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a b s t r a c t 

Traditional flat classification methods ( e.g. , binary or multi-class classification) neglect the structural in- 

formation between different classes. In contrast, Hierarchical Multi-label Classification (HMC) considers 

the structural information embedded in the class hierarchy, and uses it to improve classification per- 

formance. In this paper, we propose a local hierarchical ensemble framework for HMC, Fully Associative 

Ensemble Learning (FAEL). We model the relationship between each class node’s global prediction and the 

local predictions of all the class nodes as a multi-variable regression problem with Frobenius norm or 

l 1 norm regularization. It can be extended using the kernel trick, which explores the complex correla- 

tion between global and local prediction. In addition, we introduce a binary constraint model to restrict 

the optimal weight matrix learning. The proposed models have been applied to image annotation and 

gene function prediction datasets with tree structured class hierarchy and large scale visual recognition 

dataset with Direct Acyclic Graph (DAG) structured class hierarchy. The experimental results indicate that 

our models achieve better performance when compared with other baseline methods. 

Published by Elsevier Ltd. 
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. Introduction 

Hierarchical Multi-label Classification (HMC) is a variant of clas-

ification where each sample has more than one label and all these

abels are organized hierarchically in a tree or Direct Acyclic Graph

DAG). In reality, HMC can be applied to many domains [1–3] . In

eb page classification, one website with the label “football” could

e labeled with a high level label “sport”. In image annotation,

n image tagged as “outdoor” might have other low level con-

ept labels, like “beach” or “garden”. In gene function prediction,

 gene can be simultaneously labeled as “metabolism” and “cat-

lytic or binding activities” by the biological process hierarchy and

he molecular function hierarchy, respectively. 

A rich source of hierarchical information in tree and DAG struc-

ured class hierarchies is helpful to improve classification per-

ormance [4] . Based on how this information is used, previous

MC approaches can be divided into global (big-bang) or local [5] .

lobal approaches learn a single model for the whole class hier-

rchy. Global approaches enjoy smaller model size because they

uild one model for the whole hierarchy. However, they ignore the

ocal modularity, which is an essential advantage of HMC. Local ap-

roaches first build multiple local classifiers on the class hierarchy.
∗ Corresponding author. 
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hen, hierarchical information is aggregated across the local pre-

iction results of all the local classifiers to obtain the global predic-

ion results for all the nodes. We refer to “local prediction result”

nd “global prediction result” as “local prediction” and “global pre-

iction”, respectively. Previous local approaches suffer from three

rawbacks. First, most of them focus only on the parent-child

elationship. Other relationships in the hierarchy (e.g., ancestor-

escendant, siblings) are ignored. Second, their models are sensi-

ive to local prediction. The global prediction of each node is only

ecided by the local predictions of several closely related nodes.

he error of local predictions is more likely to propagate to global

redictions. Third, most local methods assume that the local struc-

ural constraint between two nodes will be reflected in their local

redictions. However, this assumption might be shaken by differ-

nt choices of features, local classification models, and positive-

egative sample selection rules [6,7] . In such situations, previous

ethods would fail to integrate valid structural information into

ocal prediction. 

In this paper, we propose a novel local HMC framework, Fully

ssociative Ensemble Learning (FAEL). We call it “fully associative

nsemble” because in our model the global prediction of each node

onsiders the relationships between the current node and all the

ther nodes. Specifically, a multi-variable regression model is built

o minimize the empirical loss between the global predictions of

ll the training samples and their corresponding true label obser-
ations. 

http://dx.doi.org/10.1016/j.patcog.2017.05.007
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Our contributions are: we (i) developed a novel local hierar-

chical ensemble framework, in which all the structural relation-

ships in the class hierarchy are used to obtain global prediction;

(ii) introduced empirical loss minimization into HMC, so that the

learned model can capture the most useful information from his-

torical data; and (iii) proposed sparse, kernel, and binary constraint

HMC models. 

Parts of this work have been published in [8] . In this paper, we

extend that work by providing: (i) the sparse basic model with l 1 
norm; (ii) a new application of DAG structured class hierarchy in a

visual recognition dataset based on deep learning features; (ii) the

sensitivity analysis of all the parameters; (iii) the performance of

two more kernel functions (Laplace kernel and Polynomial kernel)

in the kernel model; and (iv) statistical analysis of all the experi-

mental results. 

The rest of this paper is organized as follows: in Section 2 we

discuss related work. Section 3 describes the proposed FAEL mod-

els. The experimental design, results and analysis are presented in

Section 4 . Section 5 concludes the paper. 

2. Related work 

In this section, we review the most recent works in HMC and

flat multi-label classification, especially those that are related to

our work. Also, we illustrate how our framework is different from

previous ones. 

In HMC, Both global and local approaches have been developed.

Most global approaches are extended from classic single label ma-

chine learning algorithms. Wang et al. [9] used association rules

for hierarchical document categorization. Hierarchical relationships

between different classes are defined based on the similarity of the

documents belonging to them. Vens et al. [10] introduced a mod-

ified version of decision tree for HMC. One tree is learned to pre-

dict all the classes at once. Bi et al. [11] formulated the HMC as

a graph problem of finding the best subgraph in a tree or DAG.

Kernel dependency estimation is used to reduce the original hier-

archy to a manageable number of single label learning problems. A

generalized condensing sort and select algorithm is applied to pre-

serve the parent-child relationships in the label hierarchy. Based

on a predictive clustering tree, Dimitrovski et al. [2] proposed the

cluster-HMC algorithm for medical image annotation. In another

work [12] , Dimitrovski et al. introduced ensembles of predictive

clustering trees for hierarchical classification of diatom images.

Bagging and random forests are used to combine the predictions

of different trees. Cerri et al. [13] introduced genetic algorithm to

HMC. Genetic algorithm is used to evolve the antecedents of clas-

sification rules. A set of optimized antecedents is selected to make

a prediction for the corresponding classes. Barros et al. [14] in-

troduced the probabilistic clustering HMC framework for protein

function problem. The assumption is that training instances can fit

to several probability distributions, where instances from the same

distribution also share similar class vectors. The major drawback of

previous global models is that they ignore the local modularity in

the label hierarchy, such as parent-child, ancestor-descendent, and

sibling relationships between different labels. 

Local approaches also draw heavy attention. Dumais and Chen

[15] applied a multiplicative threshold to update local prediction.

The posterior probability is computed based on the parent-child

relationship. Barutcuoglu and DeCoro [16] proposed a Bayesian ag-

gregation model for image shape classification. The main idea is

to obtain the most probable consistent set of global predictions.

Cesa-Bianchi et al. [17] developed a top down HMC method using

hierarchical Support Vector Machine (SVM), where SVM learning

is applied to a node only if its parent has been labeled as posi-

tive. Alaydie et al. [18] introduced hierarchical multi-label boosting

with label dependency. The pre-defined label hierarchy is used to
ecide the training set for each classifier. The dependencies of the

hildren are analyzed using Bayesian method and instance based

imilarity. Ren et al. [19] proposed to address the HMC problem

or documents in social text streams with Structural SVM (S-SVM).

ultiple structural classifiers are built for each chunk of classes

o overcome the unbalanced sample problem. Cerri et al. [20] pro-

osed to build multi-layer perceptron for each level of labels in

he label hierarchy. The predictions made by a given level are used

s inputs to the next level. Vateekul et al. [21] introduced a hier-

rchical R-SVM system for gene function prediction. The threshold

djustment from R-SVM is used to mitigate the problem of false

egatives in HMC. Valentini [22,23] presented the True Path Rule

TPR) ensembles. In this method, positive local predictions of child

odes affect their parent nodes and negative local predictions of

on-leaf nodes affect their descendant nodes. 

Our work is inspired by both top-down and bottom-up local

odels. The top-down models propagate predictions from high

evel nodes to the bottom [15,24] . In contrast, the bottom-up mod-

ls propagate predictions from the bottom to the whole hierarchy

25,26] . As a state-of-the-art method, the TPR ensemble integrates

oth top-down and bottom-up rules [22] . The global prediction of

ach parent node is updated by the positive local predictions of

ts child nodes. Then, a top-down rule is applied to synchronize

he obtained global predictions. The method is also extended to

andle DAG structured class hierarchy [4,23] . In contrast to TPR,

ur model incorporates all pairs of hierarchical relationships and

ttempts to learn a fully associative weight matrix from training

ata. Take the “human” sub-hierarchy from the extended IAPR TC-

2 image dataset [27] for example. Fig. 1 depicts the merits of our

odel and shows the contribution of hierarchical and sibling nodes

n each local prediction. The weight matrix computed shows that

ach local node influences its own decision positively, while nodes

ot directly connected in the hierarchy provide a negative influ-

nce. Since the weight matrix of our model is learned based on all

he training samples, we can minimize the influence of outlier ex-

mples of each node. The learning model also helps to avoid the

rror propagation problem, because all the global predictions are

btained simultaneously. 

Many works have also been proposed for flat multi-label classi-

cation, where no specific hierarchical relationships between labels

re given. Because multiple labels share the same input space and

emantics conveyed by different labels are usually correlated, it is

ssential to exploit the correlation information contained in differ-

nt labels by a multi-task learning framework. Ji et al. [28] devel-

ped a general multi-task framework for extracting shared struc-

ures in multi-label classification. The optimal solution to the pro-

osed formulation is obtained by solving a generalized eigenvalue

roblem. Zhu et al. [29] proposed a multi-view multi-label frame-

ork with block-row regularization. The regularizer concatenates

 Frobenius norm regularizer and l 21 norm regularizer, which are

sed to select informative views and features. To handle the miss-

ng label problem, semi-supervised learning was introduced to

ulti-label classification. Luo et al. [30] proposed a manifold reg-

larized multi-task learning algorithm. A discriminative subspace

hared by multiple classification tasks is learned while manifold

egularization ensures that the learned predictive structure is re-

iable for both labeled data and unlabeled data. In another work,

uo et al. [31] developed a multi-view matrix completion frame-

ork for semi-supervised multi-label image classification. A cross-

alidation strategy is used to learn combination coefficients of dif-

erent views. Inspired by the great success of deep Convolutional

eural Networks (CNN) in single label image classification in the

ast few years [32–34] , CNN-based multi-label image classifica-

ion algorithms were also developed. Wei et al. [35] proposed a

ypotheses CNN pooling framework. Different object segment hy-

otheses are taken as inputs of a shared CNN. The CNN output re-
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Fig. 1. (a) The “human” sub-hierarchy. (b) The weight matrix W 

∗ learned from B-FAEL. Each element w 

∗
i j 

represents the weight of the i th label’s local prediction to the j th 

label’s global prediction. Using TPR, the global predictions are first computed by their local prediction and the local predictions (those above threshold 0.5) of the child 

nodes, then a top-down scheme is used to propagate the influence of ancestor nodes. Using our model, they are made by the local predictions of all the fourteen non-root 

nodes. In (b), we can observe that, for each node, the nodes in the same path give positive weights; the other nodes give negative weights. Take the weights for node 1 in 

the first column, for example: nodes 2 and 3 give negative weights ( w 

∗
21 = −0 . 43 and w 

∗
31 = −0 . 14 ). All the remaining nodes give positive weights. This rule works for all the 

weights except W 

∗
1 , 10 , and W 

∗
7 , 10 . These observations follow the fact that each image region is annotated by the labels of one continuous path from the root to the bottom, 

gradually and exclusively. 
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ults from different hypotheses are aggregated with max pooling to

roduce multi-label predictions. Wang et al. [36] introduced recur-

ent neural networks (RNN) to capture the dependencies of multi-

le labels in an image. Combined with CNNs, the proposed frame-

ork learns a joint image-label embedding to characterize both

emantic label dependency and image label relevance. Zhao et al.

37] developed a regional gating neural network framework. Can-

idate image regions are fed to a shared CNN to produce regional

epresentation. Then, the unites of region level gate and feature

evel gate are imposed on regional presentations to select useful

ontextual region features. The whole network is optimized with

ulti-label loss. Compared with HMC approaches, these methods

gnore the hierarchical relationships between different labels. 

The proposed framework also inherits features from Multi-Task

earning (MTL) works [38–41] . Our model is close to the MTLs

ith tree or graph structures, where pre-defined structural infor-

ation is extracted to fit the learning model [42,43] . Similar to

hese MTLs, our hierarchical ensemble model can use various loss

unctions and regularization terms. One major difference lies in the

eatures used in the model. In the MTLs, the features are shared

onsistently over all the tasks and they must be the same for each

ask. In our model, local predictions of all the nodes are used as

eatures. Therefore, each local classifier can be built by completely

ifferent f eatures. 

. Fully associative ensemble learning 

Let S = { s 1 , s 2 , . . . , s n } represent a hierarchical multi-label train-

ng set, which comprises n samples. Its hierarchical label set is de-

oted by C = { c 1 , c 2 , . . . , c l } . There are l labels in total, and each

abel corresponds to one unique node in hierarchy H. The training

abel matrix is defined as a binary matrix Y = { y i j } , with size n ×
 . If the i th sample has the j th label, y i j = 1 , otherwise y i j = 0 . As a

ocal approach, local classifiers F = { f 1 , f 2 , . . . , f l } are built on each

ode. The local predictions of S are denoted by matrix Z = { z i j } ,
here z ij represents the prediction of the i th sample on the j th

abel. A probabilistic classifier is used as the local learner, so we

ave z ij ∈ [0, 1]. Similarly, we represent the global prediction ma-

rix by ̂ Y = { ̂  y i j } with size n × l . In our model, global prediction

s achieved based on local prediction and hierarchical information.

o take all the node-to-node relationships into account, we define

 = { w i j } as a weight matrix, where w ij represents the weight of

he i th label’s local prediction to the j th label’s global prediction.

hus, each label’s global prediction is a weighted sum of the local

redictions of all the nodes in H. The global prediction matrix ̂  Y is

omputed as: ̂  Y = ZW . 

.1. The basic model 

The simplest way to estimate the weight matrix W is by min-

mizing the squared loss between the global prediction matrix Ŷ 

ith the true label matrix Y . To reduce the variance of w ij , we pe-

alize the Frobenius norm of W and obtain this objective function:

in 

W 

‖ Y − ZW ‖ 

2 
F + λ1 ‖ W ‖ 

2 
F , (1)

here the first term measures the empirical loss of the training

et, the second term controls the generalization error, and λ1 is

 regularization parameter. The above function is known as ridge

egression. Taking derivatives w.r.t. W and setting to zero, we have:

 = 

(
Z T Z + λ1 I l 

)−1 
Z T Y, (2) 

here I l represents the l × l identity matrix. Thus, we obtain an

nalytical solution for the basic FAEL model. 
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Inspired the success of low rank constraint [44–46] , we could

replace the Frobenius norm in (1) with l 1 norm, add obtain the

following objective function: 

min 

W s 

‖ Y − ZW s ‖ 

2 
F + λ2 ‖ W s ‖ 

2 
1 , (3)

where λ2 is a regularization parameter. This function has both

smooth and non-smooth terms. The gradient descent or acceler-

ated gradient method (AGM) [47] can be applied to solve the op-

timization. We employ the algorithm in SLEP package [48] to ob-

tain a solution. However, the obtained sparse weight matrix con-

flicts with our goal of learning a fully associative weight matrix,

where all the hierarchical relationships are considered, such as

ancestor-descendant and sibling relationships. We compared the

performance of the two norms on different datasets in Section 4.2 .

The results confirm our analysis that the Frobenius norm is a bet-

ter choice for the HMC problem. 

3.2. The kernel model 

To capture the complex correlation between global and local

prediction, we can generalize the above basic model using the ker-

nel trick. Let � represent the map applied to each example’s lo-

cal prediction vector z i . A kernel function is induced by K(z i , z j ) =
�(z i ) 

T �(z j ) . By replacing the term Z in (1) , we obtain: 

min 

W k 

‖ Y − �W k ‖ 

2 
F + λ1 ‖ W k ‖ 

2 
F . (4)

After several matrix manipulations [49] , the solution of W k be-

comes: 

W k = 

(
�T � + λ1 I l 

)−1 
�T Y 

= �T 
(
��T + λ1 I n 

)−1 
Y, 

(5)

where I n represents the n × n identity matrix. For a testing ex-

ample s t and its local prediction z t , the global prediction ̂

 y t is ob-

tained by ̂  y t = z t W . For a kernel version, we obtain: ̂ y t 
k 

= �(z t ) W k 

= �(z t )�T 
(
��T + λ1 I n 

)−1 
Y 

= K (z t , z ) ( K (z , z ) + λ1 I n ) 
−1 

Y, 

(6)

where K(z t , z ) = [ k (z t , z 1 ) , k (z t , z 2 ) , . . . , k (z t , z n )] and K(z , z ) =
{ k (z i , z j ) } are both kernel computations. 

One potential drawback of the above kernel model is its scal-

ability. During the training phase, the complexity of computing

and storing K ( z, z ) is significant even for moderate size prob-

lems. Therefore, we adopt a simple random sample-selection tech-

nique to reduce the kernel complexity of large-scale datasets. The

assumption behind this is to select a small number of samples

that could represent the distribution of large scale dataset. We

randomly select n k ( n k � n ) samples from training set for kernel

model, which reduces the kernel complexity from O ( n × n ) to O ( n k 
× n k ). 

3.3. The binary constraint model 

Another limitation of the basic model is that the weights be-

tween different nodes are considered independently. To make full

use of the hierarchical relationships between different nodes, we

introduce a regularization term to the optimization function in (1) .

The motivation is that when we calculate the weight to a third

node, the current parent node should play more role than the cur-

rent child node while the current ancestor node should play a

greater role than the current descendent node. In this way, we rely

more on the high level nodes than on the low level nodes, rather

than treating them equally. 
The hierarchical structure can be viewed as a set of “bi-

ary constraints” among all the nodes. Here, we only focus on

he “parent-child” constraints and the “ancestor-descendent” con-

traints. Let R = { r i (c p , c q ) } denote the binary constraint set of hi-

rarchy H. Each member r i ( c p , c q ) meets either c p = ↑ c q or c p = ⇑
 q , where “↑ ” and “⇑ ” represent the “parent-child” constraint and

he “ancestor-descendent” constraint, respectively [5] . The size of

 depends on the structure of H. Its maximum is l × (l − 1) / 2 ,

hich is equal to the number of all the possible constraints. In this

ase, there is only one path from the root node to the single leaf

ode in the hierarchy. Now, we introduce a weight restriction to

ach pair of nodes in R . Define coefficient m pq ∈ R 

+ for the i th

air r i ( c p , c q ), so that: 

 pk = m pq ∗ w qk . (7)

he intuition behind this definition is that high-level nodes should

ive weights larger than low-level nodes. For the global prediction

f node k , the weight of node p is m pq times the weight of node q .

he value of m pq is set by: 

 pq = 

{
μ c p = ↑ c q 

μ ∗ (e pq + 1) c p = ⇑ c q 
, (8)

here μ is a positive constant and e pq represents the number of

odes between c p and c q . Thus, the coefficient of an “ancestor-

escendent” constraint is larger than that of a “parent-child” con-

traint. Specifically, it is decided by the depth difference of the

wo corresponding nodes in the hierarchy. If there are other nodes

etween node c p and node c q , the coefficient m pq is larger. Be-

ause they have an ancestor-descendent relationship, we rely more

n the high level node c p . If there are no other nodes between

hem, they have a parent-child relationship. If the coefficient m pq is

maller, the constraint is looser than that of a ancestor-descendent

elationship. In a DAG-structured class hierarchy, if one node has

ore than one parent node, we create constraint for each parent

ode separately and add them all to the binary constraint set. The

ame rule applies to “ancestor-descendent” constraints. All the re-

trictions over the hierarchy are summarized as: 

| R | ∑ 

 i (c p ,c q ) 

l ∑ 

k =1 

(
w pk − m pq ∗ w qk 

)2 
. (9)

o convert the above equations into a matrix version, we introduce

 sparse matrix M = [ m 1 , m 2 , . . . , m | R | ] T , in which the i th row m i

orresponds to the i th pair in R . Each row in M has only two non-

ero entries. The p th entry is 1 and the q th entry is −m pq , and all

he other entries are zero. Thus, we obtain the regularization term

f the binary constraint model: 

| R | ∑ 

 i (c p ,c q ) 

l ∑ 

k =1 

(
w pk − m pq ∗ w qk 

)2 = ‖ MW b ‖ 

2 
F . (10)

dding this term to (1) , the optimization function becomes: 

in 

W b 

‖ Y − ZW b ‖ 

2 
F + λ1 ‖ W b ‖ 

2 
F + λ3 ‖ MW b ‖ 

2 
F . (11)

aking the derivative w.r.t. W b , setting to zero, and merging similar

erms, we obtain: 

(Z T Z + λ1 I l + λ3 M 

T M) W b = Z T Y. (12)

he analytical solution of the binary constraint model is given by:

 b = 

(
Z T Z + λ1 I l + λ3 M 

T M 

)−1 
Z T Y. (13)

he analytical solution ensures a low computational complexity

or this model. In practice, we can also choose a few rows from

 to build the regularization term and focus on a more spe-

ific constraint set. It is also interesting to extend the binary con-

traint model to a kernel version. However, the rule of (9) from
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Algorithm 1: The Fully Associative Ensemble Learning. 

Input : S r = { s r 
1 
, s r 

2 
, . . . , s r n } , C = { c 1 , c 2 , . . . , c l } , H, 

Y r = { y r 
i j 
} ∈ R 

n ×l and S t = { s t 
1 
, s t 

2 
, . . . , s t m 

} 
Output : ̂ Y t = { ̂  y t 

i j 
} ∈ R 

m ×l and O 

t = { o t 
i j 
} ∈ R 

m ×l 

1 for i ← 1 to l do 

2 Select positive and negative examples for node i 

3 Build a local classifier f i on node i 

4 Compute the local prediction of S r on node i , f i (S r ) 
5 Select binary constraint pairs and obtain M 

6 Compute W with (2), (5) or (13) 

7 Compute d for all the nodes with (14) 

8 for i ← 1 to m do 

9 Compute the local prediction of s t 
i 

on each node, 

z t 
i 
= f (s t 

i 
) 

10 Compute the global prediction of s t 
i 

with ̂

 y t 
i 
= z t 

i 
× W and 

(6) 

11 Compute the final output with (15) 

12 return { ̂  Y t , O 

t } ; 

Table 1 

The extended IAPR TC-12 sub-hierarchy descriptions. 

Sub-hierarchies Sample number Node number Tree depth 

Animal 1999 41 5 

Food 861 5 3 

Human 17,011 14 4 

Landscape 45,048 42 4 

Man-made 33,984 99 5 
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t  

i  
49,50] does not apply to (13) directly to obtain a closed form

olution, because the component λ1 I l + λ3 M 

T M is not an identity

atrix any more. An iterative solution will increase computational

omplexity for the model. 

.4. Hierarchical prediction 

After we get the global predictions for all the nodes, the next

tep is to set thresholds for the global prediction of each node,

nd assign proper labels for each testing sample. In the original

PR model, the author uses 0.5 as the threshold of all the nodes,

hich ignores the distribution difference of positive and negative

amples. Here, the threshold is learned to separate them averagely.

et d = { d 1 , d 2 , . . . , d l } denote the threshold set of global predic-

ion, where d i corresponds to node i . Let S + 
i 

and S −
i 

represent

he positive and negative training sets of node i , respectively. Their

lobal predictions are computed as ̂ Y + 
i 

and 

̂ Y −
i 

. We define thresh-

ld d i as the midpoint of the averaged positive and negative global

redictions of node i : 

 i = 0 . 5 ∗
( 

1 ∣∣S + 
i 

∣∣ ∑ 

j 

̂ y + 
ji 

+ 

1 ∣∣S −
i 

∣∣ ∑ 

j 

̂ y −
ji 

) 

(14)

here ̂  y + 
ji 

and ̂

 y −
ji 

represent the global prediction of the j th sample

n S + 
i 

and S −
i 

, respectively. 

Based on the learned thresholds, the output labels of each test-

ng sample should follow the hierarchical structure. All the labels

ith positive output can be linked into one or multiple continuous

aths from the root to the bottom in hierarchy H. Here we apply a

ottom-up strategy to synchronize the output labels. Given a test-

ng sample s t with global prediction 

̂ y t = [ ̂  y t 
1 
, ̂  y t 

2 
, . . . , ̂  y t 

l 
] , its final

utput o 

t = [ o t 
1 
, o t 

2 
, . . . , o t 

l 
] is decided by: 

 

t 
i = 

{ 

1 

̂ y t 
i 
> d i 

1 

̂ y t 
k 

> d k , c i = ↑ c k or ⇑ c k 
0 otherwise 

. (15) 

Note that from the above rule, we might obtain multiple valid

aths as the final output. This is appropriate for some applications,

uch as gene function prediction, where each gene can have more

han one path in the “FunCat” hierarchy. However, in other appli-

ations, such as image annotation and visual recognition, the ideal

utput is one path of the conceptual hierarchy that indicates the

xact content of each image region. In this case, we average the

lobal predictions on each continuous path and return the maxi-

um path. For a DAG-structured class hierarchy, if any node in the

aximum path has more than one parent node, we also link them

rom the root for final prediction. The pseudo-code of the proposed

ramework is summarized in Algorithm 1 . 

. Experiments 

This section presents the datasets and experimental methodol-

gy used to evaluate the proposed framework and compare it to

ther baseline methods. The sensitivity analysis of all the parame-

ers and statistical analysis are also discussed. 

.1. Datasets and experimental methodology 

.1.1. Image annotation 

We present our evaluation of the proposed models on the ex-

ended IAPR TC-12 image collection [27] . In this dataset, every

mage is segmented into several regions and each region is an-

otated by a set of labels from a tree structured conceptual hi-

rarchy. Fig. 2 depicts a sample image and its corresponding la-

els. The whole conceptual hierarchy comprises 275 nodes located
n six main branches: “animal”, “landscape”, “man-made”, “hu-

an”, “food”, and “other”. Considering their conceptual differences

nd hierarchy size, we build five separate sub-hierarchies with the

rst five main branches. Their detailed descriptions are shown in

able 1 . The “other” branch is excluded because it has only six

hild nodes with the same depth. Given the original features from

he dataset, each region is viewed as a sample. To build three-

old cross-validation, we ignore the nodes that have fewer than

en samples. Inner three-fold cross-validation is applied to select

he best parameters on each fold of training data. Then we apply

he best parameters to testing data. Based on [27] , we use Random

orests as the basic classifier under the one-versus-all sample se-

ection technique. The number of trees in Random Forests is set to

00. Downsampling is applied to keep the balance between posi-

ive and negative samples. 

.1.2. Gene function prediction 

Gene function prediction is another complex tree-structured

MC problem. We use six yeast datasets integrated in [22] . Their

escriptions are summarized in Table 2 . To compare with the re-

ults in [22] , we use the same experimental settings. 

.1.3. Visual recognition 

We also evaluate the proposed models on a more challeng-

ng DAG-structured visual recognition problem with ImageNet [51] .

mageNet is organized according to the WordNet hierarchy. It in-

ludes over 14 million images distributed on over 20,0 0 0 nodes.

ere we use a subset with up to 686 nodes. Each leaf node has

00 images. The CaffeNet model [52] is used to extract 10 0 0 deep

earning features for each image. The Linear Support Vector Ma-

hine (LSVM) is built as the local classifier for each local node with

 = 1 . The negative sample is selected based on the one-versus-all

echnique. To overcome the unbalanced data issue between pos-

tive and negative images, we randomly select the same greatest
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Fig. 2. Sample image with hierarchical annotations. 

Table 2 

The gene function dataset descriptions. 

Datasets Description Sample number Feature number Node number Tree depth 

Pfam-1 Protein domain binary data from Pfam data 3529 4950 211 5 

Pfam-2 Protein domain log E data from Pfam data 3529 5724 211 5 

Expr Gene Expression data 4532 250 230 5 

PPI-BG PPI data from BioGRID 4531 5367 232 5 

PPI-VM PPI data from Von Mering experiments 2338 2559 177 5 

SP-sim Sequence Pairwise similarity data 3527 6349 211 5 

Table 3 

The ImageNet sub-hierarchy descriptions. 

Hierarchy Number of leaf nodes Number of total nodes Depth 

Sub-1 100 204 17 

Sub-2 200 375 19 

Sub-3 300 505 19 

Sub-4 400 686 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

FAEL and S-FAEL performance on different datasets. 

Models F-measure HF-measure 

Datasets FAEL S-FAEL FAEL S-FAEL 

Animal 0.224 0.220 0.432 0.411 

Food 0.401 0.403 0.495 0.466 

Human 0.315 0.303 0.636 0.625 

Landscape 0.347 0.348 0.571 0.566 

Man-made 0.134 0.131 0.281 0.268 

Pfam-1 0.398 0.297 0.459 0.448 

Pfam-2 0.304 0.245 0.456 0.436 

Expr 0.132 0.112 0.590 0.573 

PPI-BG 0.281 0.211 0.519 0.529 

PPI-VM 0.395 0.297 0.468 0.435 

SP-smi 0.341 0.257 0.384 0.394 

Sub-1 0.513 0.372 0.906 0.893 

Sub-2 0.493 0.248 0.909 0.884 

Sub-3 0.461 0.191 0.912 0.887 

Sub-4 0.464 0.139 0.906 0.872 
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number of negative images and positive images to build each local

classifier. To fully understand the performance, we build the mod-

els on 4 sub-hierarchies with different numbers of leaf nodes. The

detailed information is summarized in Table 3 . 

4.1.4. Baseline and measurements 

We compare the proposed models with the Top-Down (TD) al-

gorithm, TPR and weighted TPR (TPR-w) [22] under F-measure and

Hierarchical F-measure (HF-measure). F-measure, also known as F1

score, is used to measure the flat classification performance. It is

the harmonic mean of precision and recall. By integrating struc-

tural information of prediction, HF-measure is a more appropriate

performance metric in HMC [22,53] . It can capture the partially

correct paths in the hierarchical taxonomy. All the experiments

were run ten times with different random seeds. 

4.2. Norm comparison 

In this section, we first analyze the sensitivity of λ1 and λ2 

for Frobenius norm and l 1 norm, respectively. We denote the two

models as FAEL and Sparse FAEL (S-FAEL). Then, we use three-

fold cross-validation to evaluate their performance, inner three-

fold cross-validation is used to select the best parameters from

each fold of training data. We set different ranges for parame-

ters based on observation. In image annotation and gene func-

tion prediction datasets, we set λ1 = { 0 , 10 , 20 , . . . , 200 } and λ2 =
{ 0 , 0 . 001 , 0 . 002 , . . . , 0 . 02 } . In visual recognition dataset, we set

λ1 = { 0 , 1 , 2 , . . . , 20 } and λ2 = { 0 , 0 . 001 , 0 . 002 , . . . , 0 . 02 } . The sen-

sitivity performances are depicted in Figs. 3–8 . The prediction per-

formance from cross-validation is summarized in Table 4 . 

In Fig. 3 we can observe that the FAEL model is not very sensi-

tive to choice of λ1 . Both F-measure and HF-measure remain stable

against changing values of λ1 except F-measure of “animal” and

“food” hierarchies. In Fig. 4 we observe that, as λ1 increases, the

F-measure performance goes down on five datasets. Performance

on the Expr dataset is the most stable one. Under HF-measure,
he performance first goes up and then becomes stable on most

atasets. In Fig. 5 , we can observe that the performance of FAEL is

table in the parameter range. Also, the hierarchical performance

f the model is not sensitive to the increase of nodes. Under HF-

easure, sub-3, sub-2, and sub-4 perform even better than sub-1.

n sparse model, from Figs. 6–8 , the performance is more fluctuant

ompared to that of the Frobenius norm model. The reason is that

parse model generates spare weight matrix, which conflicts with

ur goal to learn a fully associative weight matrix. In the sparse

eight matrix, only part of the hierarchy relationships are cap-

ured. From the results in Table 4 , we can see FEAL performs better

han S-FAEL on most datasets. S-FAEL can achieve comparable re-

ults on smaller size hierarchies, such as “food” and “landscape”, in

mage annotation datasets. But for larger hierarchies in gene func-

ion prediction and visual recognition datasets, FAEL achieves bet-

er results on most datasets. 

.3. Kernel model evaluation 

In the Kernel FAEL model (K-FAEL), we evaluate the perfor-

ance with different values of λ1 using three different kernels:

aussian kernel ( σ = 0 . 05 ), Laplace kernel ( σ = 0 . 05 ) and Polyno-

ial kernel ( degree = 2 , scale = 1 , of f set = 1 ). In the large scale

ataset of visual recognition, we apply the sample selection tech-

ique to the training sets with over 10 0 0 samples ( n k = 10 0 0 ). The

esults on the image annotation dataset are shown in Figs. 9 and
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Fig. 3. FAEL performance of different λ1 on the image annotation dataset. (L) F-measure. (R) HF-measure. 

Fig. 4. FAEL performance of different λ1 on the gene function datasets. (L) F-measure. (R) HF-measure. 

Fig. 5. FAEL performance of different λ1 on the ImageNet sub-hierarchy dataset. (L) F-measure. (R) HF-measure. 
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0 . The results on the gene function datasets and the ImageNet

ub-hierarchy dataset are presented in Supplementary material. 

In Figs. 9 and 10 , different kernel functions perform differ-

ntly under different hierarchies. The performance of Gaussian ker-

el and Laplace kernel are close, because of their similar forms

f mapping function. Polynomial kernel performs worse than the

ther two kernels. Note that the parameter range of λ1 is set to

apture the best performance of K-FAEL. 

.4. Binary constraint model evaluation 

To test the performance of the Binary constraint FAEL model

B-FAEL), we first evaluate the sensitivity of λ and μ. In im-
3 
ge annotation and gene function prediction datasets, we set λ3 =
 0 , 10 , 20 , . . . , 200 } . In the visual recognition dataset, we set λ3 =
 0 , 10 , 20 , . . . , 200 } . In all datasets, we also evaluate the sensitivity

f μ in the range of { 0 , 1 , 2 , . . . , 10 } . Figs. 11–16 depict the perfor-

ance of B-FAEL regarding λ3 and μ with the best combination of

1 . 

In Fig. 11 , B-FAEL improves both F-measure and HF-measure

erformance on four sub-hierarchies. As λ3 increases, the perfor-

ance first goes up and then becomes stable after reaching a peak.

ith a small hierarchy size of five nodes, the performance on the

food” hierarchy is basically unchanged. In Fig. 12 , compared with

AEL and K-FAEL, the B-FAEL model achieves better performance

n HF-measure. On the other hand, as λ2 becomes larger, the F-
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Fig. 6. S-FAEL performance of different λ2 on the image annotation dataset. (L) F-measure. (R) HF-measure. 

Fig. 7. S-FAEL performance of different λ2 on the gene function datasets. (L) F-measure. (R) HF-measure. 

Fig. 8. S-FAEL performance of different λ2 on the ImageNet sub-hierarchy dataset. (L) F-measure. (R) HF-measure. 
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measure performance of B-FAEL is worse than that of FAEL and

K-FAEL. There are two reasons. First, the binary constraint model

enforces the hierarchical consistency, which might weaken the in-

dependent discriminative ability of some nodes. Second, the “Fun-

Cat” hierarchy has large size and high complexity. With the given

features, the binary constraint model cannot optimize both flat and

hierarchical performance. In Fig. 13 , we observe that B-FAEL does

not achieve better results than FAEL under both F-measure and HF-

measure. From Figs. 14–16 , we can observe similar performances.

As we increase the value of μ, the performance on the image

annotation dataset is almost stable. In gene function predication

datasets, the model achieves better HF-measure while sacrificing F-
 m  

H  
easure performance. In visual recognition, the performance goes

own as we increase the value of μ. 

.5. Overall performance 

In this section, we compare our four models with three baseline

ethods. The values of parameters are learned from inner cross-

alidation of training data. The results are summarized in Tables 5

nd 6 . 

In Table 5 we can observe that the proposed models perform

etter than other HMC algorithms. As we know, the classic F-

easure is designed for unstructured flat classification problems.

ere, it evaluates the average prediction performance of all the



L. Zhang et al. / Pattern Recognition 70 (2017) 89–103 97 

Fig. 9. K-FAEL performance of different λ1 on the image annotation dataset I. (a)–(b), (c)–(d) and (e)–(f) represent the F-measure and the HF-measure of “animal”, “food”

and “human”, respectively. 
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odes. In image annotation dataset, S-FAEL achieves the best re-

ult on one small sub-hierarchy (“food”). K-FAEL achieves the best

esults on two sub-hierarchies (“human” and “landscape”) while B-

AEL achieves the best results on the other two sub-hierarchies

“animal” and “man-made”). In gene function prediction, FAEL

chieves better performance on three datasets (Pfam-2, Expr, PPI-

M). The results on Pfam-1 and PPI-BG are competitive with the

est from TPR-w. K-FAEL achieves the best result on SP-smi. On

he visual recognition dataset, we can observe that the baseline
ethods fail to achieve valid performance on this complex DAG-

tructured dataset under F-measure. The proposed K-FAEL model

btains the best performance. 

In Table 6 , we can observe that the best performance

s achieved by our models on all datasets. In image anno-

ation datasets, K-FAEL achieves better performance on three

ub-hierarchies (“food”, “human” and “landscape”) while B-FAEL 

chieves the best performance on the other two sub-hierarchies

“animal” and “man-made”). In gene function prediction datasets,
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Fig. 10. K-FAEL performance of different λ1 on the image annotation dataset II. (a)–(b) and (c)–(d) represent the F-measure and the HF-measure of “landscape” and “man- 

made”, respectively. 

Fig. 11. B-FAEL performance of different λ3 on the image annotation dataset. (L) F-measure. (R) HF-measure. 

 

 

 

 

 

 

 

F  

B  

t  

o  

r  

s  

e

X  
K-FAEL performs better than other methods on 4 datasets, except

on Expr and PPI-BG where B-FAEL achieves the best performance.

On visual recognition dataset, K-FAEL also performs the best on all

the sub-hierarchies. 

4.6. Statistical analysis 

In this section, we perform statistical analysis for the seven

methods (TD, TPR, TPR-w, FAEL, S-FAEL, K-FAEL, B-FAEL) over 15

datasets in the above experiments (five from image annotation, six

from gene function prediction and four from visual recognition).
rom [54] , we use the Friedman test [55,56] and the two tailed

onferroni–Dunn test [57] to compare multiple methods over mul-

iple datasets. Let r 
j 
i 

represent the rank of the j th of k algorithm

n the i th of N datasets. The Friedman test compares the average

anks of different methods, by R j = 

1 
N 

∑ 

i r 
j 
i 
. The null-hypothesis

tates that all the methods are equal so their ranks R j should be

quivalent. The original Friedman statistic [55,56] , 

 

2 
F = 

12 N 

k (k + 1) 

[ ∑ 

j 

R 

2 
j −

k (k + 1) 2 

4 

] 

, (16)
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Fig. 12. B-FAEL performance of different λ3 on the gene function datasets. (L) F-measure. (R) HF-measure. 

Fig. 13. B-FAEL performance of different λ3 on the ImageNet sub-hierarchy dataset. (L) F-measure. (R) HF-measure. 

Fig. 14. B-FAEL performance of different μ on the image annotation dataset. (L) F-measure. (R) HF-measure. 
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s distributed according to X 

2 
F 

with k − 1 degree of freedom. Due

o its undesirable conservative property, Iman et al. [58] derived a

etter statistic 

 F = 

(N − 1) X 

2 
F 

N(k − 1) − X 

2 
F 

, (17) 

hich is distributed according to the F-distribution with k − 1 and

(k − 1) × (N − 1) degrees of freedom. First we compute the aver-

ge ranks of each method; the results are summarized in Table 7 .

he F F statistical values of F-measure and HF-measure based on

17) are computed as 25.569 and 118.432. With seven methods and

5 datasets, F F is distributed with 7 − 1 and (7 − 1) × (15 − 1) = 84

egree of freedom. The critical value of F (6, 84) for α = 0 . 10 is

.762 < 24.050 or 103.521, so we reject the null-hypothesis. Then,
e apply two tailed Bonferroni–Dunn test to compare each pair of

ethods by the critical difference: 

D = q α

√ 

k (k + 1) 

6 N 

, (18) 

here q α is the critical values. If the average rank between two

ethods is larger than critical difference, the two methods are sig-

ificantly different. According to Table 5 in [54] , the critical value

f seven methods when p = 0 . 10 is 2.394. From Table 7 , we can

ompute the critical difference CD = 2 . 394 

√ 

7 ×8 
6 ×15 = 1 . 888 . Then we

an conclude that, under F-measure, FAEL, K-FAEL, B-FAEL per-

orm significantly better than TD, TPR, TPR-w (the difference be-

ween the lowest rank from FAEL and the highest rank from TPR-w,
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Fig. 15. B-FAEL performance of different μ on the gene function datasets. (L) F-measure. (R) HF-measure. 

Fig. 16. B-FAEL performance of different μ on the ImageNet sub-hierarchy dataset. (L) F-measure. (R) HF-measure. 

Table 5 

F-measure performance on different datasets. 

Datasets TD TPR TPR-w FAEL S-FAEL K-FAEL B-FAEL 

Animal 0.128 0.137 0.137 0.224 0.220 0.262 0.291 

Food 0.363 0.364 0.364 0.401 0.403 0.401 0.398 

Human 0.230 0.231 0.231 0.315 0.303 0.349 0.345 

Landscape 0.264 0.272 0.272 0.347 0.348 0.392 0.387 

Man-made 0.069 0.074 0.076 0.134 0.131 0.194 0.201 

Pfam-1 0.404 0.362 0.404 0.398 0.297 0.396 0.398 

Pfam-2 0.206 0.156 0.220 0.304 0.245 0.260 0.304 

Expr 0.062 0.070 0.077 0.132 0.112 0.125 0.132 

PPI-BG 0.269 0.234 0.295 0.281 0.211 0.286 0.281 

PPI-VM 0.359 0.261 0.356 0.395 0.297 0.371 0.395 

SP-smi 0.249 0.131 0.254 0.341 0.257 0.347 0.341 

Sub-1 0.037 0.042 0.067 0.513 0.372 0.638 0.513 

Sub-2 0.021 0.024 0.041 0.493 0.248 0.601 0.493 

Sub-3 0.015 0.027 0.032 0.461 0.191 0.547 0.461 

Sub-4 0.006 0.005 0.023 0.464 0.139 0.518 0.464 

 

 

 

 

 

Table 6 

HF-measure performance on different datasets. 

Datasets TD TPR TPR-w FAEL S-FAEL K-FAEL B-FAEL 

Animal 0.319 0.327 0.328 0.432 0.411 0.481 0.488 

Food 0.385 0.386 0.386 0.495 0.466 0.524 0.495 

Human 0.605 0.606 0.606 0.636 0.625 0.645 0.636 

Landscape 0.501 0.503 0.504 0.571 0.566 0.625 0.582 

Man-made 0.178 0.186 0.188 0.281 0.268 0.385 0.388 

Pfam-1 0.412 0.308 0.413 0.459 0.448 0.590 0.534 

Pfam-2 0.341 0.268 0.370 0.456 0.436 0.608 0.598 

Expr 0.117 0.170 0.178 0.590 0.573 0.592 0.593 

PPI-BG 0.323 0.267 0.349 0.519 0.529 0.582 0.588 

PPI-VM 0.398 0.280 0.400 0.468 0.435 0.610 0.609 

SP-smi 0.425 0.226 0.447 0.384 0.394 0.613 0.598 

Sub-1 0.570 0.413 0.727 0.906 0.893 0.925 0.906 

Sub-2 0.551 0.359 0.715 0.909 0.884 0.923 0.909 

Sub-3 0.535 0.500 0.733 0.912 0.887 0.921 0.912 

Sub-4 0.328 0.219 0.720 0.906 0.872 0.913 0.906 

T  

w  

1  

t  

between S-FAEL and TPR-w. 
4 . 633 − 2 . 567 = 2 . 0 6 6 > 1 . 888 ). S-FAEL performs statistically better

than TD and TPR. But the average rank difference between TPR-

w and S-FAEL ( 4 . 633 − 4 . 200 = 0 . 433 ) is smaller than the criti-

cal value 1.888, so they are not significantly different. Under HF-

measure, K-FAEL and B-FAEL perform statistically better than TD,
Table 7 

Average ranks of each method under F-measure

Measurements TD TPR TPR-w 

F-measure 6.100 6.200 4.633 

HF-measure 6.267 6.533 4.933 
PR, TPR-w. The average rank difference between FAEL and TPR-

 ( 4 . 933 − 3 . 067 = 1 . 866 ) is slightly smaller than the critical value

.888, they are not significantly different. S-FAEL performs statis-

ically better than TD and TPR; there is no significant difference
 and HF-measure. 

FAEL S-FAEL K-FAEL B-FAEL 

2.567 4.200 1.900 2.267 

3.067 4.0 0 0 1.267 1.933 



L. Zhang et al. / Pattern Recognition 70 (2017) 89–103 101 

5

 

m  

d  

m  

w  

i  

f  

f  

r  

p  

b  

a  

t  

I  

fl  

t  

f

A

 

m  

0  

m  

U  

a  

P  

c  

s  

p  

H

S

 

f

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[  

 

[  

 

 

 

 

[  

 

[  

 

 

 

 

[  

[  

[  

 

 

[  

 

 

 

[  

 

 

 

[  

 

 

 

 

[  

 

 

[  

 

[  

 

 

. Conclusion 

This paper introduces a novel HMC framework. We build a

ulti-variable regression model between the global and local pre-

ictions of all the nodes. The basic model is extended to the sparse

odel, the kernel model and the binary constraint model. Our

ork also raises several potential issues that we plan to address

n the future. As the number of classes increases, the proposed

ully associative model may suffer from both computation and per-

ormance limitations. A large-scale, fully associative weight matrix

equires a large amount of discriminative training data. For this

roblem, we can build the fully associative model for each class

ranch separately, which will effectively reduce both computation

nd performance burden. Meanwhile, we use parallel computing

echniques in all experiments to reduce computation complexity.

n addition, the performance of the local HMC model is also in-

uenced by the thresholds selected for global prediction. A bet-

er threshold learning algorithm may help to achieve better per-

ormance. 
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