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Areal data

Figure: Standardized stomach cancer incidence in 194 municipalities in
Slovenia

• Each datapoint is associated with a region like state, county,
municipality etc.

• Usually a result of aggregating point level data
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Spatial disease mapping

Standardized cancer incidence Socio-economic score

Figure: Slovenia stomach cancer data

• Goal: Identify factors (covariates) associated with the disease
• Goal: Identify spatial pattern, if any, and smooth spatially
• Inference is often restricted only to the given set of regions
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GLM for Spatial disease mapping

• At unit (region) i , we observe response yi and covariate xi

• g(E (yi )) = x ′i β + wi where g(·) denotes a suitable link
function

Hierarchical areal model:
k∏

i=1
p1(yi |x ′i β + wi )× N−1(w | 0, τw Q(ρ))× p2(β, τw , ρ)

• Notation: N−1(m,Q) denotes normal distribution with mean
m and precision (inverse covariance) Q

• p1 denotes the functional form of the density corresponding to
the link g(·)
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How to model Q(ρ)

• Choice of Q(ρ) should enable spatial smoothing

• One possibility: Represent each region by a single point and
use Gaussian Process covariance i.e. Q(ρ)−1

ij = C(m(i),m(j))

• Many possible choices to map the region i into a Euclidean
coordinate m(i)

• Is it appropriate to represent a large area with a single point?

• Also GP approach is computationally very expensive

• Alternate approach: Represent spatial information in terms of
a graph depicting the relative orientation of the regions
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CAR models

• Conditional autoregressive (CAR) model (Besag, 1974;
Clayton and Bernardinelli, 1992)

• Areal data modeled as a graph or network: V is the set of
vertices (regions)

• i ∼ j if regions i and j share a common border
• Adjacency matrix A = (aij) such that aij = I(i ∼ j)
• ni is the number of neighbors of i
• CAR model:

wi |w−i ∼ N−1( ρni

∑
j | i∼j

wj , τw ni )
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CAR models

• CAR model:

wi |w−i ∼ N−1( 1
ni

∑
j | i∼j

wj , τw ni )

• w = (w1,w2, . . . ,wk)′ ∼ N−1(0, τw (D − ρA)) where
D = diag(n1, n2, . . . , nk)

• ρ = 1⇒ Improper distribution as (D − A)1 = 0 (ICAR)
• Can be still used as a prior for random effects
• Cannot be used directly as a data generating model
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CAR models

• CAR model:

wi |w−i ∼ N−1( 1
ni

∑
j | i∼j

wj , τw ni )

• w = (w1,w2, . . . ,wk)′ ∼ N−1(0, τw (D − ρA)) where
D = diag(n1, n2, . . . , nk)

• ρ = 1⇒ Improper distribution as (D − A)1 = 0 (ICAR)
• Can be still used as a prior for random effects
• Cannot be used directly as a data generating model

• ρ < 1⇒ Proper distribution with added parameter flexibility
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SAR models

• Simultaneous Autoregressive (SAR) model (Whittle, 1954)
• Instead of taking the conditional route, SAR model proceeds

by simultaneously modeling the random effects

wi = ρ
∑
i 6=j

bijwj + εi for i = 1, 2, . . . , k

• εi
ind∼ N−1(0, τi ) are errors independent of w

• A common choice is to define bij = I(i ∼ j)/ni

• Joint distribution: w ∼ N−1(0, (I − ρB)′F (I − ρB)), B = (bij)
and F = diag(τ1, τ2, . . . , τk)

• ρ = 1⇒ Improper distribution

7



Interpretation of ρ in proper CAR and SAR models

• Calibration of ρ as a correlation, e.g., (as reported in Banerjee
et al. 2014)

ρ = 0.80 yields 0.1 ≤ Moran’s I ≤ 0.15,
ρ = 0.90 yields 0.2 ≤ Moran’s I ≤ 0.25,
ρ = 0.99 yields Moran’s I ≤ 0.5

• So, used with random effects, scope of spatial pattern may be
limited
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Interpretation of ρ in proper CAR and SAR models

• ρ cannot be interpreted as correlation between neighboring
wi ’s (Wall, 2004; Assuncao and Krainski, 2009)

Figure: Neighbor pair correlations as a function of ρ for proper
CAR and SAR models over the graph of US states 8



SAR model and Cholesky factors

• General SAR model:

wi =
∑
i 6=j

bijwj + εi for i = 1, 2, . . . , k

• w ∼ N−1(0, (I − B)′F (I − B)) where F = diag(τ1, τ2, . . . , τk)
• Only proper when I − B is invertible which is not guaranteed

for arbitrary B
• SAR is essentially modeling the precision matrix through the

Cholesky factor I − B

• Cholesky factors are not unique
• We can always choose a lower triangular Cholesky factor

9



SAR model and Cholesky factors

• General SAR model:

wi =
∑
i 6=j

bijwj + εi for i = 1, 2, . . . , k

• w ∼ N−1(0, (I − B)′F (I − B)) where F = diag(τ1, τ2, . . . , τk)
• Only proper when I − B is invertible which is not guaranteed

for arbitrary B
• SAR is essentially modeling the precision matrix through the

Cholesky factor I − B
• Cholesky factors are not unique
• We can always choose a lower triangular Cholesky factor

9



New model

w1 = ε1

w2 = b21w1 + ε2

w3 = b31w1 + b32w2 + ε3

...
wk = bk1w1 + bk1w2 + . . .+ bk,k−1wk−1 + εk

• B = (bij) is now a strictly lower triangular matrix.
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New model

• Advantages of lower triangular B:

• w ∼ N−1(0, (I − B)′F (I − B)) is a proper distribution for any
choice of lower triangular B

• det(L′FL) =
∏n

i=1 τi where F = diag(τ1, . . . , τk) and L = I −B

• w ′L′FLw = τ1w2
1 +

∑k
i=2 τi (wi −

∑
{j<i} wjbij)2

• Likelihood N−1(w | 0, (I − B)′F (I − B)) can be computed
using O(k + s) flops where s denotes the sparsity (number of
non-zero entries) of B.

• Even if k is large, evaluation of likelihood is fast if each region
only shares border with a few others
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Choice of B and F

• How to specify B and F ?
• Sparsity of B is desirable
• If data had replicates for each region, there is large literature

on fully data driven estimation of sparse Cholesky factors (Wu
and Pourahmadi, 2003; Huang et al., 2006; Rothman et al.,
2008; Levina et al., 2008; Wagaman and Levina, 2009; Lam
and Fan, 2009)

• Unfortunately many areal datasets lack replication

11



Choice of B and F

• How to specify B and F ?

• Sparsity of B is desirable

• Like in NNGP set bij = 0 for j outside neighbor sets N(i)
• Pros: For graphs neighbor sets are naturally chosen:

N(i) = {j | j ∼ i , j < i}
• Cons: There is no covariance function on arbitrary graphs from

which we can obtain non-zero bij ’s and F
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Autoregressive models on trees

• D = (dij) is the shortest distance matrix on the graph

• If the graph was a tree (no loops), then ρD = (ρdij is then a
valid autoregressive correlation matrix (AR(1) model on a
tree, Basseville et al., 2006).

• Areal graphs are loopy and are not usually trees
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Local embedded spanning trees

• Embedded spanning trees (EST) of a graph G is a subgraph
of G which is a tree and spans all the vertices of G

• Note that to specify wi =
∑

j∈N(i) bijwj + εi we only need a
joint distribution on {i} ∪ N(i)

• Let Gi denote the subgraph of G which includes vertices
{i} ∪ N(i) and the edges among them

• The subgraph Ti of Gi which only contains the edges
{i ∼ j | j ∈ N(i)} is an embedded spanning tree of Gi

• Use the local embedded spanning trees Ti to specify the bij ’s
and τi
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Directed acyclic graph autoregressive (DAGAR) model

• ARi denotes the AR(1) distribution on Ti

• Solve for bij and τi such that EARi (wi |wN(i)) =
∑

j∈N(i) bijwj

and τi = 1/VarARi (wi |wN(i))
• No edge is left out !

Figure: Decomposing a graph into a sequence of embedded spanning
trees
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Properties of DAGAR models

• bij = bi = ρ/(1 + (|N(i)| − 1)ρ2)

• τi = (1 + (|N(i)| − 1)ρ2)/(1− ρ2)

• det(QDAGAR) =
∏k

i=1 τi

• Positive definite for any 0 ≤ ρ ≤ 1

• Interpretability of ρ:
• If the graph is a tree, then DAGAR model is same as the

AR(1) model on the tree i.e. correlation between d th order
neighbors is ρd for d = 1, 2, . . .

• If the graph is a closed two-dimensional grid, then each
neighbor pair correlation is ρ

• pDAGAR(w) can be stored and evaluated using O(e + k) flops
where e is the total number of neighbor pairs
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Dependence on ordering

• DAGAR model depends on the ordering of the regions when
decomposing into local trees

• We can define a DAGAR model for every ordering

• Spatial regions do not have natural ordering

• How to choose the ordering?

• Coordinate based orderings were used in Datta et al., 2016;
Stein, 2004; Vecchia, 1988

• Model averaging over orderings ? Too many possibilities (k!)
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Order-free model

• Let Q be the average over DAGAR precision matrices
corresponding to all k! possible orderings

18



Order-free model

• Let Q be the average over DAGAR precision matrices
corresponding to all k! possible orderings

• Q is is free of ordering and available in closed form

• Q(i , j) is non-zero if and only if either i ∼ j or i ≈ j
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Order-free model

• Sparsity of Q is e2 where e2 is the number of edges in the
second order graph (moral graph) created from G

• As e2 > e, Q is less sparse than the CAR model or the ordered
DAGAR model precision matrix and has higher flop count

• Total computational total cost for evaluating Q is O(e2nmax)

• e2 < knmax(nmax + 1)/2 where nmax = max(ni )

• If nmax is small, i.e., as long as each region only shares border
with a few others (which is often the case), Q is still quite
sparse even for large k
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Interpretation of ρ
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Figure: Average neighbor pair correlations as a funcion of ρ for proper
CAR and DAGAR models
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Simulated data analysis
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and CAR models 20



Slovenia stomach cancer data

Standardized cancer incidence Socio-economic score

Figure: Slovenia stomach cancer data

• Observed (Oi ) and expected (Ei ) number of cancer counts for
each of the 194 municipalities of the country

• Oi ∼ Poisson(Ei exp(α + βSEi + wi )) where
w ∼ N−1(0, τw Q(ρ)) 21



Slovenia stomach cancer data

Table: Parameter estimates with confidence intervals and model
comparison metrics

α β ρ DIC LPPDLOOCV
1

CAR 0.09 (0.02, 0.16) -0.12 (-0.19, -0.04) 0.33 (0.02, 0.86) 1097 1170
DAGAR 0.11 (0.03, 0.18) -0.12 (-0.19, -0.06) 0.08 (0.004, 0.24) 1091 1127

DAGAROF 0.11 (0.05, 0.17) -0.12 (-0.18, -0.06) 0.06 (0.003, 0.2) 1090 1133

• Zadnik and Reich (2006) observed spatial confounding with
ICAR model (β̂ICAR = −0.02(−0.10, 0.06))

• Here for all three models the CIs for β lie outside zero
• Estimates of ρ are much smaller than 1
• Estimates of β here are closer to those obtained in the

non-spatial (NS) analysis (β̂NS = −1.4(−0.17,−0.10))
1Log-predictive posterior density using Leave one out cross validation
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Summary

• DAGAR models for areal data constructed from sparse
Cholesky factors

• Scalability for large areal data
• Ordered vs order-free DAGAR

• For all analysis, ordered model performed very similar to the
order-free model

• Ordered model is faster with theoretical results about
interpretability of ρ

• DAGAR models are positive definite and can be directly used
to model or simulate any multivariate data on graphs (like
imaging or social network data)

• Better performance than CAR modes for many scenarios
• DAGAR available at https://arxiv.org/pdf/1704.07848.pdf
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