High-dimensional data: Some challenges and recent progress

Martin Wainwright
UC Berkeley Departments of Statistics, and EECS

Based on joint work with:

Alekh Agarwahl (UC Berkeley) John Lafferty (Univ. Chicago) Sahand Negahban (UC Berkeley)
Pradeep Ravikumar (UT Austin)

Era of massive data sets

- science and engineering in 21st century:
- rapid technological advances (sensors, storage, computing etc.)
- tremendous amounts of data being collected

Era of massive data sets

- science and engineering in 21st century:
- rapid technological advances (sensors, storage, computing etc.)
- tremendous amounts of data being collected
- many examples:
- molecular biology: genomics, proteomics, etc.
- neuroscience: fMRI, PET, EEG,, multi-electrode recording etc.
- astronomy: Sloan digital sky survey, Large synoptic survey telescope etc.
- consumer preference data: Netflix, Amazon, etc.
- geosciences: hyperspectral imaging
- financial data: stocks, bonds, currencies, derivatives etc.

Era of massive data sets

- science and engineering in 21st century:
- rapid technological advances (sensors, storage, computing etc.)
- tremendous amounts of data being collected
- many examples:
- molecular biology: genomics, proteomics, etc.
- neuroscience: fMRI, PET, EEG,, multi-electrode recording etc.
- astronomy: Sloan digital sky survey, Large synoptic survey telescope etc.
- consumer preference data: Netflix, Amazon, etc.
- geosciences: hyperspectral imaging
- financial data: stocks, bonds, currencies, derivatives etc.
- a wealth of data.....yet a paucity of information

Era of massive data sets

- science and engineering in 21st century:
- rapid technological advances (sensors, storage, computing etc.)
- tremendous amounts of data being collected
- many examples:
- molecular biology: genomics, proteomics, etc.
- neuroscience: fMRI, PET, EEG,, multi-electrode recording etc.
- astronomy: Sloan digital sky survey, Large synoptic survey telescope etc.
- consumer preference data: Netflix, Amazon, etc.
- geosciences: hyperspectral imaging
- financial data: stocks, bonds, currencies, derivatives etc.
- a wealth of data.....yet a paucity of information
- for statisticians: many exciting challenges and opportunities!

A story in three parts

(1) Graphical models

- Motivating applications: epidemiology, biology, social networks
- Problem of model selection
- Neighborhood-based discovery
(2) Exploiting low-rank structure
- Motivating applications: Recommender systems and collaborative filtering
- Nuclear norm as a rank surrogate
(3) Matrix decomposition problems
- Motivating applications: robust PCA, security issues, hidden variables
- Sparse plus low-rank: a simple relaxation

Epidemiological networks

(a) Cholera epidemic (London, 1854) Snow, 1855

- network structure associated with spread of disease

Epidemiological networks

(a) Cholera epidemic (London, 1854)

(b) "Spoke-hub" network

- network structure associated with spread of disease
- useful diagnostic information: contaminated water from Broad Street pump

Biological networks

- gene networks during Drosophila life cycle (Ahmed \& Xing, PNAS, 2009)

Biological networks

- gene networks during Drosophila life cycle (Ahmed \& Xing, PNAS, 2009)
- many other examples:
- protein networks
- phylogenetic trees
- neural networks for brain-machine interfaces (e.g., Carmena et al., 2009)

Social networks

(a) Biblical characters
www.esv.org

(b) US senators (2004-2006)
(Ravikumar, W. \& Lafferty, 2006)

Example: Voting and graphical models

Vote of person $s: \quad x_{s}= \begin{cases}+1 & \text { if individual } s \text { votes "yes" } \\ -1 & \text { if individual } s \text { votes "no" }\end{cases}$

Example: Voting and graphical models

Vote of person $s: \quad x_{s}= \begin{cases}+1 & \text { if individual } s \text { votes "yes" } \\ -1 & \text { if individual } s \text { votes "no" }\end{cases}$
(1) Independent voting

$$
\mathbb{P}\left(x_{1}, \ldots, x_{5}\right) \propto \prod_{s=1}^{5} \exp \left(\theta_{s} x_{s}\right)
$$

Example: Voting and graphical models

Vote of person $s: \quad x_{s}= \begin{cases}+1 & \text { if individual } s \text { votes "yes" } \\ -1 & \text { if individual } s \text { votes "no" }\end{cases}$
(1) Independent voting
$\mathbb{P}\left(x_{1}, \ldots, x_{5}\right) \propto \prod_{s=1}^{5} \exp \left(\theta_{s} x_{s}\right)$
(2) Cycle-based voting
$\mathbb{P}\left(x_{1}, \ldots, x_{5}\right) \propto \prod_{s=1}^{5} \exp \left(\theta_{s} x_{s}\right) \prod_{(s, t) \in C} \exp \left(\theta_{s t} x_{s} x_{t}\right)$

Example: Voting and graphical models

Vote of person $s: \quad x_{s}= \begin{cases}+1 & \text { if individual } s \text { votes "yes" } \\ -1 & \text { if individual } s \text { votes "no" }\end{cases}$
(1) Independent voting
$\mathbb{P}\left(x_{1}, \ldots, x_{5}\right) \propto \prod_{s=1}^{5} \exp \left(\theta_{s} x_{s}\right)$
(2) Cycle-based voting

$$
\mathbb{P}\left(x_{1}, \ldots, x_{5}\right) \propto \prod_{s=1}^{5} \exp \left(\theta_{s} x_{s}\right) \prod_{(s, t) \in C} \exp \left(\theta_{s t} x_{s} x_{t}\right)
$$

(3) Full clique voting

$$
\mathbb{P}\left(x_{1}, \ldots, x_{5}\right) \propto \prod_{s=1}^{5} \exp \left(\theta_{s} x_{s}\right) \prod_{s \neq t} \exp \left(\theta_{s t} x_{s} x_{t}\right)
$$

Possible voting patterns

Underlying graphs

Markov property and neighborhood structure

- Markov properties encode neighborhood structure:

Condition on full graph
Condition on Markov blanket

$$
N(s)=\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\}
$$

- basis of pseudolikelihood method
- used for Gaussian model selection

Graph selection via neighborhood regression

Ravikumar, Wainwright \& Lafferty, 2006, 2010

Key: Graph recovery G equivalent to recovering neighborhood sets $N(s)$.

Method: Based on n samples:
(1) For each node s, predict X_{s} based on other variables $X_{\backslash s}$:

$$
\widehat{\theta}[s]:=\arg \min _{\theta \in \mathbb{R}^{p-1}}\left\{\begin{array}{l}
-\frac{1}{n} \sum_{i=1}^{n} \underbrace{\log \mathbb{P}\left(\theta ; X_{\backslash s}^{(i)}\right)}_{\text {negative log likelihood }}+\underbrace{\sum_{t \in V \backslash\{s\}}\left|\theta_{s t}\right|}_{\ell_{1} \text { regularization }}\}
\end{array}\right.
$$

(2) Estimate local neighborhood $\widehat{N}(s)$ by extracting non-zero positions within $\widehat{\theta}[s]$.
(3) Combine the neighborhood estimates to form a graph estimate \widehat{G}.

Empirical behavior: Unrescaled plots

Empirical behavior: Appropriately rescaled

Illustration: Social network of US senators

- originally studied by Bannerjee, Aspremont and El Ghaoui (2008)
- discrete data set of voting records for $p=100$ senators:

$$
X_{i j}= \begin{cases}+1 & \text { if senator } i \text { voted yes on bill } j \\ -1 & \text { otherwise }\end{cases}
$$

- full data matrix $X \in \mathbb{R}^{n \times p}$ with $n=542$:

$$
X=\left[\begin{array}{cccc}
X_{11} & X_{12} & \cdots & X_{1 p} \\
X_{21} & X_{22} & \cdots & X_{2 p} \\
X_{31} & X_{32} & \cdots & X_{3 p} \\
\vdots & \cdots & \cdots & \vdots \\
X_{n 1} & X_{n 2} & \cdots & X_{n p}
\end{array}\right]
$$

Estimated senator network (subgraph of 55)

§2. (Nearly) low-rank matrices

Matrix $\Theta^{*} \in \mathbb{R}^{d_{1} \times d_{2}}$ with rank $r \ll \min \left\{d_{1}, d_{2}\right\}$.

Singular value decomposition:

- matrix of left singular vectors $U \in \mathbb{R}^{d_{1} \times r}$
- matrix of right singular vectors $V \in \mathbb{R}^{d_{2} \times r}$
- singular values $\sigma_{1}\left(\Theta^{*}\right) \geq \sigma_{2}\left(\Theta^{*}\right) \geq \cdots \geq \sigma_{r}\left(\Theta^{*}\right) \geq 0$.

Example: Matrix completion

Universe of d_{1} individuals and d_{2} films Observe $n \ll d_{1} d_{2}$ ratings Typical numbers for Netflix: $d_{1} \approx 10^{5}-10^{8}$ and $d_{2} \approx 10^{6}-10^{10}$

Geometry of low-rank model

Nuclear norm as a rank surrogate

- Rank as an ℓ_{0}-"norm" on vector of singular values:

$$
\operatorname{rank}\left(\Theta^{*}\right)=\sum_{j=1}^{d} \mathbb{I}\left[\sigma_{j}(\Theta) \neq 0\right] \quad \text { where } d=\min \left\{d_{1}, d_{2}\right\}
$$

- Non-convexity: rank constraints computationally hard.

Nuclear norm as a rank surrogate

- Rank as an ℓ_{0}-"norm" on vector of singular values:

$$
\operatorname{rank}\left(\Theta^{*}\right)=\sum_{j=1}^{d} \mathbb{I}\left[\sigma_{j}(\Theta) \neq 0\right] \quad \text { where } d=\min \left\{d_{1}, d_{2}\right\}
$$

- Non-convexity: rank constraints computationally hard.
- Nuclear norm: convex relaxation of rank:

$$
\|\Theta\|_{\mathrm{nuc}}=\sum_{j=1}^{d} \sigma_{j}(\Theta) .
$$

Nuclear norm as a rank surrogate

- Rank as an ℓ_{0} - "norm" on vector of singular values:

$$
\operatorname{rank}\left(\Theta^{*}\right)=\sum_{j=1}^{d} \mathbb{I}\left[\sigma_{j}(\Theta) \neq 0\right] \quad \text { where } d=\min \left\{d_{1}, d_{2}\right\}
$$

- Non-convexity: rank constraints computationally hard.
- Nuclear norm: convex relaxation of rank:

$$
\|\Theta\|_{\text {nuc }}=\sum_{j=1}^{d} \sigma_{j}(\Theta)
$$

- Estimator for matrix completion:

$$
\widehat{\Theta} \in \arg \min _{\Theta \in \mathbb{R}^{d_{1} \times d_{2}}}\left\{\sum_{(a, b) \in \Omega}\left(Y_{a b}-\Theta_{a b}\right)^{2}+\lambda_{n}\|\Theta\|_{\mathrm{nuc}}\right\}
$$

(Fazel, 2001; Srebro et al., 2004; Candes \& Recht, 2009; Negahban \& Wainwright, 2010)

Noisy matrix completion (unrescaled)
MSE versus raw sample size $(q=0)$

Noisy matrix completion (rescaled)

MSE versus rescaled sample size $(q=0)$

A simple iterative algorithm

Projected gradient descent over nuclear norm ball with stepsize $\alpha>0$:
(1) Compute gradient at current iterate Θ^{t}

$$
\left[\nabla \mathcal{L}\left(\Theta^{t}\right)\right]_{a b}= \begin{cases}\Theta_{a b}^{t}-Y_{a b} & \text { if entry }(a, b) \text { observed. } \\ 0 & \text { otherwise }\end{cases}
$$

A simple iterative algorithm

Projected gradient descent over nuclear norm ball with stepsize $\alpha>0$:
(1) Compute gradient at current iterate Θ^{t}

$$
\left[\nabla \mathcal{L}\left(\Theta^{t}\right)\right]_{a b}= \begin{cases}\Theta_{a b}^{t}-Y_{a b} & \text { if entry }(a, b) \text { observed. } \\ 0 & \text { otherwise }\end{cases}
$$

(2) Compute singular value decomposition of matrix $\Gamma=\Theta^{t}-\alpha \nabla \mathcal{L}\left(\Theta^{t}\right)$.

A simple iterative algorithm

Projected gradient descent over nuclear norm ball with stepsize $\alpha>0$:
(1) Compute gradient at current iterate Θ^{t}

$$
\left[\nabla \mathcal{L}\left(\Theta^{t}\right)\right]_{a b}= \begin{cases}\Theta_{a b}^{t}-Y_{a b} & \text { if entry }(a, b) \text { observed. } \\ 0 & \text { otherwise }\end{cases}
$$

(2) Compute singular value decomposition of matrix $\Gamma=\Theta^{t}-\alpha \nabla \mathcal{L}\left(\Theta^{t}\right)$.
(3) Return Θ^{t+1} by soft-thresholding the singular values of Γ at level λ_{n}.

Implemented by Mazumber, Hastie \& Tibshirani, 2009

A simple iterative algorithm

Projected gradient descent over nuclear norm ball with stepsize $\alpha>0$:
(1) Compute gradient at current iterate Θ^{t}

$$
\left[\nabla \mathcal{L}\left(\Theta^{t}\right)\right]_{a b}= \begin{cases}\Theta_{a b}^{t}-Y_{a b} & \text { if entry }(a, b) \text { observed. } \\ 0 & \text { otherwise }\end{cases}
$$

(2) Compute singular value decomposition of matrix $\Gamma=\Theta^{t}-\alpha \nabla \mathcal{L}\left(\Theta^{t}\right)$.
(3) Return Θ^{t+1} by soft-thresholding the singular values of Γ at level λ_{n}.

Implemented by Mazumber, Hastie \& Tibshirani, 2009

Question:

How quickly does this algorithm converge?

A simple iterative algorithm

Projected gradient descent over nuclear norm ball with stepsize $\alpha>0$:
(1) Compute gradient at current iterate Θ^{t}

$$
\left[\nabla \mathcal{L}\left(\Theta^{t}\right)\right]_{a b}= \begin{cases}\Theta_{a b}^{t}-Y_{a b} & \text { if entry }(a, b) \text { observed. } \\ 0 & \text { otherwise }\end{cases}
$$

(2) Compute singular value decomposition of matrix $\Gamma=\Theta^{t}-\alpha \nabla \mathcal{L}\left(\Theta^{t}\right)$.
(3) Return Θ^{t+1} by soft-thresholding the singular values of Γ at level λ_{n}.

Implemented by Mazumber, Hastie \& Tibshirani, 2009

Question:

How quickly does this algorithm converge?

Without additional structure, would expect slow (sub-linear) convergence:

$$
\left\|\Theta^{t}-\widehat{\Theta}\right\|_{F}^{2} \approx \frac{1}{t} .
$$

Sub-linear versus linear convergence

Fast convergence rates for matrix completion

\S 3. Matrix decomposition: Low-rank plus sparse
Matrix Y can be (approximately) decomposed into sum:

$$
Y=\underbrace{\Theta^{*}}_{\text {Low-rank component }}+\underbrace{\Gamma^{*}}_{\text {Sparse component }}
$$

§3. Matrix decomposition: Low-rank plus sparse

Matrix Y can be (approximately) decomposed into sum:

- exact decomposition: initially studied by Chandrasekaran et al., 2009
- Various applications:
- robust collaborative filtering
- graphical model selection with hidden variables
- image/video segmentation

Matrix decomposition: Low-rank plus column sparse

Matrix Y can be (approximately) decomposed into sum:

$$
Y=\underbrace{\Theta^{*}}_{\text {Low-rank component }}+\underbrace{\Gamma^{*}}_{\text {Column sparse component }}
$$

Matrix decomposition: Low-rank plus column sparse

Matrix Y can be (approximately) decomposed into sum:

- exact decomposition: initially studied by Xu et al., 2010
- Various applications:
- robust collaborative filtering
- robust principal components analysis

Example: Collaborative filtering

Universe of d_{1} individuals and d_{2} films Observe $n \ll d_{2} d_{2}$ ratings
(e.g., Srebro, Alon \& Jaakkola, 2004)

Security and robustness issues

Spiritual guide

Break-down of Amazon recommendation system (New York Times, 2002).

Security and robustness issues

Spiritual guide

Sex manual

Example: Robustness in PCA

Standard PCA fits a low-rank matrix to a data matrix.

Example: Robustness in PCA

A small amount of data corruption can have a large influence.

Example: Structure of Gauss-Markov random fields

Multivariate Gaussian with graph-structured inverse covariance Γ^{*} :

$$
\mathbb{P}\left(x_{1}, x_{2}, \ldots, x_{p}\right) \propto \exp \left(-\frac{1}{2} x^{T} \Gamma^{*} x\right) .
$$

Gauss-Markov models with hidden variables

Problems with hidden variables: conditioned on hidden z, vector $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is Gauss-Markov.

Gauss-Markov models with hidden variables

Problems with hidden variables: conditioned on hidden z, vector $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is Gauss-Markov.

Inverse covariance of x satisfies \{sparse, low-rank\} decomposition:

$$
\left[\begin{array}{cccc}
1-\mu & \mu & \mu & \mu \\
\mu & 1-\mu & \mu & \mu \\
\mu & \mu & 1-\mu & \mu \\
\mu & \mu & \mu & 1-\mu
\end{array}\right]=I_{4 \times 4}-\mu \mathbf{1 1} 1^{T}
$$

(Chandrasekaran, Parrilo \& Willsky, 2010)

Method for noisy matrix decomposition

Given noisy observations:

$$
Y=\Theta^{*}+\Gamma^{*}+W
$$

Method for noisy matrix decomposition

Given noisy observations:

$$
Y=\Theta^{*}+\Gamma^{*}+W
$$

Solve convex program

$$
(\widehat{\Theta}, \widehat{\Gamma}) \in \arg \min _{(\Theta, \Gamma)}\left\{\|Y-(\Theta+\Gamma)\|_{\text {frob }}^{2}+\lambda_{d}\|\Theta\|_{\text {nuc }}+\mu_{d}\|\Gamma\|_{1}\right\}
$$

plus "spikiness" constraint $\|\Theta\|_{\infty} \leq \frac{\alpha_{d}}{\sqrt{d_{1} d_{2}}}$.

Illustration

Original observations

Illustration

Low rank component

Sparse component

Noise matrix W

Noise matrix W

Summary

- characteristics of modern data sets:
- large-scale: many samples, many predictors
- high-dimensional: data dimension may exceed sample size
- challenges and opportunities for statisticians:
- how to model low-dimensional structure?
- new theory: non-asymptotic, allowing for high-dimensional scaling
- closer coupling between statistical and computational concerns

Summary

- characteristics of modern data sets:
- large-scale: many samples, many predictors
- high-dimensional: data dimension may exceed sample size
- challenges and opportunities for statisticians:
- how to model low-dimensional structure?
- new theory: non-asymptotic, allowing for high-dimensional scaling
- closer coupling between statistical and computational concerns

Some references:

- High-dimensional Ising model selection using ℓ_{1}-regularized logistic regression (2010). Annals of Statistics, 38(3): 1287-1317. With P. Ravikumar and J. Lafferty.
- Estimation rates of (near) low-rank matrices with noise and high-dimensional scaling (2011). Annals of Statistics, 39(2): 1069-1097. With S. Negahban.
- Restricted strong convexity and (weighted) matrix completion: Optimal bounds with noise. arxiv.org/abs/0112.5100, September 2010, With S. Negahban.
- Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions. http://arxiv.org/abs/1102.4807, February 2011. With A. Agarwal and S. Negahban.

