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thanks to Jennifer Dunne for the network data
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how can we measure a network’s hierarchy?

step 1: network data step 3: hierarchy
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ONE APPROACH

model-based inference
1. describe how to generate hierarchies (a model)
2. estimate / learn model from data (algorithms)
3. test fitted model(s)

4. extract predictions, insight
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A MODEL OF HIERARCHY

D




A MODEL OF HIERARCHY
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model

tance

1ns

homogeneous” random graph

Ilin

Pr(¢,j connected) = p,

P(lowest common ancestor of i,5)
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HIERARCHICAL RANDOM GRAPH

* explicit model = explicit assumptions

e flexible (2n parameters)

* captures structure at all scales

* mixtures of assortativity, disassortativity

e decomposition into set of random bipartite graphs

* learnable directly from data
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LEARNING FROM DATA

a direct approach
¢ likelihood function £ = Pr( data | model )
( L scores quality of model)

e sample all good models

via Markov chain Monte Carlo*
over all dendrograms

e technical details in

Clauset, Moore and Newman, Nature 453, 98-101 (2008) and
Clauset, Moore and Newman, ICML (2006)

* other sampling or optimization methods possible
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LIKELIHOOD FUNCTION

D {p’r Hpr I pr Aadd

L, = number nodes in left subtree
R, = number nodes in right subtree

E/, = number edges with 7 as lowest
common ancestor
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EXAMPLE
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BAD DENDROGRAM
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L = 0.0016

BAD DENDROGRAM
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GOOD DENDROGRAM
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GOOD DENDROGRAM
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MARKOV CHAIN MONTE
CARLO (MCMCQC)

Given D, choose random internal node
Choose random reconfiguration of subtrees [ergodicity]
Recompute probabilities {p, } and likelihood £

Sampling states according to their likelihood  [detailed balance]

Ll

three subtree configurations
(up to relabeling)
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SOME APPLICATIONS
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TWO CASE STUDIES

NCAA Schedule 2000
n=115 m =613

Zachary’s Karate Club
=0 = TG

11111
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MIXING TIMES

equilibrium
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HIERARCHIES
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HIERARCHIES
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EDGE ANNOTATIONS

Average likelihood of edge existing

e For each edge (i, j) in G, compute average
associated parameter (f),.); ;) over sampled
models

* (0r)(,j) is edge annotation (weight)
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VERTEX ANNOTATIONS

Group-affiliation strengths
e If each vertex has known group label

e Ask, how often does vertex ¢ appear in a
subtree with majority of its fellows?

e Frequency is vertex annotation (strength)
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EDGE, NOTE ANNOTATIONS
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FROM GRAPH TO ENSEMBLE
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FROM GRAPH TO ENSEMBLE

e Given graph G
* run MCMC to equilibrium

e then, for each sampled D, draw a resampled
graph (G’ from ensemble

A test: do resampled graphs look like original?
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CLUSTERING COEFFICIENT
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DISTANCE DISTRIBUTION

original

resampled

Distance, d
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MISSING LINKS

many networks partially known, noisy

* social nets, foodwebs, protein interactions, etc.

can hierarchies predict their missing links?

previous approaches
e Liben-Nowell & Kleinberg (2003)
e Goldberg & Roth (2003)
e Szilagyi et al. (2005)
® many more now
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ACCURACY IS HARD

e remove k edges from G

* how easy to guess a missing link?

=%
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e el (D662 L k)
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AN HRG APPROACH

e Given incomplete graph GG
* run MCMC to equilibrium

e then, over sampled D, compute average (Pr)
for links (¢,7) € G

e predict links with high (p,.) values are missing

Test via leave-k-out cross-validation
perfect accuracy: AUC =1
no better than chance: AUC =1/2
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SCORING THE PREDICTIONS

ROC curve
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PERFORMANCE 1

Grassland species network
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PERFORMANCE 2

Terrorist association network
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SOME FINAL THOUGHTS

e what processes create these hierarchical structures?
e scaling up the running time from O(n?) ?

* active learning

e generalization to weighted, directed edges

 generalization to non-Poisson distributions
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FIN
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