Hierarchical Linear Models

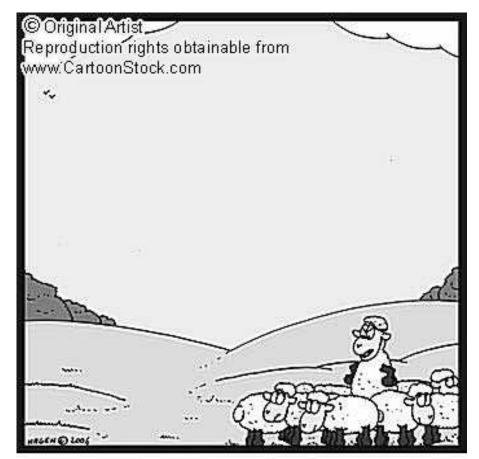
Joseph Stevens, Ph.D., University of Oregon (541) 346-2445, <u>stevensj@uoregon.edu</u>

© Stevens, 2007

Overview and resources

- Overview
- Web site and links: <u>www.uoregon.edu/~stevensj/HLM</u>
- Software:
 - HLM
 - MLwinN
 - Image: Model of Market Mark
 - □ SAS
 - **R** and S-Plus
 - WinBugs

Workshop Overview


- Preparing data
- Two Level models
- Testing nested hierarchies of models
- Estimation
- Interpreting results
- Three level models
- Longitudinal models
- Power in multilevel models

Hierarchical Data Structures

Many social and natural phenomena have a nested or clustered organization:

- Children within classrooms within schools
- Patients in a medical study grouped within doctors within different clinics
- Children within families within communities
- Employees within departments within business locations

Grouping and membership in particular units and clusters are important

For goodness sake, this is a huge field! Why do we need to huddle like this all the time?

Hierarchical Data Structures

More examples of nested or clustered organization:

- Children within peer groups within neighborhoods
- Respondents within interviewers or raters
- Effect sizes within studies within methods (metaanalysis)
- Multistage sampling
- Time of measurement within persons within organizations

Simpson's Paradox:

Clustering Is Important

Well known paradox in which performance of individual groups is reversed when the groups are combined

	Quiz 1	Quiz 2			Quiz 1	Quiz 2
Gina	60.0%	10.0%	Gi	Gina	60 / 100	1 / 10
am	90.0%	30.0%	Sa	Sam	9 / 10	30 / 100

Simpson's Paradox: Other Examples

2006 US School study: 1975 Berkeley sex bias case:

- UCB sued for bias by women applying to grad school
- "When the Oakies left Oklahoma and moved to California, it raised the IQ of both states." - *Will Rogers*
 - Men applied more to high admission rate departments

Hypothetical Data Example from Snijders & Bosker (1999), n = 2, j=5, nj = N = 10

Participant (i)	Cluster (j)	Outcome (Y)	Predictor (X)
1	1	5	1
2	1	7	3
3	2	4	1
4	2	6	4
5	3	3	3
6	3	5	5
7	4	2	4
8	4	4	6
9	5	1	5
10	5	3	7

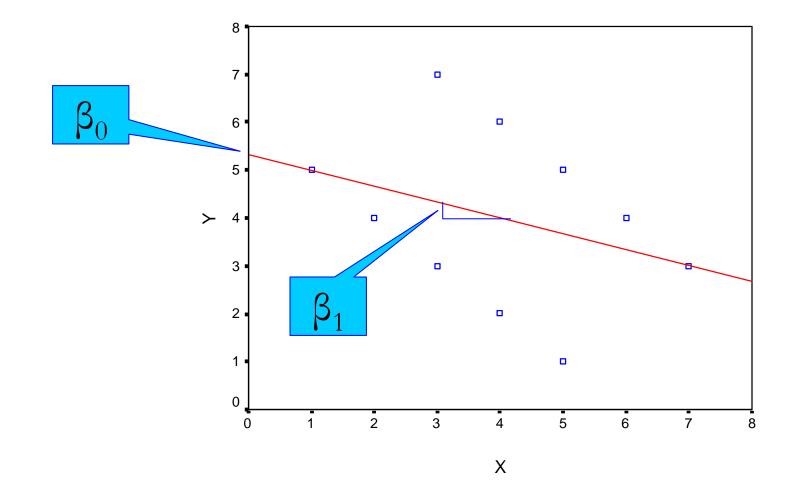
All 10 cases analyzed without taking cluster membership into account:

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.333 ^a	.111	.000	1.826

a. Predictors: (Constant), X

Coefficients^a


			lardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	5.333	1.453		3.671	.006
	Х	333	.333	333	-1.000	.347

a. Dependent Variable: Y

Y = 5.333 - .333(X) + r

Interpretation: There's a negative relationship between the predictor X and the outcome Y, a one unit increase in X results in .333 lower Y

$$Y = 5.333 - .333(X) + r$$

This is an example of a disaggregated analysis

Another alternative is to analyze data at the aggregated group level

Participant (i)	Cluster (j)	Outcome (Y)	Predictor (X)
1	1	5	1
2	1	7	3
3	2	4	2
4	2	6	4
5	3	3	3
6	3	5	5
7	4	2	4
8	4	4	6
9	5	1	5
10	5	3	7

Cluster (j)	Outcome (Y)	Predictor (X)
1	6	2
2	5	3
3	4	4
4	3	5
5	2	6

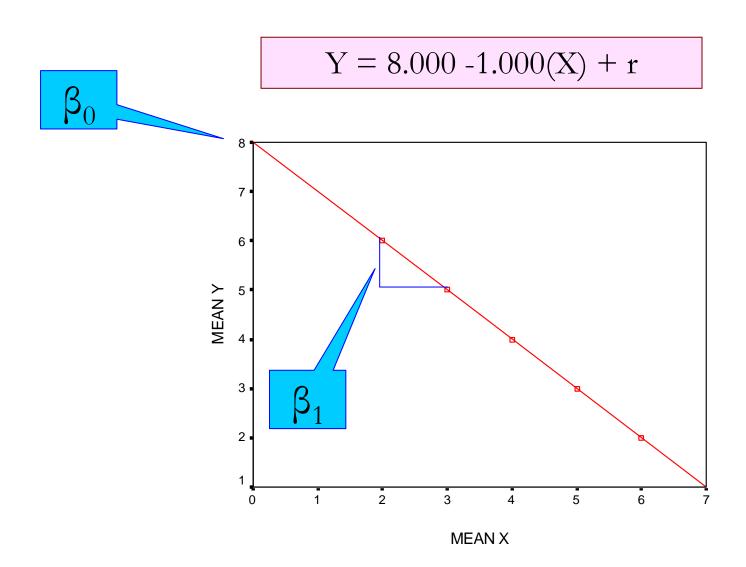
The clusters are analyzed without taking individuals into account:

Model Summary

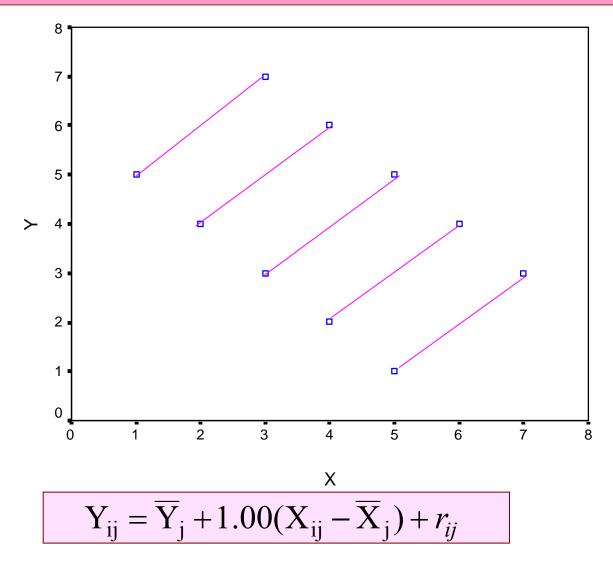
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	1.000 ^a	1.000	1.000	.000

a. Predictors: (Constant), MEANX

Coefficients^a


			lardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	8.000	.000			
	MEANX	-1.000	.000	-1.000		

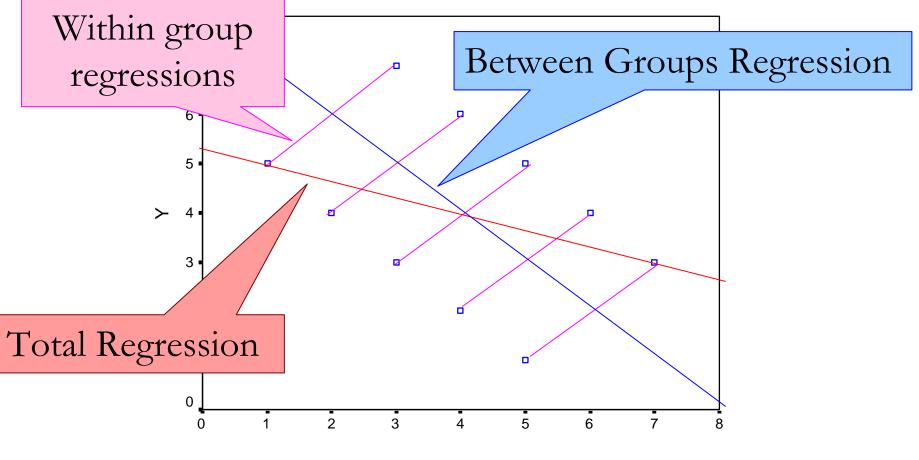
a. Dependent Variable: MEANY


Y = 8.000 - 1.000(X) + r

Interpretation: There's a negative relationship between the predictor X and the outcome Y, a one unit increase in X results in 1.0 lower Y

This is an example of a disaggregated analysis

A third possibility is to analyze each cluster separately, looking at the regression relationship within each group


Multilevel regression takes both levels into account:

$$Y = 8.000 - 1.000(X) + r$$

$$\mathbf{Y}_{ij} = \overline{\mathbf{Y}}_j + 1.00(\mathbf{X}_{ij} - \overline{\mathbf{X}}_j) + r_{ij}$$

$$Y_{ij} = 8.00 - 1.00(\overline{X}_j) + 1.00(X_{ij} - \overline{X}_j) + r_{ij}$$

Taking the multilevel structure of the data into account:

Х

Why Is Multilevel Analysis Needed?

- Nesting creates dependencies in the data
 - Dependencies violate the assumptions of traditional statistical models ("independence of error", "homogeneity of regression slopes")
 - Dependencies result in inaccurate statistical estimates
- Important to understand variation at different levels

Decisions About Multilevel Analysis

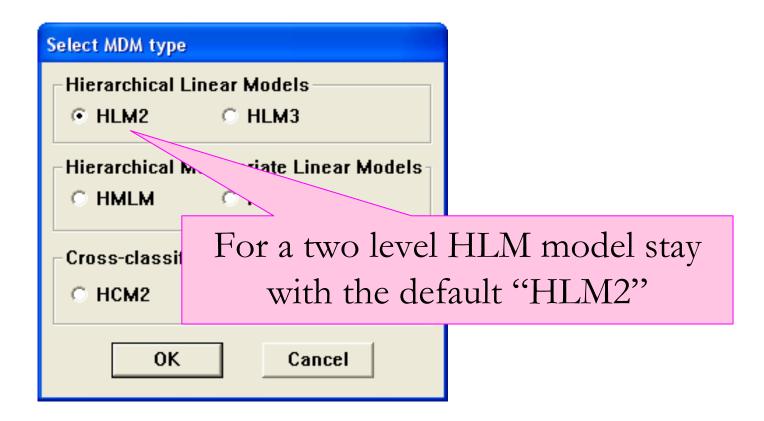
- Properly modeling multilevel structure often matters (and sometimes a lot)
- Partitioning variance at different levels is useful

is tau and sigma (
$$\sigma_Y^2 = \tau + \sigma_Y^2$$
)

policy & practice implications

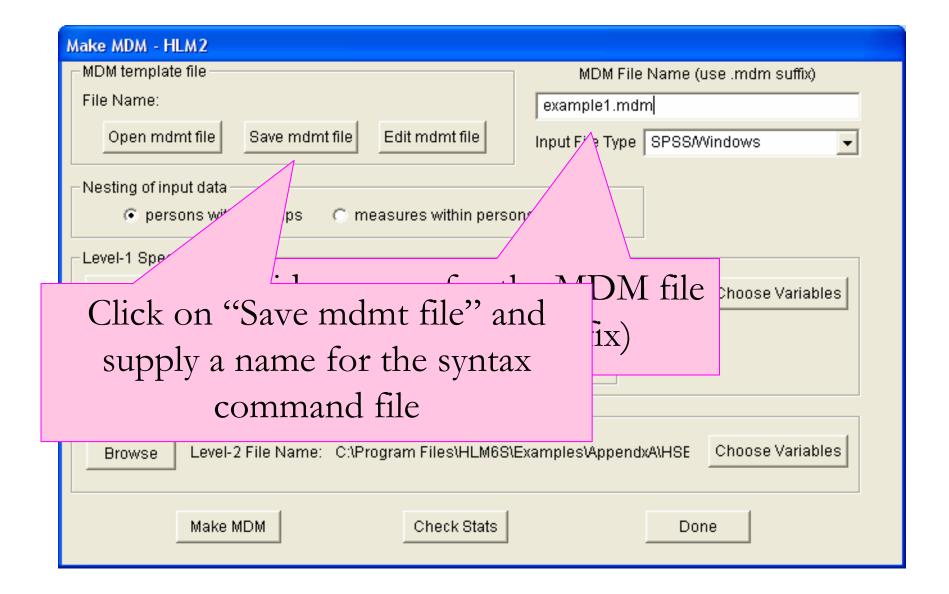
"Randomization by cluster accompanied by analysis appropriate to randomization by individual is an exercise in self-deception and should be discouraged" (Cornfield, 1978, pp.101-2)

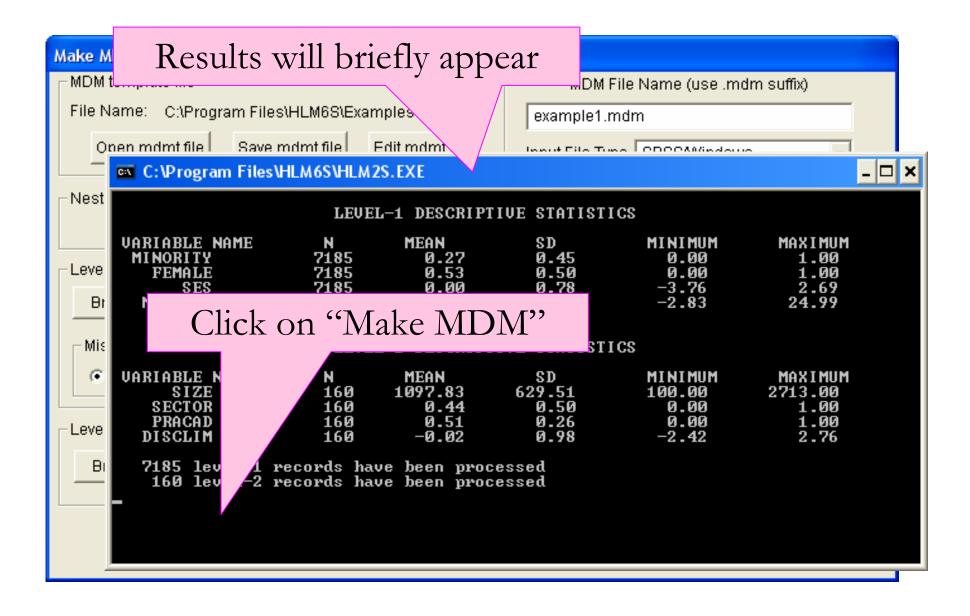
Preparing Data for HLM Analysis

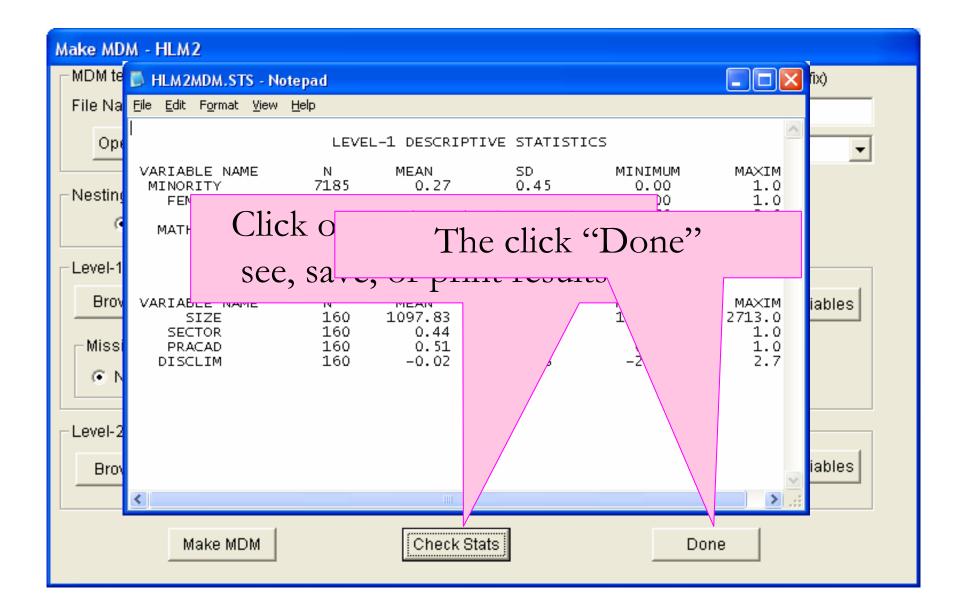

- Use of SPSS as a precursor to HLM assumed
- HLM requires a different data file for each level in the HLM analysis
- Prepare data first in SPSS
 - Clean and screen data
 - Treat missing data
 - ID variables needed to link levels
 - Sort cases on ID
 - Then import files into HLM to create an ".mdm" file

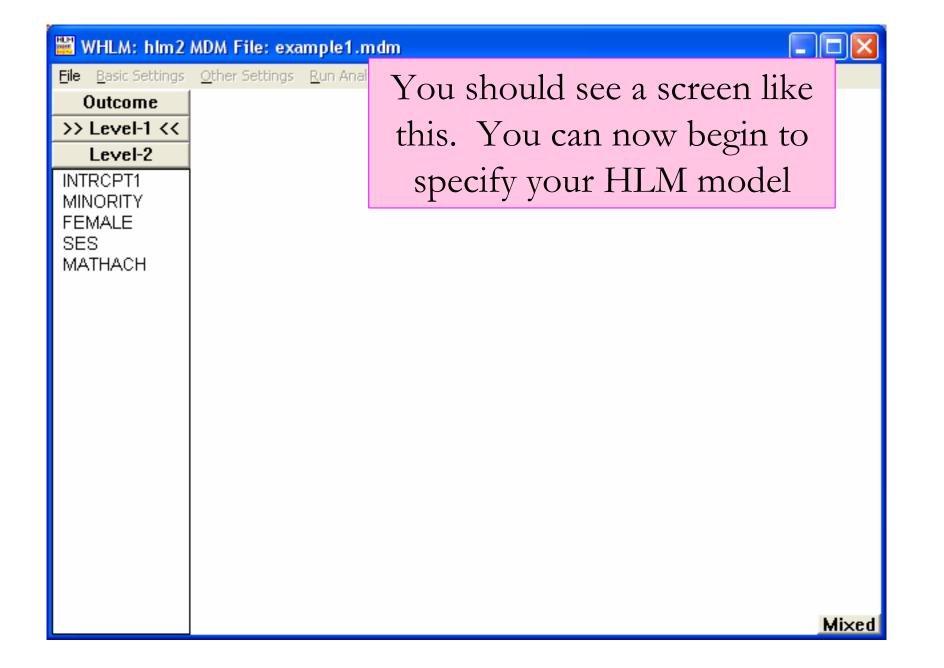
Creating an MDM file

Example:


- Go to "Examples" folder and then "Appendix A" in the HLM directory
- □ Open "HSB1.sav" and "HSB2.sav"


HLM for Windows File Basic Settings Other Settings Run Create a new model using an existing MI Edit/Run old command(.hlm/.mlm) file Manually edit command(.hlm/.mlm) file Save	Start HLM and choose "Make new MDM file" from menu; followed by "Stat package input"
Save As Save model as .emf Save mixed model as .emf	Anthony Bryk Richard Congdon
Make new MDM file Make new MDM from old MDM template(. Display MDM stats View Output Graph Equations Graph Data	ASCII input .mdmt) file Stat package input
Preferences Exit Hierarch	nical Linear and Nonlinear Modeling
	Mixe




Make MDM - HLM2 MDM template file File Name:	Click "Browse", identify the level 1 data file and open it
Open mdmt file Save mdmt file	
Level-1 Specifica Browse Lo Missing Data? No O Ye Level-2 Specifica Browse Lo Browse Lo My Recent Documents Desktop My Documents	
My Computer My Computer File <u>na</u> My Network Files o Places	

Check off the	ID lin	king			1
		U	MDMI	File Name (use	e .mdm suffix)
variable and all	l variab	oles to	Variable	,,,	
be included in t	he MD	M file		SS/Win	dows
	Choose varia	ILM2			
ersons within grou	מו			MDM	1
Level-1 Specification		D 🔽 in MDM			
Browse Level-1 File N	FEMALE	🔲 ID 🔽 in MDM	·	🗖 ID 🔲 in MDM	loose Variables
	SES	🔲 ID 🔽 in MDM		🔲 ID 🥅 in MDM	
Missing Data? — Delet	MATHACH	🗖 ID 🔽 in MDM		🗖 ID 🥅 in MDM	
No C Yes C		🔲 ID 🔲 in MDM	·	🔲 ID 🔲 in MDM	
		🗖 ID 🗖 in MDM	·	🔲 ID 🔲 in MDM	
Level-2 Specification			·		
Browse Level-2 File N			·		ioose Variables
			·		-
Make MDM	1		1		

Two-Level HLM Models

The <u>Single-Level</u>, Fixed Effects Regression Model

$$\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \mathbf{X}_{1i} + \boldsymbol{\beta}_{2} \mathbf{X}_{2i} + \ldots + \boldsymbol{\beta}_{k} \mathbf{X}_{ki} + \mathbf{r}_{i}$$

The parameters β_{kj} are considered fixed
One for all and all for one
Same values for all i and j; the single level model
The r_i 's are random: r_i ~ N(0, σ) and independent

The Multilevel Model

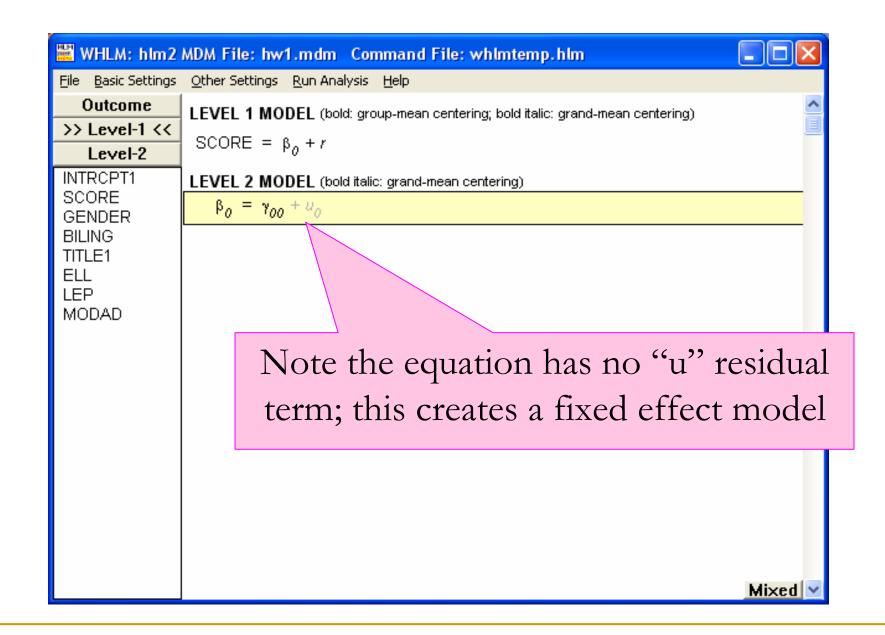
- Takes groups into account and explicitly models group effects
- How to conceptualize and model group level variation?
- How do groups vary on the model parameters?
- Fixed versus random effects

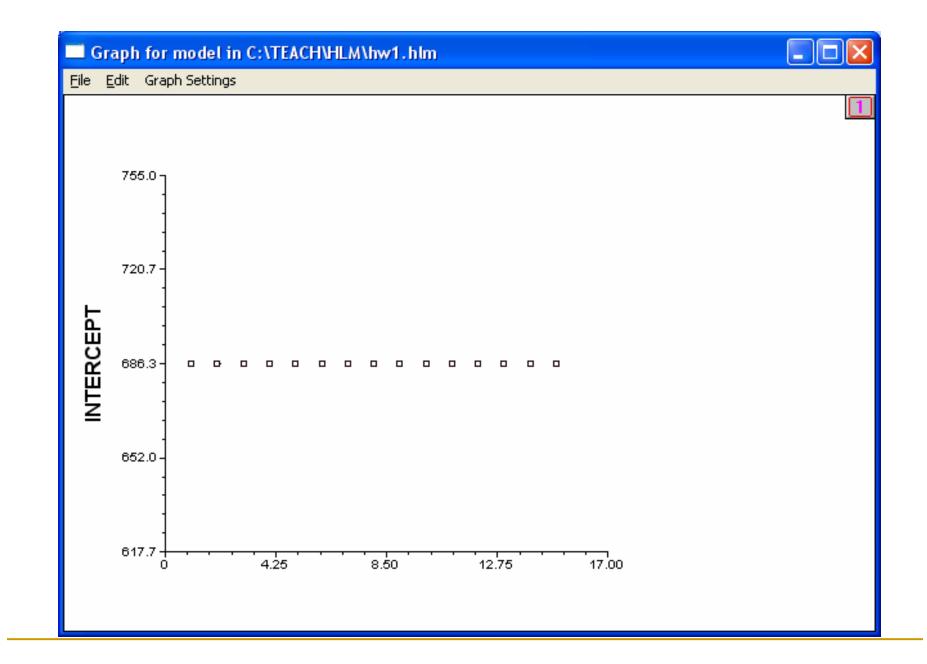
Fixed vs. Random Effects

- Fixed Effects represent discrete, purposefully selected or existing values of a variable or factor
 - Fixed effects exert constant impact on DV
 - □ Random variability only occurs as a within subjects effect (level 1)
 - Can only generalize to particular values used
- Random Effects represent more continuous or randomly sampled values of a variable or factor
 - □ Random effects exert variable impact on DV
 - □ Variability occurs at level 1 and level 2
 - Can study and model variability
 - Can generalize to population of values

Fixed vs. Random Effects?

Use fixed effects if


- □ The groups are regarded as unique entities
- If group values are determined by researcher through design or manipulation
- □ Small j (< 10); improves power
- Use random effects if
 - Groups regarded as a sample from a larger population
 - Researcher wishes to test effects of group level variables
 - □ Researcher wishes to understand group level differences
 - □ Small j (< 10); improves estimation

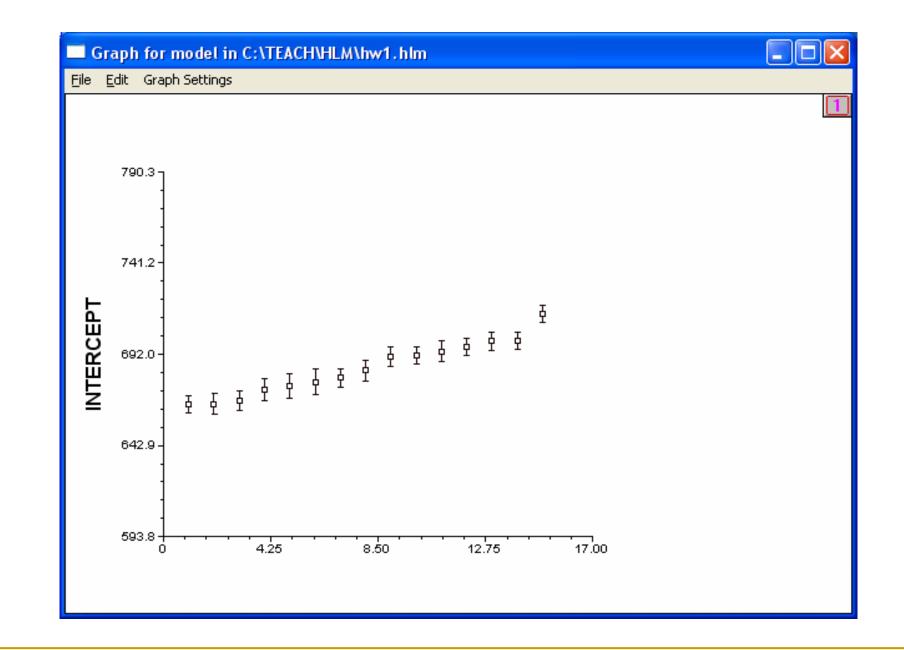

Fixed Intercepts Model

The simplest HLM model is equivalent to a oneway ANOVA with fixed effects:

$$\mathbf{Y}_{ij} = \mathbf{\gamma}_{00} + \mathbf{r}_{ij}$$

- This model simply estimates the grand mean (γ_{00}) and deviations from the grand mean (r_{ij})
- Presented here simply to demonstrate control of fixed and random effects on all parameters

ANOVA Model (random intercepts)


- A simple HLM r
 d
 d
- Equivalent to a effects:

Note the addition of u_{0j} allows different intercepts for each j unit, a random effects model

 $Y_{ij} = \beta_{0j} + r_{ij}$ $\beta_{0j} = \gamma_{00} + u_{0j}$

$$\mathbf{Y}_{ij} = \gamma_{00} + \mathbf{u}_{0j} + \mathbf{r}_{ij}$$

🚆 WHLM: hlm2	MDM File: hw1.mdm Command File: whImtemp.hlm	
<u>File</u> <u>B</u> asic Settings Outcome	<u>O</u> ther Settings <u>R</u> un Analysis <u>H</u> elp	~
>> Level-1 << Level-2	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering) SCORE = $\beta_0 + r$	
INTRCPT1 SCORE GENDER	LEVEL 2 MODEL (bold italic: grand-mean centering) $\beta_0 = \gamma_{00} + u_0$	
BILING TITLE1		
ELL LEP MODAD		
		Mixed 💌

ANOVA Model

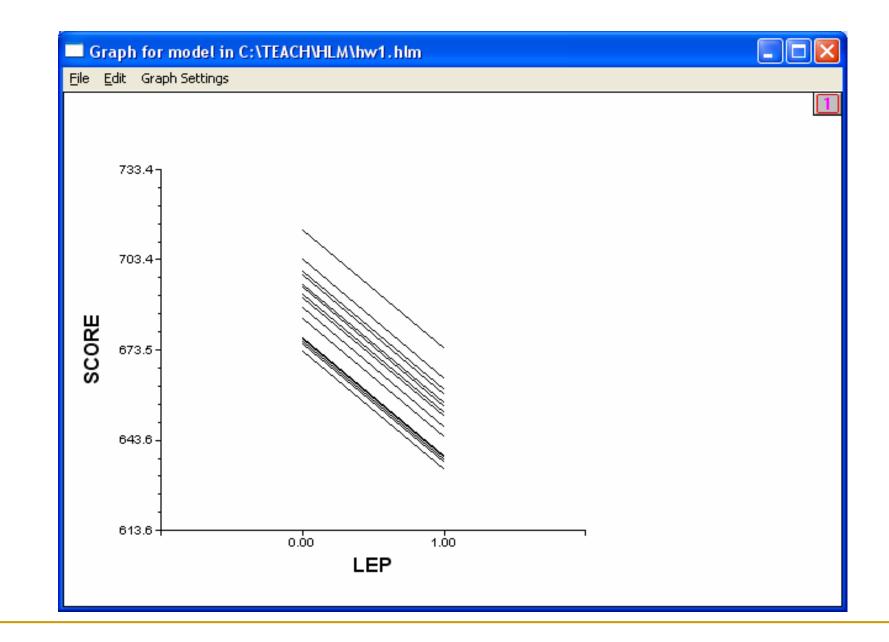
- In addition to providing parameter estimates, the ANOVA model provides information about the presence of level 2 variance (the ICC) and whether there are significant differences between level 2 units
- This model also called the Unconditional Model (because it is not "conditioned" by any predictors) and the "empty" model
- Often used as a baseline model for comparison to more complex models

Variables in HLM Models

- Outcome variables
- Predictors
 - Control variables
 - Explanatory variables
- Variables at higher levels
 - Aggregated variables (Is n sufficient for representation?)
 - Contextual variables

Conditional Models: ANCOVA

Adding a predictor to the ANOVA model results in an ANCOVA model with random intercepts:


$$Y_{ij} = \beta_{0j} + \beta_1(X_1) + r_{ij}$$

$$\beta_{0j}=\gamma_{00}+u_{0j}$$

$$\beta_1 = \gamma_{10}$$

 Note that the effect of X is constrained to be the same fixed effect for every j unit (homogeneity of regression slopes)

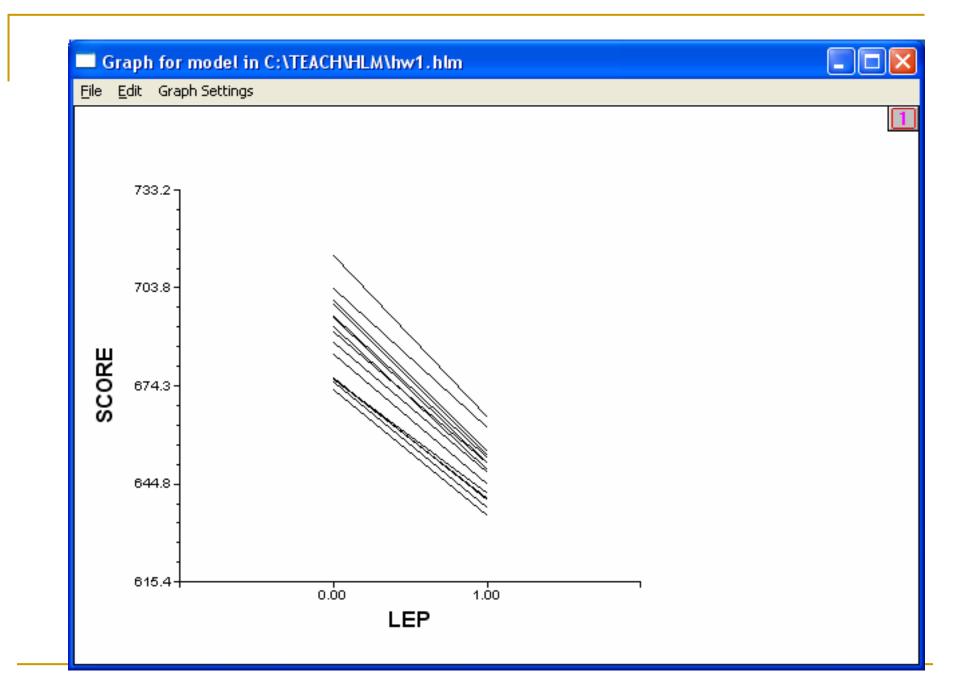
	MDM File: hw1.mdm Command File: hw1.hlm	
	<u>O</u> ther Settings <u>R</u> un Analysis <u>H</u> elp	
Outcome >> Level-1 <<	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)	
Level-2	SCORE = $\beta_0 + \beta_1$ (LEP) + r	
INTRCPT1	LEVEL 2 MODEL (bold italic: grand-mean centering)	
SCORE GENDER	$\beta_0 = \gamma_{00} + u_0$	
BILING	$\beta_1 = \gamma_{10} + u_1$	
TITLE1 ELL		
LEP MODAD		
MODAD		
		Mixed
		Mixed ⊻

1 5

45

Conditional Models: Random Coefficients

An additional parameter results in random variation of the slopes:


$$Y_{ij} = \beta_{0j} + \beta_1(X_1) + r_{ij}$$

$$\beta_{0j} = \gamma_{00} + u_{0j}$$

$$\beta_{1j} = \gamma_{10} +$$

Both intercepts and slopes now vary from group to group

	MDM File: hw1.mdm Command File: hw1.hlm	
	<u>O</u> ther Settings <u>R</u> un Analysis <u>H</u> elp	
Outcome	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)	<u>^</u>
>> Level-1 << Level-2	SCORE = $\beta_0 + \beta_1$ (LEP) + r	
INTRCPT1	LEVEL 2 MODEL (bold italic: grand-mean centering)	
SCORE GENDER	$\beta_0 = \gamma_{00} + u_0$	
BILING TITLE1	$\beta_1 = \gamma_{10} + u_1$	
ELL		
LEP MODAD		
		Mixed 💌

Standardized coefficients

Standardized coefficient at level 1: $\beta_{0j} \left(SD_X \ / \ SD_Y \right)$

Standardized coefficient at level 2: $\gamma_{00} (SD_X / SD_Y)$ Modeling variation at Level 2: Intercepts as Outcomes

$$\mathbf{Y}_{ij} = \bigcirc + \beta_{1j} \mathbf{X}_{1ij} + \mathbf{r}_{ij}$$

$$\beta_{1j} = \gamma_{10} + u_{1j}$$

Predictors (W's) at level 2 are used to model variation in intercepts between the j units Modeling Variation at Level 2: Slopes as Outcomes

$$Y_{ij} = \beta_{0j} + X_{1ij} + r_{ij}$$
$$\beta_{0j} = \gamma_{00} + \gamma_{0j} W_j + u_{0j}$$

Do slopes vary from one j unit to another?W's can be used to predict variation in slopes as well

Variance Components Analysis

- VCA allows estimation of the size of random variance components
 - Important issue when unbalanced designs are used
 - Iterative procedures must be used (usually ML estimation)
- Allows significance testing of whether there is variation in the components across units

Estimating Variance Components: Unconditional Model

$$Var(Y_{ij}) = Var(u_{0j}) + Var(r_{ij})$$
$$= \tau_0 + \sigma^2$$

HLM Output

Final estimation of variance components:

Random Effect		Variance Component	df	Chi-square	P-value
INTRCPT1, level-1,			14	457.32201	0.000

Statistics for current covariance components model

Deviance = 21940.853702 Number of estimated parameters = 2

Variance explained

R² at level 1 =

$$1 - (\sigma_{\text{cond}}^{2} + \tau_{\text{cond}}) / (\sigma_{\text{uncond}}^{2} + \tau_{\text{uncond}})$$
R² at level 2 =

$$1 - [(\sigma_{\text{cond}}^{2} / n_{\text{h}}) + \tau_{\text{cond}}] / [(\sigma_{\text{uncond}}^{2} / n_{\text{h}}) + \tau_{\text{uncond}}]$$

Where $n_h =$ the harmonic mean of n for the level 2 units (k / $[1/n_1 + 1/n_2 + ... 1/n_k]$)

Comparing models

Deviance tests

- Under "Other Settings" on HLM tool bar, choose "hypothesis testing"
- Enter deviance and number of parameters from baseline model
- Variance explained
 - Examine reduction in unconditional model variance as predictors added, a simpler level 2 formula:

$$R^2 = (\tau_{baseline} - \tau_{conditional}) / \tau_{baseline}$$

Outcome Iteration Settings >> Level-1 <		2 MDM File: hw1.mdm Command File: hw1.hlm
INTRCPT1 SCORE GENDER BILING TITLE1 ELL LEP MODAD MODAD Generation of Parameters 2 Multivariant endel Deviance 21940.8537 Number of Parameters 2 Multivariant endel Deviance 21940.8537 Multivariant endel Deviance 21940.8537 Multivariant endel Deviance 21940.8537 Multivariant endel Multivariant endel Deviance 21940.8537 Multivariant endel Deviance 21940.8537 Multivariant endel Deviance 21940.8537 Multivariant endel Deviance 21940.8537 Multivariant endel Deviance 21940.8537 Multivariant endel Deviance 21940.8537 Multivariant endel Mixed	>> Level-1 << Level-2 INTRCPT1 SCORE GENDER BILING TITLE1 ELL LEP	Iteration Settings Estimation Settings Hypothesis Testing Output Settings e-mean centering) Exploratory Analysis (level 2) Exploratory Analysis (level 3) P1 P1 Hypothesis Testing - HLM2 Multivariate Hypothesis Tests 1 2 1 2 1 2 1 2 1 2 1 1

Deviance Test Results

Statistics for current covariance components model

Deviance = 21615.283709 Number of estimated parameters = 2

Variance-Covariance components test

Chi-square statistic = 325.56999Number of degrees of freedom = 0P-value = >.500

Testing a Nested Sequence of HLM Models

- 1. Test unconditional model
- 2. Add level 1 predictors
 - Determine if there is variation across groups
 - If not, fix parameter
 - Decide whether to drop nonsignificant predictors
 - Test deviance, compute R² if so desired
- 3. Add level 2 predictors
 - Evaluate for significance
 - Test deviance, compute R² if so desired

Example

- Use the HSB MDM file previously created to practice running HLM models:
 - Unconditional
 - □ Level 1 predictor fixed, then random
 - □ Level 2 predictor

Statistical Estimation in HLM Models

- Estimation Methods
 - **•** FML
 - **R**ML
 - Empirical Bayes estimation
- Parameter estimation
 - Coefficients and standard errors
 - Variance Components
- Parameter reliability
- Centering
- Residual files

Estimation Methods: Maximum Likelihood Estimation (MLE) Methods

- MLE estimates model parameters by estimating a set of population parameters that maximize a likelihood function
- The likelihood function provides the probabilities of observing the sample data given particular parameter estimates
- MLE methods produce parameters that maximize the probability of finding the observed sample data

Estimation Methods

RML – Restricted Maximum Likelihood, only FML – Full Maximum Likelihood, both the regression coefficients and the variance components are included in the likelihood function

components

Goodness of fit statistics (deviance tests) apply <u>only</u> to the random effects

RML only tests hypotheses about the VCs (and the models being compared must have identical fixed effects) components.

Goodness of fit statistics apply to the entire model

(both fixed and random effects)

Check on software default

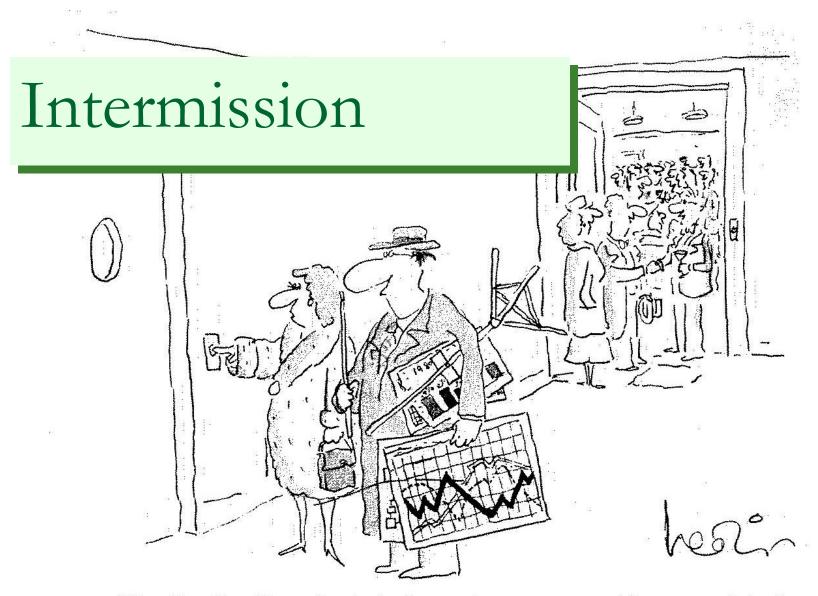
Estimation Methods

- RML expected to lead to better estimates especially when j is small
- FML has two advantages:
 - Computationally easier
 - With FML, overall chi-square tests both regression coefficients and variance components, with RML only variance components are tested
 - Therefore if fixed portion of two models differ, must use FML for nested deviance tests

Computational Algorithms

Several algorithms exist for existing HLM models:

- Expectation-Maximization (EM)
- Fisher scoring
- □ Iterative Generalized Least Squares (IGLS)
- □ Restricted IGLS (RIGLS)

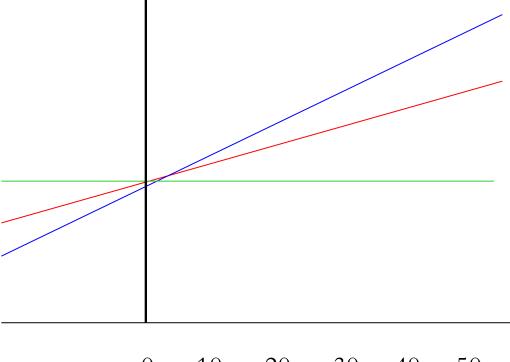

All are iterative search and evaluation procedures

Model Estimation

- Iterative estimation methods usually begin with a set of <u>start values</u>
- Start values are tentative values for the parameters in the model
 - Program begins with starting values (usually based on OLS regression at level 1)
 - Resulting parameter estimates are used as initial values for estimating the HLM model

Model Estimation

- Start values are used to solve model equations on first iteration
- This solution is used to compute initial model fit
- Next iteration involves search for better parameter values
- New values evaluated for fit, then a new set of parameter values tried
- When additional changes produce no appreciable improvement, iteration process terminates (convergence)
- Note that convergence and model fit are very different issues

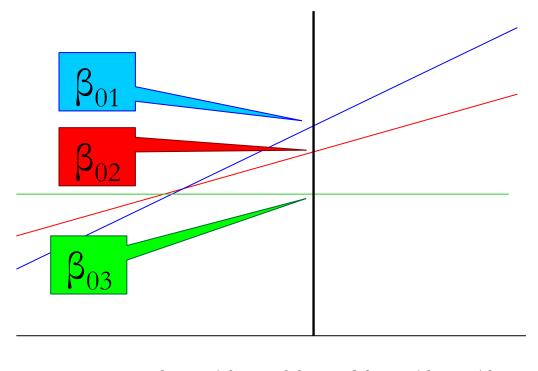

"Frankly, Harold, you're beginning to bore everyone with your statistics."

Centering

- No centering (common practice in single level regression)
- Centering around the group mean (\overline{X}_j)
- Centering around the grand mean (M)
- A known population mean
- A specific meaningful time point

Centering: The Original Metric

- Sensible when 0 is a meaningful point on the original scale of the predictor
 - For example, amount of training ranging from 0 to 14 days
 - Dosage of a drug where 0 represents placebo or no treatment
- Not sensible or interpretable in many other contexts, i.e. SAT scores (which range from 200 to 800)


0 10 20 30 40 50

$$\beta_{0j} = E(Y_{ij} | X_{ij} = 0)$$

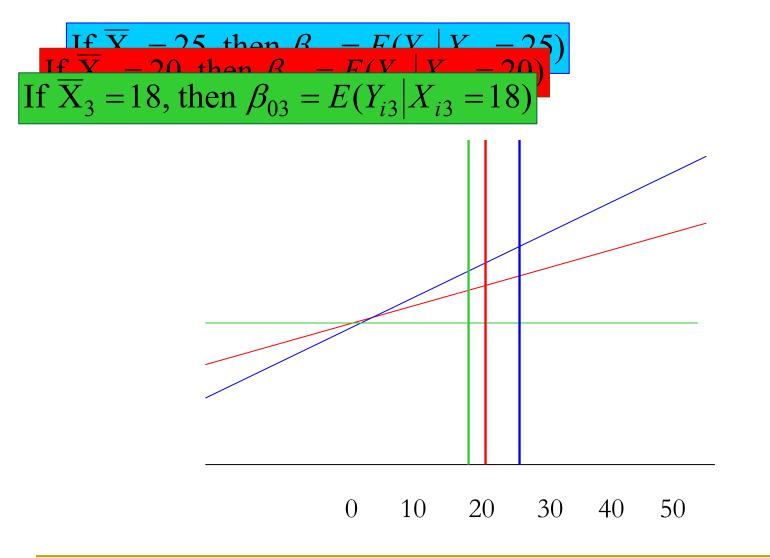
Centering Around the Grand Mean

- Predictors at level 1 (X's) are expressed as deviations from the grand mean (M): (X_{ii} – M)
- Intercept now expresses the expected outcome value (Y) for someone whose value on predictor X is the same as the grand mean on that predictor
- Centering is computationally more efficient
- Intercept represents the group mean adjusted for the grand mean \overline{X}_{j} M
- Variance of $\beta_{0j} = \tau_{00}$, the variance among the level-2 unit means adjusted for the grand mean

Centering Around the Grand Mean

0 10 20 30 40 50

$$\beta_{0j} = E(Y_{ij} | X_{ij} = \gamma_{00})$$

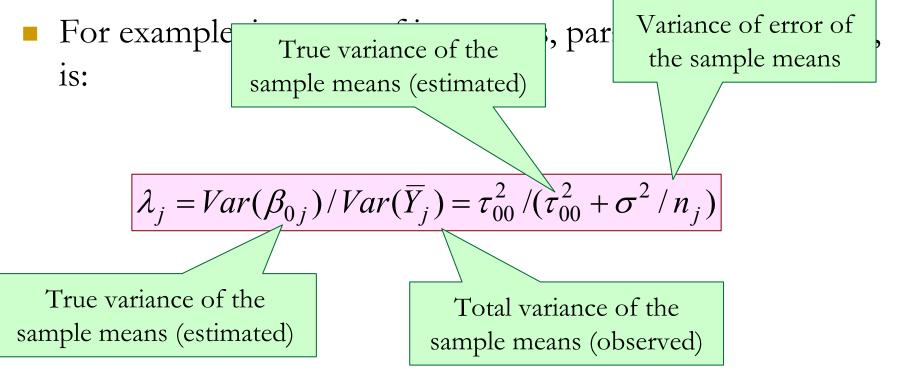

Centering Around the Group Mean

- Individual scores are interpreted relative to their group mean $(X_{ij} \overline{X})$
- The individual deviation scores are orthogonal to the group means
- Intercept represents the unadjusted mean achievement for the group
- Unbiased estimates of within-group effects
- May be necessary in random coefficient models if level 1 predictor affects the outcome at both level 1 and level 2
- Can control for unmeasured between group differences
- But can mask between group effects; interpretation is more complex

Centering Around the Group Mean

- Level 1 results are relative to group membership
- Intercept becomes the unadjusted mean for group j
- Should include level 2 mean of level 1 variables to fully disentangle individual and compositional effects
- Variance β_{0j} is now the variance among the level 2 unit means

Centering Around the Group Mean

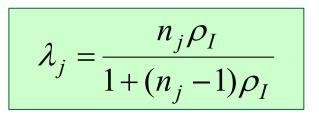


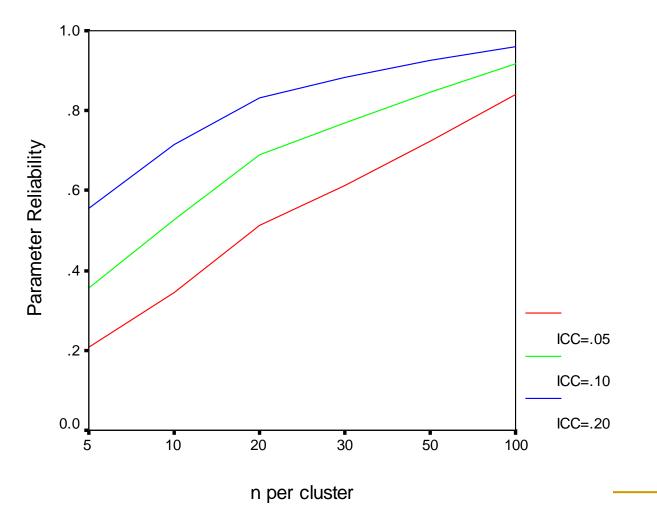
Parameter estimation

- Coefficients and standard errors estimated through maximum likelihood procedures (usually)
 - □ The ratio of the parameter to its standard error produces a Wald test evaluated through comparison to the normal distribution (z)
 - □ In HLM software, a more conservative approach is used:
 - t-tests are used for significance testing
 - t-tests more accurate for fixed effects, small n, and nonnormal distributions)
- Standard errors
- Variance components

Parameter reliability

- Analogous to score reliability: ratio of true score variance to total variance (true score + error)
- In HLM, ratio of true parameter variance to total variability




Parameter reliability

$$\lambda_j = \frac{n_j \rho_I}{1 + (n_j - 1)\rho_I}$$

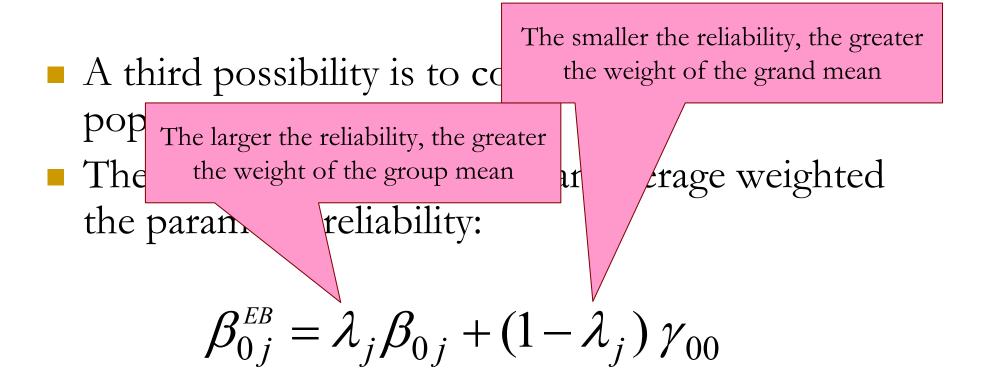
		ICC (ρ_I)	
n _j	.05	.10	.20
5	.21	.36	.56
10	.34	.53	.71
20	.51	.69	.83
30	.61	.77	.88
50	.72	.85	.93
100	.84	.92	.96

Parameter reliability

Predicting Group Effects

- It is often of interest to estimate the random group effects (β_{0j}, β_{1j})
- This is accomplished using Empirical Bayes (EB) estimation
- The basic idea of EB estimation is to predict group values using two kinds of information:
 - 🛛 Group j data
 - Population data obtained from the estimation of the regression model

Empirical Bayes

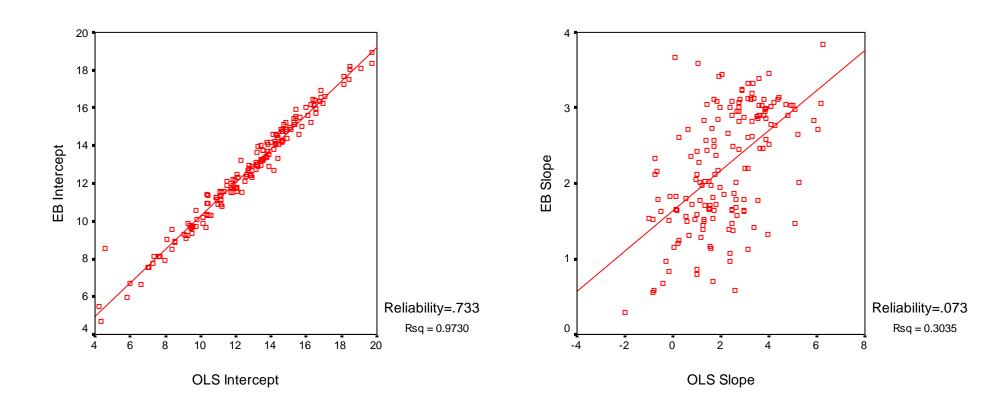

If information from only group j is used to estimate then we have the OLS estimate:

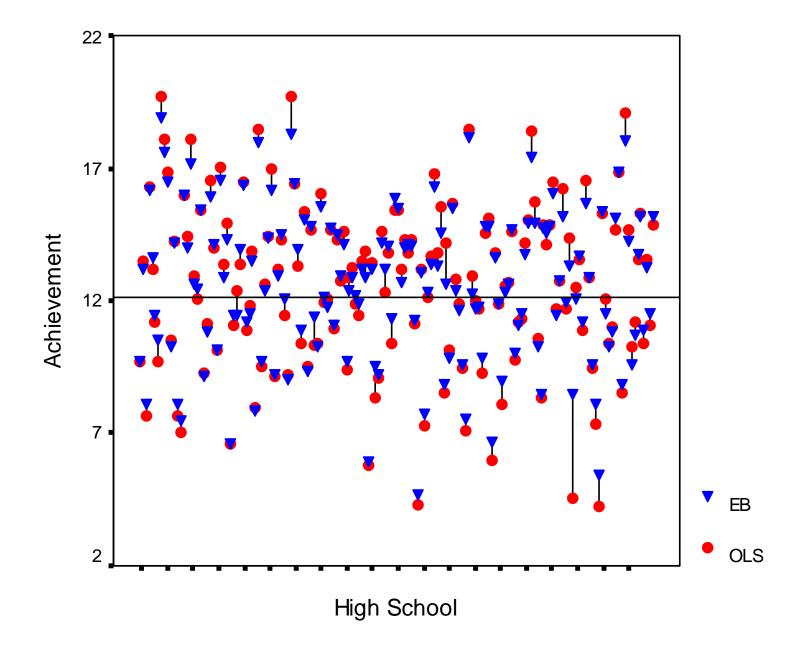
$$\beta_{0j} = \overline{Y}_j$$

• If information from only the population is used to estimate then the group is estimated from the grand mean:

$$\gamma_{00} = \overline{Y}_{..} = \sum_{j=1}^{N} \frac{n_j}{N} \overline{Y}_j$$

Empirical Bayes




The results in the "posterior means" or EB estimates

Bayesian Estimation

- Use of prior and posterior information improves estimation (depending on purpose)
- Estimates "shrink" toward the grand mean as shown in formula
- Amount of shrinkage depends on the "badness" of the unit estimate
 - Low reliability results in greater shrinkage (if λ = 1, there is no shrinkage; if λ = 0, shrinkage is complete, γ₀₀)
 - Small n-size within a j unit results in greater shrinkage, "borrowing" from larger units

$$\beta_{0j}^{EB} = \lambda_j \beta_{0j} + (1 - \lambda_j) \gamma_{00}$$

HLM Residual Files

- Important outcome information from an HLM analysis can be saved for each level of the analysis in a "residual file"
 - Residual files contain parameter estimates and other variables from the analysis
 - Residual files can be save in statistical package format (SPSS, SAS, etc.)
- Residual files can be used for diagnostic evaluation of statistical model assumptions
- Residual files can be used to estimate and further describe or analyze effects among the units at each level

	WILLING HUITZ	MDW File: HSB.MDM
ile	Basic Settings	Other Settings Run Analysis Help
	Dutcome	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean ce
_	Level-1	MATHACH = $\beta_0 + \beta_1 (MINORITY) + \beta_2 (FEMALE) + r$
NT	Contractor and a subsequence	I Specifications - HLM2
	- Distribution	n of Outcome Variable (Continuous)
ME	C Poissor	n (constant exposure)
		al (number of trials) n (variable exposure)
	C Multino C Ordinal	Number of categories
	Cover dis	
	Level-1	Residual File Level-2 Residual File
	Title	no title
	Output file	name C:\Program Files\HLM6S\Examples\Chapter2\hlm2
	Graph file r	name C:\Program Files\HLM6S\grapheq.geq
		Cancel OK

1 N	/HLM: hlm2	MDM File: HSB.MD	ЭМ			
ile	Basic Settings	Other Settings Run	Analysis Help			
	Outcome	LEVEL 1 MODEL	(bold: group-mean ce	entering; bold italic: grand-mea	n centering)	
	Level-1	MATHACH = β_{i}	₂ + β ₁ (ΜΙΝΟRΙΤΥ)	+ β_2 (FEMALE) + r		
200200		Specifications - I	HLM2			
SIZ SEI PR/	Distribution	n of Outcome Varia				
PR, DIS	Create I	evel-1 Residual F	ile			
HIM ME	C Level	sible choices S FE M	Double-click Variables in residual file EMALE ATHACH INORITY	to move variables betwee Level-2 Possible choices DISCLIM HIMINTY MEANSES PRACAD SIZE	en columns Variables in residual file SECTOR	
	G C		C Stata C S esfil1.sav	YSTAT C Free Format	OK	

🖥 WI	HLM	: hlm2	MDM File: HSI	B.MDM		
File E	Basic	Settings	Other Settings	Run Analysis	Help	
Outcome LEVEL 1 MODEL (bold: group-mean centering; bold ita				alic: grand-mean ce		
	eve	I-1	MATHACH	= β ₀ + β₁(Μ	ΝΟRITY) + β ₂ (FEMA	LE) + r
	Basi	c Mode	Specification			
SIZ						
SE	Dis	stributio	n of Outcome \	√ariable		
PR/ DIS	2	Create I	evel-2 Residu	ual File		
HIM	1	Cre	ate Residual F	ile		
ME	<u>.</u>		Variab		Variables in	
	2	2500000000	ible choices		residual file	
	•	DISC			SECTOR	
	C	MEA	NSES			
	9	PRA SIZE				
	-	0.22				
	1					
	-					
	Т	U	OUDIE-CIICK TO I	move variables	s between columns	
	С	-1	Residual File T	Nhlm2		
				C SAS C	Stata	
	Ч		C SVSTAT	T C Free Format		
			C STSIAI	r riee ruir	nat	
-		Residu	al File Name	resfil2.sav		-
				_		
			OK		Cancel	
			4.			
		·				

🧰 resfil1 - SPSS Data Editor

File Edit View Data Transform Analyze Graphs Utilities S-PLUS Window Help

1 : l2id		1224										
	l2id	I1 resid	fitval	sigma	minority	female	mathach	sector	var	var	var	var
1	1224	-4.180	10.056	6.081	275	1.000	5.876	438				
2	1224	9.652	10.056	6.081	275	1.000	19.708	438				
3	1224	8.813	11.536	6.081	275	.000	20.349	438				
4	1224	-2.755	11.536	6.081	275	.000	8.781	438				
5	1224	6.362	11.536	6.081	275	.000	17.898	438				
6	1224	-6.953	11.536	6.081	275	.000	4.583	438				
7	1224	-12.888	10.056	6.081	275	1.000	-2.832	438				
8	1224	-11.013	11.536	6.081	275	.000	.523	438				
9	1224	-8.529	10.056	6.081	275	1.000	1.527	438				
10	1224	9.985	11.536	6.081	275	.000	21.521	438				
11	1224	581	10.056	6.081	275	1.000	9.475	438				
12	1224	6.001	10.056	6.081	275	1.000	16.057	438				
13	1224	9.642	11.536	6.081	275	.000	21.178	438				
14	1224	10.122	10.056	6.081	275	1.000	20.178	438				
15	1224	8.813	11.536	6.081	275	.000	20.349	438				
16	1224	10.452	10.056	6.081	275	1.000	20.508	438				
17	1224	7.802	11.536	6.081	275	.000	19.338	438				
18	1224	-1.872	6.017	6.081	.725	.000	4.145	438				
19	1224	-7.129	10.056	6.081	275	1.000	2.927	438				
20	1224	4.869	11.536	6.081	275	.000	16.405	438				
21	1224	3.597	10.056	6.081	275	1.000	13.653	438				
22	1224	-3.498	10.056	6.081	275	1.000	6.558	438				
23	1224	403	10.056	6.081	275	1.000	9.653	438				
24	1224	-8.382	11.536	6.081	275	.000	3.154	438				
25	1224	.217	4.536	6.081	.725	1.000	4.753	438				
26	1224	10.185	11.536	6.081	275	.000	21.721	438				
27	1224	-4.890	10.056	6.081	275	1.000	5.166	438				
28	1224	-3.657	10.056	6.081	275	1.000	6.399	438				
	1224	-3.235	10.056	6.081	275	1.000	6.821	438				
	1224	- 801	10.056	6.081	- 275	1 000	9 255	- 438				

🗰 resfil1 - SPSS Data Editor

File Edit View Data Transform Analyze Graphs Utilities S-PLUS Window Help

2 : 12id			1224										
	l2i	d	I1 resid	fitval	sigma	minority	female	mathach	sector	var	var	var	var
1	1224		-4.180	10.056	6.081	275	1.000	5.876	438				
2	1224	9.652		10.056	6.081	275	1.000	19.708	438				
3	1224		8.813	11.536	6.081	275	.000	20.349	438				
4	1224	Com	pute Variable	9					438				
5	1224	Target V	ariable:	Nur	meric Expressio	n:			438				
6	1224	predma	and a first of the local day in the loca		al+l1resid				438				
7	1224	Tupel	Label						438				
8	1224	- Typeo						6	438				
9	1224	A; 12id		-Ľ'	1 1 1	1.1.1		1	438				
10	1224	🛞 l1re		+			nctions: 🔼 📥	J	438				
11	1224	🛞 fitva		-	<= >=	4 5 6 AE	S(numexpr)		438				
12	1224	🛞 sign		×	=	1 2 3 AN	lY(test,value,va ISIN(numexpr)	ilue,)	438				
13	1224	🛞 min		1	8	0 . AF	TAN(numexpr)		438				
14	1224	() ∯ fem		××	1~101	ICE)FNORM(zvalue	e)	438				
15	1224	(∰) sec			د الکندانست ان ر		F.BERNÒULLI	(q,p)	438				
16	1224			1	f				438				
17	1224												
18	1224				OK Paste	Reset	Cancel	Help	438				
19	1224		1.120	10.0001	0.001		1.000	LOLI	438				
20	1224		4.869	11.536	6.081	275	.000	16.405	438				
21	1224	1	3.597	10.056	6.081	275	1.000	13.653	438				
22	1224		-3.498	10.056	6.081	275	1.000	6.558	438				
23	1224		403	10.056	6.081	275	1.000	9.653	438				
24	1224		-8.382	11.536	6.081	275	.000	3.154	438				
25	1224		.217	4.536	6.081	.725	1.000	4.753	438				
26	1224		10.185	11.536	6.081	275	.000	21.721	438				
27	1224	- C	-4.890	10.056	6.081	275	1.000	5.166	438				
28	1224		-3.657	10.056	6.081	275	1.000	6.399	438			0	
29	1224		-3.235	10.056	6.081	275	1.000	6.821	438				
30	1224		- 801	10.056	6.081	- 275	1 000	9 255	- 438				

🧰 resfil2 - SPSS Data Editor

File Edit View Data Transform Analyze Graphs Utilities S-PLUS Window Help

■ ● ■ ■ ► ► ► ▲ 4 1 ■ • ■

1224

1 : I2id

	3	a second and									1	
	l2id	nj	chipct	mdist	Intotvar	olsrsvar	mdrsvar	ebintrcp	ebminori	ebfemale	olintrcp	olminori
1	1224	47	4.812	3.572	2.027	1.975	1.953	-2.058	331	.024	-2.436	-4.551
2		25	2.051	.923	1.949	1.960	1.882	.856	050	.052	.457	127
3	1296	48	4.068	2.969	1.678	1.678	2.410	124	.352	.100	-7.415	11.052
4	1308	20	-1.0E+36	-1.0E+36	1.811	-1.0E+36	1.913	1.201	071	252	-1.0E+36	-1.0E+36
5	1100 1100 1	48	-1.0E+36	-1.0E+36	1.698	-1.0E+36	2.300	.615	005	032	-1.0E+36	-1.0E+36
6		30	4.974	3.871	1.771	1.513	1.384	941	525	052	-1.917	-6.892
7	1374	28	3.095	2.291	2.123	2.033	2.170	904	455	145	121	-2.853
8	1433	35	-1.0E+36	-1.0E+36	1.356	-1.0E+36	-1.0E+36	3.410	090	703	-1.0E+36	-1.0E+36
9	1436	44	3.136	2.293	1.515	-1.0E+36	1.176	2.664	287	644	-1.0E+36	-1.0E+36
10		33	10.373	10.322	1.939	1.800	1.675	3.448	792	440	.885	-16.588
11	1462	57	-1.0E+36	-1.0E+36	1.842	-1.0E+36	2.188	-1.946	576	.336	-1.0E+36	-1.0E+36
	1477	62	1.267	.184	1.968	1.980	1.972	641	.034	.196	957	266
13	1499	53	4.379	3.141	1.848	1.806	2.106	-2.284	.417	.044	-2.188	1.732
		27	2.783	1.917	1.962	1.897	2.296	-1.619	244	.400	-2.896	-1.757
15	1906	53	4.446	3.193	1.874	1.839	1.929	.960	656	.039	025	-4.681
	1909	28	1.647	.666	1.817	-1.0E+36	1.312	1.105	097	062	-1.0E+36	-1.0E+36
	1942	29	8.613	8.460	1.700	1.724	1.401	4.440	101	514	7.404	9.126
18	1946	39	8.240	8.049	1.943	1.868	1.910	1.148	.533	767	3.896	5.418
19	2030	47	1.161	.156	1.839	1.830	1.634	334	.042	046	147	.303
1	2208	60	1.991	.907	1.812	-1.0E+36	1.825	.765	107	417	-1.0E+36	-1.0E+36
21	2277	61	-1.0E+36	-1.0E+36	1.717	-1.0E+36	2.231	-2.979	.413	.201	-1.0E+36	-1.0E+36
22	2305	67	-1.0E+36	-1.0E+36	1.612	-1.0E+36	2.314	867	.228	.072	-1.0E+36	-1.0E+36
	33 AGC 2 AC	47	4.734	3.546	1.766	1.778	1.300	3.297	177	374	4.585	3.071
24	2458	57	-1.0E+36	-1.0E+36	1.766	-1.0E+36	2.291	1.098	008	057	-1.0E+36	-1.0E+36
25	2467	52	3.221	2.369	1.915	-1.0E+36	1.757	-2.512	.278	.677	-1.0E+36	-1.0E+36
26	2526	57	-1.0E+36	-1.0E+36	1.564	-1.0E+36	1.922	2.508	.022	125	-1.0E+36	-1.0E+36
27	2626	38	2.431	1.491	1.832	-1.0E+36	1.426	.738	109	452	-1.0E+36	-1.0E+36
28	2629	57	-1.0E+36	-1.0E+36	1.642	-1.0E+36	1.602	073	1.089	.128	-1.0E+36	-1.0E+36
29	2639	42	1.374	.276	1.767	-1.0E+36	2.384	519	178	065	-1.0E+36	-1.0E+36
30	2651	38	3 491	2 559	1 948	1 885	1 740	-1.091	- 233	- 152	-1.640	-4 665

🗰 resfil2 - SPSS Data Editor

File Edit View Data Transform Analyze Graphs Utilities S-PLUS Window Help

A	1	10	2

100

								8						
Con	n <mark>pute Vari</mark> a	ble						-						
press and a second seco	Variable:		provide the second seco	ic Expression:					mdrsvar	ebintrcp	ebminori	ebfemale	olintrcp	olminori
_ inter		-	fvintro	p + olintrop			1		1.953	-2.058	331	.024	-2.436	-4.551
- Туре	&Label							E-	1.955	-2.050		.024	-2.436	-4.551
		[• I				~	2	and the second		050			
🗕 🗰 ols		<u>~</u> L		< > 7	8 9 Functions			P-	2.410	124	.352	.100	-7.415	11.052
- 🏶 mo			+					2	1.913	1.201	071	252	-1.0E+36	-1.0E+36
🗰 eb	1998 N - 199		<u> </u>		5 6 ABS(nun		^	P	2.300	.615	005	032	-1.0E+36	-1.0E+36
eb	minori female		× .	= ~= 1	2 3 ANY(test ARSIN(r	;,value,value,) (umexnt)	-	Ë.	1.384	941	525	052	-1.917	-6.892
- 🗘 🐨 eb			1	<u>& 0</u>	ABTAN(numexpr)		В	2.170	904	455	145	121	-2.853
- 🗰 oln	25		**	~ () D	elete CDFNOF	RM(zvalue) RNOULLI(q,p)	~	6	-1.0E+36	3.410	090	703	-1.0E+36	-1.0E+36
- 🗰 olfi				1		11400cci(q,p)		6	1.176	2.664	287	644	-1.0E+36	-1.0E+36
- 🏶 fvi			lf					Þ	1.675	3.448	792	440	.885	-16.588
📕 🏶 fvr	and the second se						v	6	2.188	-1.946	576	.336	-1.0E+36	-1.0E+36
🚽 🏶 fvf	emale	~	OK	Paste	Reset Can	cel Help		D	1.972	641	.034	.196	957	266
	1				8 (S-2			6	2.106	-2.284	.417	.044	-2.188	1.732
14	1637			27 2.7	83 1.917	1.962	1.893	1.00	2.296	-1.619	244	.400	-2.896	-1.757
15	1906			53 4.4	46 3.193	1.874	1.83	9	1.929	.960	656	.039	025	-4.681
16	1909			28 1.6	47 .666	1.817	-1.0E+3	6	1.312	1.105	097	062	-1.0E+36	-1.0E+36
17	1942			29 8.6	13 8.460	1.700	1.72	4	1.401	4.440	101	514	7.404	9.126
18	1946			39 8.2	40 8.049	1.943	1.868	8	1.910	1.148	.533	767	3.896	5.418
19	2030			47 1.1	61 .158	1.839	1.830	0	1.634	334	.042	046	147	.303
20	2208			60 1.9	91 .907	1.812	-1.0E+36	6	1.825	.765	107	417	-1.0E+36	-1.0E+36
21	2277	1		61 -1.0E+	36 -1.0E+36	1.717	-1.0E+3	6	2.231	-2.979	.413	.201	-1.0E+36	-1.0E+36
22	2305			67 -1.0E+	36 -1.0E+36	1.612	-1.0E+36	6	2.314	867	.228	.072	-1.0E+36	-1.0E+36
23	2336			47 4.7	34 3.546	1.766	1.770	8	1.300	3.297	177	374	4.585	3.071
24	2458			57 -1.0E+	36 -1.0E+36	1.766	-1.0E+3	6	2.291	1.098	008	057	-1.0E+36	-1.0E+36
25	2467			52 3.2	21 2.369	1.915	-1.0E+36	6	1.757	-2.512	.278	.677	-1.0E+36	-1.0E+36
26	2526			57 -1.0E+	36 -1.0E+36	1.564	-1.0E+36	6	1.922	2.508	.022	125	-1.0E+36	-1.0E+36
27	2626			38 2.4	31 1.491	1.832	-1.0E+36	6	1.426	.738	109	452	-1.0E+36	-1.0E+36
28	2629			57 -1.0E+	36 -1.0E+36	1.642	-1.0E+36	6	1.602	073	1.089	.128	-1.0E+36	-1.0E+36
29	2639			42 1.3	74 .276	1.767	-1.0E+36	6	2.384	519	178	065	-1.0E+36	-1.0E+36
30	2651			38 3.4	91 2 559	1 948	1.88/	5	1 740	-1 091	- 233	- 152	-1.640	-4 665

Example: Creating Residual Files

Three level models

Level-1 (p students) $Y_{ijk} = \pi_{0jk} + \pi_{1jk}(a_{pijk}) + e_{ijk}$ Level-2 (j classrooms) $\pi_{0ik} = \beta_{p0k} + \beta_{p1k}(X_{qik}) + r_{p0k}$ $\boldsymbol{\pi}_{1jk} = \boldsymbol{\beta}_{p1kj} + \boldsymbol{\beta}_{p1k} (\mathbf{X}_{qjk}) + \mathbf{r}_{p1k}$ Level-3 (k schools) $\beta_{p0k} = \gamma_{pq0} + \gamma_{pqs}(W_{sk}) + u_{pqk}$ $\beta_{p1k} = \gamma_{pq1} + \gamma_{pqs}(W_{sk}) + u_{pqk}$ Partitioning variance in the three level model

Proportion of variance within classrooms (individual student differences) = $\sigma^2 / (\sigma^2 + \tau_{\pi} + \tau_{\beta})$

Proportion of variance between classrooms within schools = $\tau_{\pi} / (\sigma^2 + \tau_{\pi} + \tau_{\beta})$

Proportion of variance between schools = $\tau_{\beta} / (\sigma^2 + \tau_{\pi} + \tau_{\beta})$

Three level example

- Example:
 - Go to "Examples" folder and then "Chapter 4" in the HLM directory
 - □ Open "EG1.sav", "EG2.sav", and "EG3.sav"

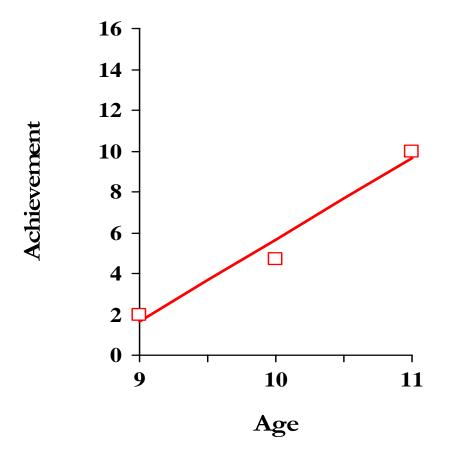
Longitudinal models

- Level 1 defined as repeated measurement occasions
- Levels 2 and 3 defined as higher levels in the nested structure
- For example, longitudinal analysis of student achievement

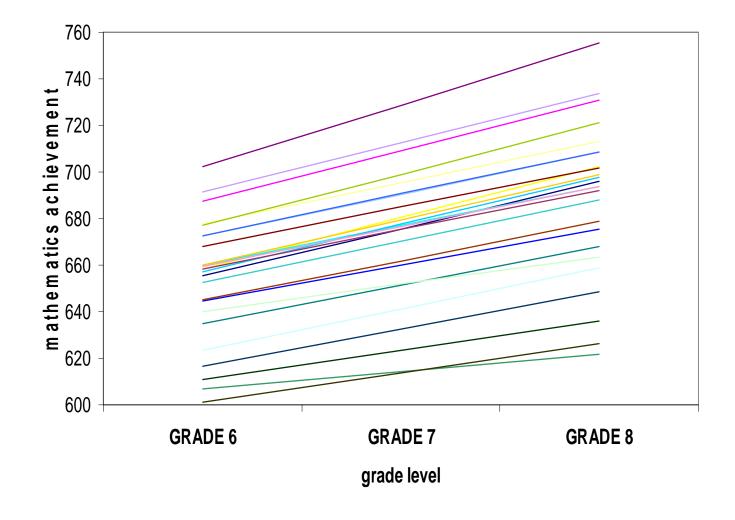
Level 1 = achievement scores at times 1 - t

Level 2 = student characteristics

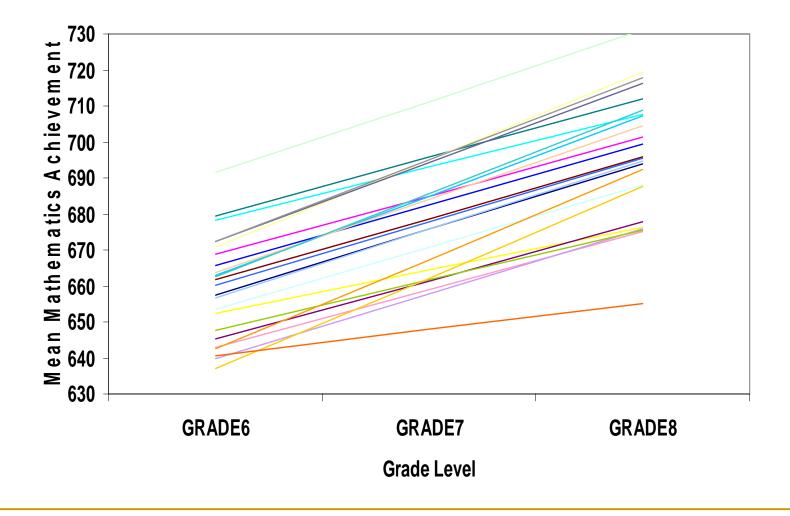
Level 3 = school characteristics


Longitudinal models

- Two important advantages of the MLM approach to repeated measures:
 - Times of measurement can vary from one person to another
 - Data do not need to be complete on all measurement occasions


Longitudinal models Level-1 $Y_{tij} = \pi_{0ij} + \pi_{1ij} (time) + e_{tij}$ Level-2 $\boldsymbol{\pi}_{0ij} = \boldsymbol{\beta}_{00j} + \boldsymbol{\beta}_{01j}(\mathbf{X}_{ij}) + \mathbf{r}_{0ij}$ $\boldsymbol{\pi}_{1ij} = \boldsymbol{\beta}_{10j} + \boldsymbol{\beta}_{11j}(\mathbf{X}_{ij}) + \mathbf{r}_{1ii}$ Level-3 $\beta_{00j} = \gamma_{000} + \gamma_{001} (W_{1j}) + u_{00j}$ $\beta_{10i} = \gamma_{100} + \gamma_{101} (W_{1i}) + u_{10i}$

III level1	🗈 level1long - SPSS Data Editor												
File Edit	View Data	Transform A	nalyze Graphs	Utilities S-PLI	JS Wir	A variable is also needed to							
	🞒 🔍 🗠		- I? M *										
	6					indicate the time of occurrence							
1 : id			63	Ĥ	.11	of each measurement occasion							
	id	schnumb	math	ye lin	k –	link the level 2 file to level 3							
1	63	1417	692										
2	63	1417	671	1									
3	63	1417	707	2									
4	171	1417	646	0									
5	171	1417	660	1	9								
6	171	1417	689	2									
7	190	1417	652	0		The set of rows represent the							
8	190	1417	674	1		The set of 10 ws represent the							
9	190	1417	691	2		repeated measures for one							
10	246	1417	644	U		1							
11	246	1417	650	1		participant							
12	246	1417	680	2									
13	267	1417	648	0	1								
14	267	1417	645	1									
15	267	1417	651	2									
16	279	1417	654	0									
17	279	1417	661	1									
18	279	1417	680	2									
19	332	1417	639	0									
20	332	1417	673	1									
21	332	1417	723	2	1								
22	451	1417	669	0									
23	451	1417	685	1									


Fitting a growth trajectory

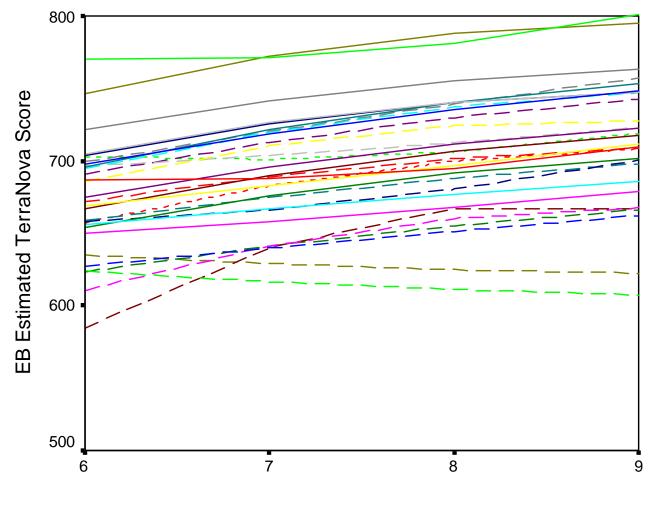
Linear growth for individual students

Average linear growth by school

Curvilinear Longitudinal models

Level-1

$$Y_{tij} = \pi_{0ij} + \pi_{1ij}(time) + e_{tij}$$


Level-2

$$\begin{aligned} \boldsymbol{\pi}_{0ij} &= \boldsymbol{\beta}_{00j} + \boldsymbol{\beta}_{01j} (\mathbf{X}_{ij}) + \mathbf{r}_{0ij} \\ \boldsymbol{\pi}_{1ij} &= \boldsymbol{\beta}_{10j} + \boldsymbol{\beta}_{11j} (\mathbf{X}_{ij}) + \mathbf{r}_{1ij} \end{aligned}$$

Level-3

$$\beta_{00j} = \gamma_{000} + \gamma_{001} (W_{1j}) + u_{00j}$$

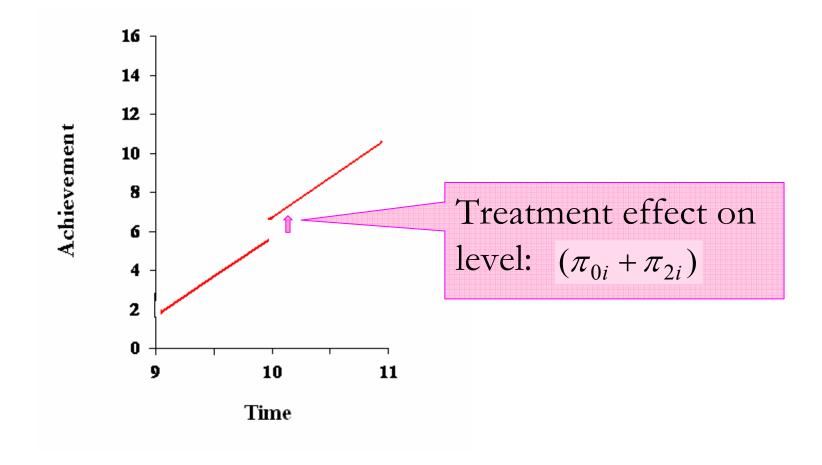
$$\beta_{10j} = \gamma_{100} + \gamma_{101} (W_{1j}) + u_{10j}$$

Curvilinear growth for individual students

Grade

Testing a Nested Sequence of HLM Longitudinal Models

- 1. Test unconditional model
- 2. Test Level 1 growth model
- 3. After establishing the level 1 growth model, use it as the baseline for succeeding model comparisons
- 4. Add level 2 predictors
 - Determine if there is variation across groups
 - If not, fix parameter
 - Decide whether to drop nonsignificant predictors
 - Test deviance, compute R² if so desired
- 5. Add level 3 predictors
 - Evaluate for significance
 - Test deviance, compute R² if so desired


Regression Discontinuity and Interrupted Time Series Designs: Change in Intercept

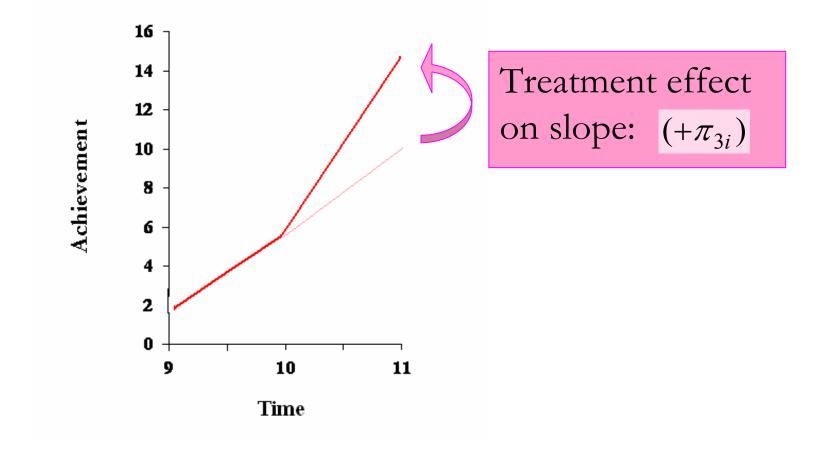
$$Y_{ij} = \pi_{0i} + \pi_{1i} Time_{ij} + \pi_{2i} Treatment_{ij} + \varepsilon_{ij}$$

When Treatment = 0:
$$Y_{ij} = \pi_{0i} + \pi_{1i} Time_{ij} + \varepsilon_{ij}$$

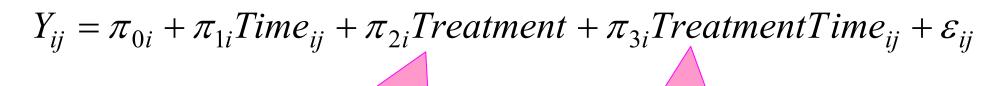
When Treatment = 1:

$$Y_{ij} = (\pi_{0i}) + \pi_{1i} Time_{ij} + \varepsilon_{ij}$$

Regression Discontinuity and Interrupted Time Series Designs


Regression Discontinuity and Interrupted Time Series Designs: Change in Slope

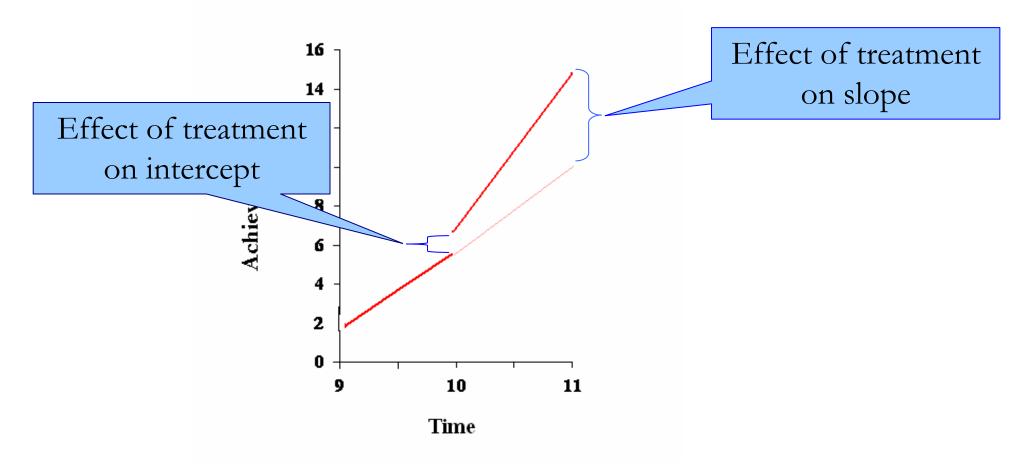
When Treatment = 1:


 $Y_{ij} = \pi_{0i} + \pi_{1i} Time_{ij} + \pi_{3i} Treatment Time_{ij} + \varepsilon_{ij}$

When Treatment = 0. $Y_{ij} = \pi$ Treatment time expressed as 0's before treatment and time intervals post-treatment (i.e., 0, 0, 0, 1, 2, 3)

Regression Discontinuity and Interrupted Time Series Designs

Change in Intercept and Slope


Effect of treatment on intercept

Effect of treatment on slope

When Treatment = 0:

$$Y_{ij} = \pi_{0i} + \pi_{1i} Time_{ij} + \mathcal{E}_{ij}$$

Regression Discontinuity and Interrupted Time Series Designs

Analyzing Randomized Trials (RCT) with HLM

- When random assignment is accomplished at the participant level, treatment group is dummy coded and included in the participant level data file
- When random assignment is accomplished at the cluster level, treatment group is dummy coded and included in the cluster level data file
 - Treatment can be used to predict intercepts or slopes as outcomes
 - Another strength of this approach is the ability to empirically model treatment variation across clusters (i.e., replication)

Power in HLM Models

Using the Optimal Design Software

- The Optimal Design Software can also be used to estimate power in a variety of situations
- The particular strength of this software is its application to multilevel situations involving cluster randomization or multisite designs
- Available at:

http://sitemaker.umich.edu/group-based/optimal design software

Optimal Design

Factors Affecting Power in CRCT

- Sample Size
 - □ Number of participants per cluster (N)
 - □ Number of clusters (J)
- Effect Size
- Alpha level
- Unexplained/residual variance
- Design Effects
 - □ Intraclass correlation (ICC)
 - Between vs. within cluster variance
 - Treatment variability across clusters
 - Repeated measures
 - Blocking and matching
- Statistical control

Effect of Unexplained Variance on Power

- Terminology: "error" versus unexplained or residual
- Residual variance reduces power
 - Anything that decreases residual variance, increases power (e.g., more homogeneous participants, additional explanatory variables, etc.)
- Unreliability of measurement contributes to residual variance
- Treatment infidelity contributes to residual variance
- Consider factors that may contribute to residual between cluster variance

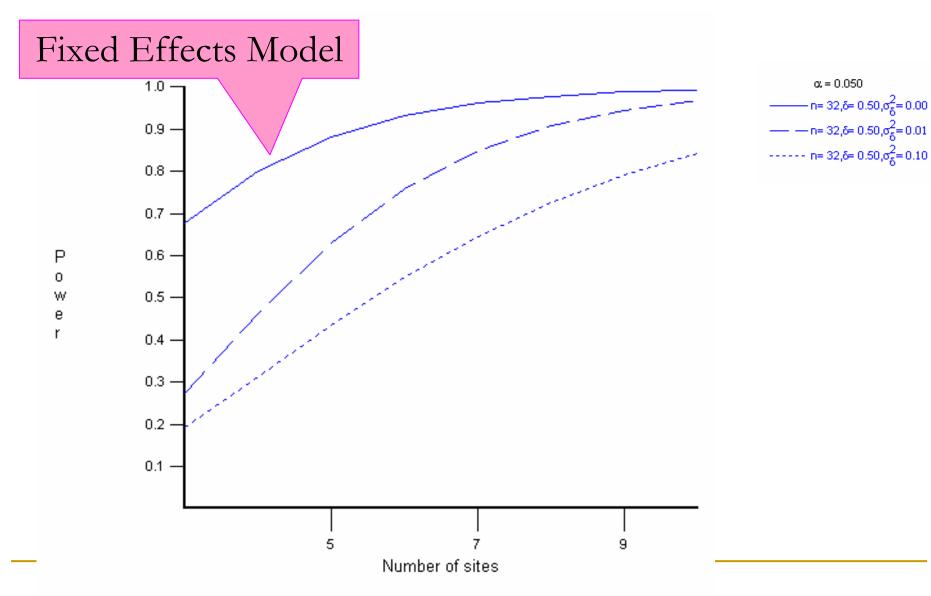
Effect of Design Features on Statistical Power

Multicollinearity (and restriction of range)

$$s_{b_{y1.2}} = \sqrt{\frac{s_{y12}^2}{\sqrt{\frac{s_{y12}^2}{\frac{s_{y12}^$$

- Statistical model misspecification
 - □ Linearity, curvilinearity,...
 - Omission of relevant variables
 - Inclusion of irrelevant variables

The number of clusters has a stronger influence on power than the cluster size as ICC departs from 0

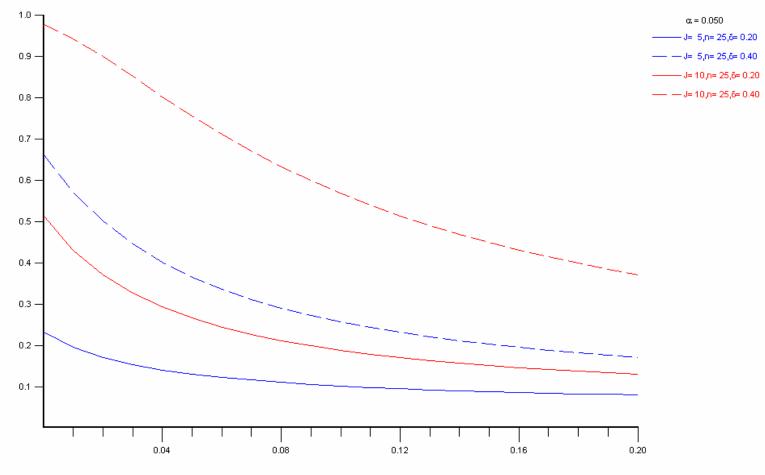

• The standard error of the main effect of treatment is:

$$SE(\hat{\gamma}_{01}) = \sqrt{\frac{4(\rho + (1 - \rho)/n)}{J}}$$

- As ρ increases, the effect of *n* decreases
- If clusters are variable (p is large), more power is gained by increasing the number of clusters sampled than by increasing n

Power in Studies with a Small Number of Clusters

Fixed vs. Random Effects



Effect of Effect Size Variability (σ_{δ}^2)

Variance of the treatment effect across clusters

P o W

e r

Effect Size Variability

Randomization as a Control Tactic

- What does randomization accomplish?
 - Controls bias in assignment of treatment (works OK with small J)
 - Turns confounding factors into randomly related effects (equivalence vs. randomness; does <u>not</u> work well with small J)
- Applying an underpowered, small CRCT may not be sufficient to achieve rigor
 - Consider other design approaches (e.g., interrupted time series, regression discontinuity designs)
 - Aggressively apply other tactics for experimental or statistical control
- Not all designs are created equal
- No one design is best (e.g., randomized trials)

Improving Power Through Planned Design

- Evaluate the validity of inferences for the planned design
- Design to address most important potential study weaknesses
- Realistic appraisal of study purpose, context, and odds of success
- Importance of fostering better understanding of the factors influencing power
- Planning that tailors design to study context and setting
 - Strategies for cluster recruitment
 - Prevention of missing data
 - Planning for use of realistic designs and use of other strategies like blocking, matching, and use of covariates

Design For Statistical Power

- Stronger treatments!
- Treatment fidelity
- Blocking and matching
- Repeated measures
- Focused tests (df = 1)
- Intraclass correlation
- Statistical control, use of covariates
- Restriction of range (IV and DV)
- Measurement reliability and validity (IV and DV)

Bibliography

- Aiken, L. S., & West, S. G. (1991). *Multiple regression: Testing and interpreting interactions*. Newbury Park: Sage.
- Bloom, H. S. (2006). *Learning More from Social Experiments: Evolving Analytic Approaches*. New York, NY: Russell Sage Foundation Publications.
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
- Cohen, J., & Cohen, P. (1983). *Applied multiple regression/correlation analysis for the behavioral sciences* (2nd Ed.). Hillsdale, NJ: Erlbaum.
- Darlington, R. B. (1990). Regression and linear models. New York: McGraw-Hill. Fox, J. (1991). Regression diagnostics. Thousand Oaks: Sage.
- Goldstein, H. (1995). Multilevel Statistical Models (2nd ed.). London: Edward Arnold. Available in electronic form at http://www.arnoldpublishers.com/support/goldstein.htm.
- Hedeker, D. (2004). An introduction to growth modeling. In D. Kaplan (Ed.), *The Sage handbook of quantitative methodology for the social sciences*. Thousand Oaks, CA: Sage Publications.
- Hedges, L. V., & Hedburg, E. C. (in press). Intraclass correlation values for planning group randomized trials in education. *Educational Evaluation and Policy Analysis*.
- Hox, J. J. (1994). *Applied Multilevel Analysis*. Amsterdam: TT-Publikaties. Available in electronic form at <u>http://www.ioe.ac.uk/multilevel/amaboek.pdf.</u>

Bibliography

Jaccard, J., Turrisi, R., & Wan, C. K. (1990). Interaction effects in multiple regression. Thousand Oaks: Sage.

Kreft, I. G., & de Leeuw, J. (2002). Introducing multilevel modeling. Thousand Oaks, CA: Sage.

- Pedhazur, E. J. (1997). *Multiple regression in behavioral research* (3rd Ed.). Orlando, FL: Harcourt Brace & Company.
- Raudenbush, S. W. (1997). Statistical analysis and optimal design for cluster randomized trials, *Psychological Methods*, 2(2), 173-185.
- Raudenbush, S. W., & Bryk, A. S. (2001). *Hierarchical linear models: Applications and data analysis methods (2nd ed.)*. Newbury Park: Sage.
- Raudenbush, S.W., Bryk, A.S., Cheong, Y.F., & Congdon, R.T. (2004). *HLM 6: Hierarchical linear and nonlinear modeling*. Chicago, IL: Scientific Software International.
- Rumberger, R.W., & Palardy, G. J. (2004). Multilevel models for school effectiveness research. In D. Kaplan (Ed.), *The Sage handbook of quantitative methodology for the social sciences*. Thousand Oaks, CA: Sage Publications.
- Snijders, T. A. B., & Bosker, R. J. (1999). *Multilevel analysis: An introduction to basic and advanced multilevel modeling*. London: Sage.
- Seltzer, M. (2004). The use of hierarchical models in analyzing data from experiments and quasiexperiments conducted in field settings. In D. Kaplan (Ed.), *The Sage handbook of quantitative methodology for the social sciences.* Thousand Oaks, CA: Sage Publications.

Spybrook, J., Raudenbush, S., & Liu, X.-f. (2006). Optimal design for longitudinal and multilevel research: Documentation for the Optimal Design Software. New York: William T. Grant Foundation.