Hierarchical Structure

Lecture 16
27 October 20II
CSCI 7000-00I
Inference, Models and Simulation for Complex Systems
Prof. Aaron Clauset
University of Colorado

no structure

no structure

one scale
no structure

modular structure

one scale
hierarchical structure

multi-scale
how can we measure a network's hierarchy?
step 1: network data

step 3: hierarchy

One Approach

model-based inference

1. describe how to generate hierarchies (a model)
2. estimate / learn model from data (algorithms)
3. test fitted model(s)
4. extract predictions, insight

A Model OF Hierarchy

\mathcal{D}

A Model OF Hierarchy

model

"inhomogeneous" random graph

$$
\begin{aligned}
\operatorname{Pr}(i, j \text { connected }) & =p_{r} \\
& =p_{(\text {lowest common ancestor of } i, j)}
\end{aligned}
$$

Hierarchical Random Graph

- explicit model $=$ explicit assumptions
- flexible (2n parameters)
- captures structure at all scales
- mixtures of assortativity, disassortativity
- decomposition into set of random bipartite graphs
- learnable directly from data

LEARNiNG FROM DATA

a direct approach

- likelihood function $\mathcal{L}=\operatorname{Pr}($ data \mid model $)$
(\mathcal{L} scores quality of model)
- sample all good models
via Markov chain Monte Carlo*
over all dendrograms
- technical details in

Clauset, Moore and Newman, Nature 453, 98-101 (2008) and
Clauset, Moore and Newman, ICML (2006)

* other sampling or optimization methods possible

LIKELIHOOD FUNCTION

$$
\begin{aligned}
& \mathcal{L}\left(\mathcal{D},\left\{p_{r}\right\}\right)=\prod_{r} p_{r}^{E_{r}}\left(1-p_{r}\right)^{L_{r} R_{r}-E_{r}} \\
& L_{r}=\text { number nodes in left subtree } \\
& R_{r}=\text { number nodes in right subtree } \\
& E_{r}=\text { number edges with } r \text { as lowest } \\
& \text { common ancestor }
\end{aligned}
$$

EXAMPLE

BAD DENDROGRAM

$$
\mathcal{L}\left(\mathcal{D},\left\{p_{r}\right\}\right)=\prod p_{r}^{E_{r}}\left(1-p_{r}\right)^{L_{r} R_{r}-E_{r}}
$$

BAD DENDROGRAM

GOOD DENDROGRAM

GOOD DENDROGRAM

MARKOV CHAIN MONTE CARLO (MCMC)

Given \mathcal{D}, choose random internal node Choose random reconfiguration of subtrees [ergodicity] Recompute probabilities $\left\{p_{r}\right\}$ and likelihood \mathcal{L} Sampling states according to their likelihood

three subtree configurations
(up to relabeling)

SOME APPLICATIONS

Two CASE Studies

NCAA Schedule 2000

$$
n=115 \quad m=613
$$

Zachary's Karate Club

$$
n=34 \quad m=78
$$

Mixing Times

MCMC mixes relatively quickly

Equilibrium in $\sim O\left(n^{2}\right)$ steps

Hierarchies

point estimate

consensus hierarchy

Hierarchies

point estimate

consensus hierarchy

EDGE ANNOTATIONS

Average likelihood of edge existing

- For each edge (i, j) in G, compute average associated parameter $\left\langle\theta_{r}\right\rangle_{(i, j)}$ over sampled models
- $\left\langle\theta_{r}\right\rangle_{(i, j)}$ is edge annotation (weight)

Vertex Annotations

Group-affiliation strengths

- If each vertex has known group label
- Ask, how often does vertex i appear in a subtree with majority of its fellows?
- Frequency is vertex annotation (strength)

Edge, Note AnNotations

FROM GRAPH TO ENSEMBLE

FROM GRAPH TO ENSEMBLE

- Given graph G
- run MCMC to equilibrium
- then, for each sampled \mathcal{D}, draw a resampled graph G^{\prime} from ensemble

A test: do resampled graphs look like original?

Degree Distribution

CLUSTERING COEFFICIENT

DISTANCE DISTRIBUTION

Missing Links

many networks partially known, noisy

- social nets, foodwebs, protein interactions, etc.
can hierarchies predict their missing links?
previous approaches
- Liben-Nowell \& Kleinberg (2003)
- Goldberg \& Roth (2003)
- Szilágyi et al. (2005)
- many more now

Accuracy is Hard

- remove k edges from G
- how easy to guess a missing link?

$$
\begin{aligned}
& p_{\text {guess }} \approx \frac{k}{n^{2}-m+k} \\
&=O\left(n^{-2}\right) \\
& n=75 \\
& m=113 \\
& p_{\text {guess }}=k /(2662+k)
\end{aligned}
$$

An HRG ApproAch

- Given incomplete graph G
- run MCMC to equilibrium
- then, over sampled \mathcal{D}, compute average $\left\langle p_{r}\right\rangle$ for links $(i, j) \notin G$
- predict links with high $\left\langle p_{r}\right\rangle$ values are missing

Test via leave- k-out cross-validation perfect accuracy: AUC = 1 no better than chance: $\mathrm{AUC}=1 / 2$

SCORING THE PREDICTIONS

AUC =

$\operatorname{Pr}($ distinguish

+ from -)

Performance 1

Performance 2

Terrorist association network

T. pallidum metabolic network

SOME FINAL THOUGHTS

- what processes create these hierarchical structures?
- scaling up the running time from $O\left(n^{2}\right)$?
- active learning
- generalization to weighted, directed edges
- generalization to non-Poisson distributions

FIN

