Hierarchical Modeling for Large Univariate Areal Data

Abhi Datta¹, Sudipto Banerjee² and Andrew O. Finley³ July 31, 2017

¹Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland.
 ²Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles.
 ³Departments of Forestry and Geography, Michigan State University, East Lansing, Michigan.

Areal data

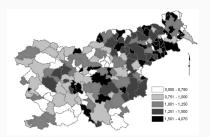
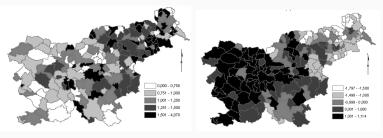


Figure: Standardized stomach cancer incidence in 194 municipalities in Slovenia

- Each datapoint is associated with a region like state, county, municipality etc.
- Usually a result of aggregating point level data

Spatial disease mapping



Standardized cancer incidence

Socio-economic score

Figure: Slovenia stomach cancer data

- Goal: Identify factors (covariates) associated with the disease
- Goal: Identify spatial pattern, if any, and smooth spatially
- Inference is often restricted only to the given set of regions

GLM for Spatial disease mapping

- At unit (region) *i*, we observe response *y_i* and covariate *x_i*
- g(E(y_i)) = x'_iβ + w_i where g(·) denotes a suitable link function

Hierarchical areal model:

$$\prod_{i=1}^{k} p_1(y_i | x_i'\beta + w_i) \times N^{-1}(w | 0, \tau_w Q(\rho)) \times p_2(\beta, \tau_w, \rho)$$

- Notation: N⁻¹(m, Q) denotes normal distribution with mean m and precision (inverse covariance) Q
- p_1 denotes the functional form of the density corresponding to the link $g(\cdot)$

How to model $Q(\rho)$

- Choice of $Q(\rho)$ should enable spatial smoothing
- One possibility: Represent each region by a single point and use Gaussian Process covariance i.e. Q(ρ)⁻¹_{ii} = C(m(i), m(j))
- Many possible choices to map the region *i* into a Euclidean coordinate *m*(*i*)
- Is it appropriate to represent a large area with a single point?
- Also GP approach is computationally very expensive
- Alternate approach: Represent spatial information in terms of a graph depicting the relative orientation of the regions

- Conditional autoregressive (CAR) model (Besag, 1974; Clayton and Bernardinelli, 1992)
- Areal data modeled as a graph or network: V is the set of vertices (regions)
- $i \sim j$ if regions *i* and *j* share a common border
- Adjacency matrix $A = (a_{ij})$ such that $a_{ij} = I(i \sim j)$
- *n_i* is the number of neighbors of *i*
- CAR model:

$$w_i \mid w_{-i} \sim N^{-1} \left(\frac{\rho}{n_i} \sum_{j \mid i \sim j} w_j, \tau_w n_i \right)$$

• CAR model:

$$w_i \mid w_{-i} \sim N^{-1} \left(\frac{1}{n_i} \sum_{j \mid i \sim j} w_j, \tau_w n_i\right)$$

•
$$w = (w_1, w_2, \dots, w_k)' \sim N^{-1}(0, \tau_w(D - \rho A))$$
 where $D = diag(n_1, n_2, \dots, n_k)$

• $\rho = 1 \Rightarrow$ Improper distribution as (D - A)1 = 0 (ICAR)

- Can be still used as a prior for random effects
- Cannot be used directly as a data generating model

• CAR model:

$$w_i \mid w_{-i} \sim N^{-1} \left(\frac{1}{n_i} \sum_{j \mid i \sim j} w_j, \tau_w n_i \right)$$

•
$$w = (w_1, w_2, \dots, w_k)' \sim N^{-1}(0, \tau_w(D - \rho A))$$
 where $D = diag(n_1, n_2, \dots, n_k)$

- $\rho = 1 \Rightarrow$ Improper distribution as (D A)1 = 0 (ICAR)
 - Can be still used as a prior for random effects
 - Cannot be used directly as a data generating model

• $\rho < 1 \Rightarrow$ Proper distribution with added parameter flexibility

SAR models

- Simultaneous Autoregressive (SAR) model (Whittle, 1954)
- Instead of taking the conditional route, SAR model proceeds by simultaneously modeling the random effects

$$w_i =
ho \sum_{i \neq j} b_{ij} w_j + \epsilon_i$$
 for $i = 1, 2, \dots, k$

- $\epsilon_i \stackrel{ind}{\sim} N^{-1}(0, \tau_i)$ are errors independent of w
- A common choice is to define $b_{ij} = I(i \sim j)/n_i$
- Joint distribution: $w \sim N^{-1}(0, (I \rho B)'F(I \rho B)), B = (b_{ij})$ and $F = diag(\tau_1, \tau_2, \dots, \tau_k)$
- $\rho = 1 \Rightarrow$ Improper distribution

• Calibration of ρ as a correlation, e.g., (as reported in Banerjee et al. 2014)

ho = 0.80 yields 0.1 \leq Moran's $I \leq$ 0.15, ho = 0.90 yields 0.2 \leq Moran's $I \leq$ 0.25, ho = 0.99 yields Moran's $I \leq$ 0.5

• So, used with random effects, scope of spatial pattern may be limited

Interpretation of ρ in proper CAR and SAR models

ρ cannot be interpreted as correlation between neighboring *w_i*'s (Wall, 2004; Assuncao and Krainski, 2009)

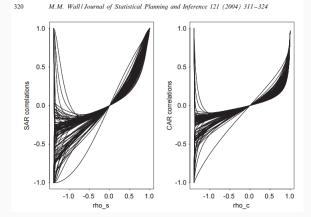


Figure: Neighbor pair correlations as a function of ρ for proper CAR and SAR models over the graph of US states

SAR model and Cholesky factors

• General SAR model:

$$w_i = \sum_{i \neq j} b_{ij} w_j + \epsilon_i$$
 for $i = 1, 2, \dots, k$

- $w \sim N^{-1}(0, (I B)'F(I B))$ where $F = diag(\tau_1, \tau_2, ..., \tau_k)$
- Only proper when I B is invertible which is not guaranteed for arbitrary B
- SAR is essentially modeling the precision matrix through the Cholesky factor I B

SAR model and Cholesky factors

• General SAR model:

$$w_i = \sum_{i \neq j} b_{ij} w_j + \epsilon_i$$
 for $i = 1, 2, \dots, k$

- $w \sim N^{-1}(0, (I B)'F(I B))$ where $F = diag(\tau_1, \tau_2, ..., \tau_k)$
- Only proper when I B is invertible which is not guaranteed for arbitrary B
- SAR is essentially modeling the precision matrix through the Cholesky factor I B
- Cholesky factors are not unique
- We can always choose a lower triangular Cholesky factor

$$w_{1} = \epsilon_{1}$$

$$w_{2} = b_{21}w_{1} + \epsilon_{2}$$

$$w_{3} = b_{31}w_{1} + b_{32}w_{2} + \epsilon_{3}$$

$$\vdots$$

$$w_{k} = b_{k1}w_{1} + b_{k1}w_{2} + \ldots + b_{k,k-1}w_{k-1} + \epsilon_{k}$$

• $B = (b_{ij})$ is now a strictly lower triangular matrix.

New model

- Advantages of lower triangular B:
 - w ~ N⁻¹(0, (I − B)'F(I − B)) is a proper distribution for any choice of lower triangular B
 - det(L'FL) = $\prod_{i=1}^{n} \tau_i$ where $F = diag(\tau_1, \dots, \tau_k)$ and L = I B

•
$$w'L'FLw = \tau_1 w_1^2 + \sum_{i=2}^k \tau_i (w_i - \sum_{\{j < i\}} w_j b_{ij})^2$$

- Likelihood N⁻¹(w | 0, (I − B)'F(I − B)) can be computed using O(k + s) flops where s denotes the sparsity (number of non-zero entries) of B.
- Even if k is large, evaluation of likelihood is fast if each region only shares border with a few others

- How to specify *B* and *F*?
- Sparsity of *B* is desirable
- If data had replicates for each region, there is large literature on fully data driven estimation of sparse Cholesky factors (Wu and Pourahmadi, 2003; Huang et al., 2006; Rothman et al., 2008; Levina et al., 2008; Wagaman and Levina, 2009; Lam and Fan, 2009)
- Unfortunately many areal datasets lack replication

- How to specify *B* and *F*?
- Sparsity of *B* is desirable
- Like in NNGP set $b_{ij} = 0$ for j outside neighbor sets N(i)
 - Pros: For graphs neighbor sets are naturally chosen:
 N(i) = {j | j ~ i, j < i}
 - Cons: There is no covariance function on arbitrary graphs from which we can obtain non-zero *b_{ij}*'s and *F*

- $D = (d_{ij})$ is the shortest distance matrix on the graph
- If the graph was a tree (no loops), then ρ^D = (ρ^{d_{ij}} is then a valid *autoregressive* correlation matrix (AR(1) model on a tree, Basseville et al., 2006).
- Areal graphs are loopy and are not usually trees

Local embedded spanning trees

- Embedded spanning trees (EST) of a graph *G* is a subgraph of *G* which is a tree and spans all the vertices of *G*
- Note that to specify w_i = ∑_{j∈N(i)} b_{ij}w_j + ε_i we only need a joint distribution on {i} ∪ N(i)
- Let G_i denote the subgraph of G which includes vertices $\{i\} \cup N(i)$ and the edges among them
- The subgraph T_i of G_i which only contains the edges $\{i \sim j \mid j \in N(i)\}$ is an embedded spanning tree of G_i
- Use the local embedded spanning trees *T_i* to specify the *b_{ij}*'s and *τ_i*

Directed acyclic graph autoregressive (DAGAR) model

- AR_i denotes the AR(1) distribution on T_i
- Solve for b_{ij} and τ_i such that $E_{AR_i}(w_i | w_{N(i)}) = \sum_{j \in N(i)} b_{ij}w_j$ and $\tau_i = 1/Var_{AR_i}(w_i | w_{N(i)})$
- No edge is left out !

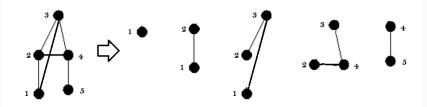


Figure: Decomposing a graph into a sequence of embedded spanning trees

Properties of DAGAR models

•
$$b_{ij} = b_i = \rho/(1 + (|N(i)| - 1)\rho^2)$$

•
$$\tau_i = (1 + (|N(i)| - 1)\rho^2)/(1 - \rho^2)$$

- det $(Q_{DAGAR}) = \prod_{i=1}^{k} \tau_i$
- Positive definite for any $0 \le \rho \le 1$
- Interpretability of ρ:
 - If the graph is a tree, then DAGAR model is same as the AR(1) model on the tree i.e. correlation between dth order neighbors is ρ^d for d = 1, 2, ...
 - If the graph is a closed two-dimensional grid, then each neighbor pair correlation is ρ
- $p_{DAGAR}(w)$ can be stored and evaluated using O(e + k) flops where e is the total number of neighbor pairs

- DAGAR model depends on the ordering of the regions when decomposing into local trees
- We can define a DAGAR model for every ordering
- Spatial regions do not have natural ordering
- How to choose the ordering?
- Coordinate based orderings were used in Datta et al., 2016; Stein, 2004; Vecchia, 1988
- Model averaging over orderings ? Too many possibilities (k!)

• Let *Q* be the average over DAGAR precision matrices corresponding to all *k*! possible orderings

- Let *Q* be the average over DAGAR precision matrices corresponding to all *k*! possible orderings
- Q is is free of ordering and available in closed form
- Q(i,j) is non-zero if and only if either $i \sim j$ or $i \approx j$

- Sparsity of *Q* is *e*₂ where *e*₂ is the number of edges in the second order graph (moral graph) created from *G*
- As $e_2 > e$, Q is less sparse than the CAR model or the ordered DAGAR model precision matrix and has higher flop count
- Total computational total cost for evaluating Q is $O(e_2 n_{\max})$
- $e_2 < kn_{\max}(n_{\max}+1)/2$ where $n_{\max} = \max(n_i)$
- If n_{max} is small, i.e., as long as each region only shares border with a few others (which is often the case), Q is still quite sparse even for large k

Interpretation of ρ

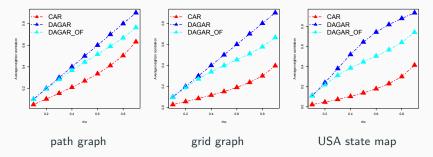


Figure: Average neighbor pair correlations as a function of ρ for proper CAR and DAGAR models

Simulated data analysis

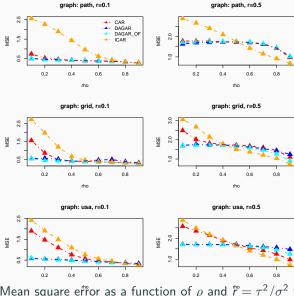
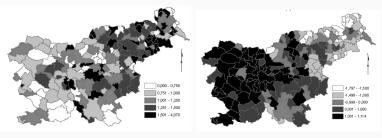


Figure: Mean square error as a function of ρ and $r = \tau^2/\sigma^2$ for DAGAR and CAR models

Slovenia stomach cancer data



Standardized cancer incidence

Socio-economic score

Figure: Slovenia stomach cancer data

- Observed (*O_i*) and expected (*E_i*) number of cancer counts for each of the 194 municipalities of the country
- $O_i \sim Poisson(E_i \exp(\alpha + \beta SE_i + w_i))$ where $w \sim N^{-1}(0, \tau_w Q(\rho))$

Table: Parameter estimates with confidence intervals and modelcomparison metrics

	α	β	ρ	DIC	LPPD _{LOOCV} ¹
CAR	0.09 (0.02, 0.16)	-0.12 (-0.19, -0.04)	0.33 (0.02, 0.86)	1097	1170
DAGAR	0.11 (0.03, 0.18)	-0.12 (-0.19, -0.06)	0.08 (0.004, 0.24)	1091	1127
DAGAR _{OF}	0.11 (0.05, 0.17)	-0.12 (-0.18, -0.06)	0.06 (0.003, 0.2)	1090	1133

- Zadnik and Reich (2006) observed spatial confounding with ICAR model ($\hat{\beta}_{ICAR} = -0.02(-0.10, 0.06)$)
- $\bullet\,$ Here for all three models the CIs for β lie outside zero
- Estimates of ρ are much smaller than 1
- Estimates of β here are closer to those obtained in the non-spatial (NS) analysis ($\hat{\beta}_{NS} = -1.4(-0.17, -0.10)$)

¹Log-predictive posterior density using Leave one out cross validation

Summary

- DAGAR models for areal data constructed from sparse Cholesky factors
- Scalability for large areal data
- Ordered vs order-free DAGAR
 - For all analysis, ordered model performed very similar to the order-free model
 - Ordered model is faster with theoretical results about interpretability of ρ
- DAGAR models are positive definite and can be directly used to model or simulate any multivariate data on graphs (like imaging or social network data)
- Better performance than CAR modes for many scenarios
- DAGAR available at https://arxiv.org/pdf/1704.07848.pdf