

2 E

(
t1α1

(1) − it2α1
(2)

t1α2
(1) − it2α2

(2)
,
3ν1 + 3ν2 − 1

2

)

70
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Define the quadratic form

∀(m,n) ∈ Z2 Q(m,n) = c2t1
2
(
mα1

(1) + nα2
(1)
)2

+ c2t2
2
(
mα1

(2) + nα2
(2)
)2

so that Σ(t1, t2) = 2ζ(3ν1)ζ(3ν2 − 1)(t1t2)
3ν2−1

∑

(m,n)∈Z2

gcd(m,n)=1

1

Q(m,n)
3ν1+3ν2−1

2

We have

Q(m,n)

c2
= t1

2
(
mα1

(1) + nα2
(1)
)2

+ t2
2
(
mα1

(2) + nα2
(2)
)2

= m2
(
(t1α1

(1))2 + (t2α1
(2))2

)
+ n2

(
(t1α2

(1)
)2

+ (t2α2
(2))2

)

+2mn
(
t1

2α1
(1)α2

(1) + t2
2α1

(2)α2
(2)
)

We want to put this under the form |mz + nw|2, for some complex numbers z and w

such that z
w

is in the upper half-plane. The natural choices are

z = t1α1
(1) − it2α1

(2)

and w = t1α2
(1) − it2α2

(2)

We have |z|2 = (t1α1
(1))2 + (t2α1

(2))2

|w|2 = (t1α2
(1)
)2

+ (t2α2
(2))2

Re
(
zw
)

= t1
2α1

(1)α2
(1) + t2

2α1
(2)α2

(2)

and Im
( z
w

)
= Im

( zw
|w|2

)
=
t1t2
(
α1

(1)α2
(2) − α1

(2)α2
(1)
)

|w|2 =
t1t2
c2|w|2 > 0

Therefore |mz + nw|2 = m2|z|2 + n2|w|2 + 2mnRe
(
zw
)

=
Q(m,n)

c2

or
Q(m,n)

c2
= |w|2

∣∣∣m
z

w
+ n
∣∣∣
2

If we define Z ∈ H to be the ratio z
w
:

Z =
t1α1

(1) − it2α1
(2)

t1α2
(1) − it2α2

(2)
and Im Z =

t1t2
c2|w|2

we get Q(m,n) = c2|w|2 |mZ + n|2 = t1t2 ×
|mZ + n|2

Im Z
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Hence Σ(t1, t2) = 2ζ(3ν1)ζ(3ν2 − 1)(t1t2)
3ν2−1

∑

(m,n)∈Z
2

gcd(m,n)=1

(
Im Z

t1t2|mZ + n|2
) 3ν1+3ν2−1

2

= 4ζ(3ν1)ζ(3ν2 − 1)(t1t2)
− 3ν1−3ν2+1

2 E

(
Z,

3ν1 + 3ν2 + 1

2

)

A.2 Eisenstein series and zeta functions of ideal classes

On page 66, we anounce in a remark that the function L, defined as

∀ω ∈ C \ {0, 1} L(ω) =

ε∫

ε−1

E⋆

(
α1

(1) − iuα1
(2)

α2
(1) − iuα2

(2)
, ω

)

is related to the normalized zeta function of the ideal class A:

L(ω) =
ζ⋆
A(ω)

2
=

D
ω
2 π−ω

2
Γ
(ω

2

)2 ∑

b integral in A

1

N(b)ω

Even though this identity is irrelevant to our result, it is interesting enough to mention

and prove.

The computation done in the previous section shows that
∑

(m,n)∈Z2

gcd(m,n)=1

1[
c2t1

2
(
mα1

(1) + nα2
(1)
)2

+ c2t2
2
(
mα1

(2) + nα2
(2)
)2]ω =

2

(t1t2)ω
E

(
t1α1

(1) − it2α2
(1)

t1α1
(2) − it2α2

(2)
, ω

)

Multiply both sides by ζ⋆(2ω), put t1 = 1 and t2 = u, to obtain:

2

uω
E⋆

(
α1

(1) − iuα2
(1)

α1
(2) − iuα2

(2)
, ω

)
=

π−ωΓ(ω)
∑

(m,n)∈Z2

(m,n)6=0

1[
c2
(
mα1

(1) + nα2
(1)
)2

+ c2u2
(
mα1

(2) + nα2
(2)
)2]ω

=
π−ωΓ(ω)

c2ω

∑

α∈a
α6=0

1(
α(1)2 + u2α(2)2

)ω

E⋆

(
α1

(1) − iuα2
(1)

α1
(2) − iuα2

(2)
, ω

)
=
π−ωΓ(ω)

2c2ω

∑

α∈a
α6=0

1(
u−1α(1)2 + uα(2)2

)ω
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Then condition the sum on cosets of a/o×:

E⋆

(
α1

(1) − iuα2
(1)

α1
(2) − iuα2

(2)
, ω

)
=
π−ωΓ(ω)

2c2ω

∑

α∈a/o×

α6=0

∑

ǫ∈o×

1(
u−1ǫ(1)

2
α(1)2 + uǫ(2)

2
α(2)2

)ω

As explained in Proposition 4, for every unit ε, we have
∣∣ǫ(2)

∣∣ =
1∣∣ǫ(1)
∣∣ =

1

|ǫ|
so after factoring

∣∣ǫ(1)ǫ(2)
∣∣ω = 1 from the denominator, we get

E⋆

(
α1

(1) − iuα2
(1)

α1
(2) − iuα2

(2)
, ω

)
=
π−ωΓ(ω)

2c2ω

∑

α∈a/o×

α6=0

∑

ǫ∈o×

1(
u−1ǫ2α(1)2 + uǫ−2α(2)2

)ω

Next, by the unit theorem, there exists a fundamental unit ε > 1 such that

o× =
{
± εk | k ∈ Z

}

So E⋆

(
α1

(1) − iuα2
(1)

α1
(2) − iuα2

(2)
, ω

)
=
π−ωΓ(ω)

c2ω

∑

α∈a/o×

α6=0

∑

k∈Z

1(
u−1ε2kα(1)2 + uε−2kα(2)2

)ω

Everything is now set up to compute the integral L(ω):

L(ω) =
π−ωΓ(ω)

c2ω

∑

α∈a/o×

α6=0

∑

k∈Z

ε∫

ε−1

1(
u−1ε2kα(1)2 + uε−2kα(2)2

)ω
du

u

Change variables and replace u−1ε2k by v:

L(ω) =
π−ωΓ(ω)

c2ω

∑

α∈a/o×

α6=0

∑

k∈Z

ε2k+1∫

ε2k−1

1(
vα(1)2 + v−1α(2)2

)ω
dv

v

The integrals and the sum over k collapse nicely and we obtain

L(ω) =
π−ωΓ(ω)

c2ω

∑

α∈a/o×

α6=0

∞∫

0

1(
vα(1)2 + v−1α(2)2

)ω
dv

v

Factor
∣∣α(1)α(2)

∣∣ω = N(α)ω out of the denominators:

L(ω) =
π−ωΓ(ω)

c2ω

∑

α∈a/o×

α6=0

1

N(α)ω

∞∫

0

1
(
v α(1)

α(2) + v−1 α(2)

α(1)

)ω
dv

v
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Change variables again, replacing v α(1)

α(2) by u. Also, remember that c−2 = N(a)D
1
2 :

L(ω) = D
ω
2 π−ωΓ(ω)

∑

α∈a/o×

α6=0

N(a)ω

N(α)ω

+∞∫

0

1(
u+ u−1)ω

du

u

Relating this to the facts about the zeta function of the ideal class A, presented in

Section 2.2.1 (page 32), it follows that

L(ω) = D
ω
2 π−ω ζK,A(ω)Γ(ω)

+∞∫

0

1(
u+ u−1)ω

du

u

But Γ(ω)

+∞∫

0

1(
u+ u−1)ω

du

u
=

+∞∫

0

+∞∫

0

e−v
( v

u+ u−1

)ω dvdu

vu

=

+∞∫

0

+∞∫

0

e−vu−vu−1
vω dvdu

vu

Γ(ω)

+∞∫

0

1(
u+ u−1)ω

du

u
=

+∞∫

0

+∞∫

0

e−vu(vu)
ω
2 e−vu−1

(vu−1)
ω
2

dvdu

vu

Just proceed to the substitution
{
x = vu

y = vu−1

dxdy

2xy
=

dvdu

uv

to get Γ(ω)

+∞∫

0

1(
u+ u−1)ω

du

u
=

1

2
Γ
(ω

2

)2

As anounced, L(ω) =
ζ⋆
K,A(ω)

2
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