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◮ tremendous amounts of data being collected

many examples:
◮ molecular biology: genomics, proteomics, etc.
◮ neuroscience: fMRI, PET, EEG,, multi-electrode recording etc.
◮ astronomy: Sloan digital sky survey, Large synoptic survey telescope etc.
◮ consumer preference data: Netflix, Amazon, etc.
◮ geosciences: hyperspectral imaging
◮ financial data: stocks, bonds, currencies, derivatives etc.

a wealth of data.....yet a paucity of information

for statisticians: many exciting challenges and opportunities!
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A story in three parts

1 Graphical models
◮ Motivating applications: epidemiology, biology, social networks
◮ Problem of model selection
◮ Neighborhood-based discovery

2 Exploiting low-rank structure

◮ Motivating applications: Recommender systems and collaborative filtering
◮ Nuclear norm as a rank surrogate

3 Matrix decomposition problems
◮ Motivating applications: robust PCA, security issues, hidden variables
◮ Sparse plus low-rank: a simple relaxation
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Epidemiological networks

(a) Cholera epidemic (London, 1854)
Snow, 1855

network structure associated with spread of disease
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Epidemiological networks

(a) Cholera epidemic (London, 1854) (b) “Spoke-hub” network
Snow, 1855

network structure associated with spread of disease

useful diagnostic information: contaminated water from Broad Street
pump
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Biological networks

gene networks during Drosophila life cycle (Ahmed & Xing, PNAS, 2009)



Biological networks

gene networks during Drosophila life cycle (Ahmed & Xing, PNAS, 2009)

many other examples:
◮ protein networks
◮ phylogenetic trees
◮ neural networks for brain-machine interfaces (e.g., Carmena et al., 2009)
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www.esv.org (Ravikumar, W. & Lafferty, 2006)
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Example: Voting and graphical models

Vote of person s: xs =

{
+1 if individual s votes “yes”

−1 if individual s votes “no”
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Example: Voting and graphical models

Vote of person s: xs =

{
+1 if individual s votes “yes”

−1 if individual s votes “no”

(1) Independent voting

P(x1, . . . , x5) ∝

5∏

s=1

exp(θsxs)

(2) Cycle-based voting

P(x1, . . . , x5) ∝
5∏

s=1

exp(θsxs)
∏

(s,t)∈C

exp(θstxs xt)

(3) Full clique voting

P(x1, . . . , x5) ∝
5∏

s=1

exp(θsxs)
∏

s 6=t

exp(θstxsxt)



Possible voting patterns



Underlying graphs



Markov property and neighborhood structure
Markov properties encode neighborhood structure:

(Xs | XV \s)︸ ︷︷ ︸
d
= (Xs | XN(s))︸ ︷︷ ︸

Condition on full graph Condition on Markov blanket

N(s) = {t1, t2, t3, t4, t5}

Xs

Xt1
Xt2

Xt3

Xt4

Xt5

basis of pseudolikelihood method (Besag, 1974)

used for Gaussian model selection (Meinshausen & Buhlmann, 2006)



Graph selection via neighborhood regression

Ravikumar, Wainwright & Lafferty, 2006, 2010

Key: Graph recovery G equivalent to recovering neighborhood sets N(s).

Method: Based on n samples:

1 For each node s, predict Xs based on other variables X\s:

θ̂[s] := arg min
θ∈Rp−1





−
1

n

n∑

i=1

log P(θ;X
(i)

\s )︸ ︷︷ ︸
+ λnn

∑

t∈V \{s}

|θst|

︸ ︷︷ ︸






negative log likelihood ℓ1 regularization

2 Estimate local neighborhood N̂(s) by extracting non-zero positions within θ̂[s].

3 Combine the neighborhood estimates to form a graph estimate Ĝ.
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Empirical behavior: Unrescaled plots
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Empirical behavior: Appropriately rescaled
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Illustration: Social network of US senators
originally studied by Bannerjee, Aspremont and El Ghaoui (2008)

discrete data set of voting records for p = 100 senators:

Xij =

{
+1 if senator i voted yes on bill j

−1 otherwise.

full data matrix X ∈ R
n×p with n = 542:

X =




X11 X12 · · · X1p

X21 X22 · · · X2p

X31 X32 · · · X3p

... · · · · · ·
...

Xn1 Xn2 · · · Xnp






Estimated senator network (subgraph of 55)



§2. (Nearly) low-rank matrices

Θ∗ U D V T

r × r

d1 × d2 d1 × r

r × d2

Matrix Θ∗ ∈ R
d1×d2 with rank r ≪ min{d1, d2}.

Singular value decomposition:
matrix of left singular vectors U ∈ R

d1×r

matrix of right singular vectors V ∈ R
d2×r

singular values σ1(Θ
∗) ≥ σ2(Θ

∗) ≥ · · · ≥ σr(Θ
∗) ≥ 0.



Example: Matrix completion




. . . . . .

4 ∗ 3 . . . . . . ∗

3 5 ∗ . . . . . . 2

5 4 3 . . . . . . 3

2 ∗ ∗ . . . . . . 1




Universe of d1 individuals and d2 films Observe n ≪ d1d2 ratings
Typical numbers for Netflix: d1 ≈ 105–108 and d2 ≈ 106–1010



Geometry of low-rank model
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Nuclear norm as a rank surrogate
Rank as an ℓ0-“norm” on vector of singular values:

rank(Θ∗) =
d∑

j=1

I
[
σj(Θ) 6= 0

]
where d = min{d1, d2}.

Non-convexity: rank constraints computationally hard.
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Nuclear norm as a rank surrogate
Rank as an ℓ0-“norm” on vector of singular values:

rank(Θ∗) =
d∑

j=1

I
[
σj(Θ) 6= 0

]
where d = min{d1, d2}.

Non-convexity: rank constraints computationally hard.

Nuclear norm: convex relaxation of rank:

|||Θ|||nuc =

d∑

j=1

σj(Θ).

Estimator for matrix completion:

Θ̂ ∈ arg min
Θ∈Rd1×d2

{ ∑

(a,b)∈Ω

(
Yab −Θab

)2
+ λn|||Θ|||nuc

}

(Fazel, 2001; Srebro et al., 2004; Candes & Recht, 2009; Negahban & Wainwright, 2010)



Noisy matrix completion (unrescaled)
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Noisy matrix completion (rescaled)
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A simple iterative algorithm
Projected gradient descent over nuclear norm ball with stepsize α > 0:

1 Compute gradient at current iterate Θt

[∇L(Θt)]ab =

{
Θt

ab − Yab if entry (a, b) observed.

0 otherwise.
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A simple iterative algorithm
Projected gradient descent over nuclear norm ball with stepsize α > 0:

1 Compute gradient at current iterate Θt

[∇L(Θt)]ab =

{
Θt

ab − Yab if entry (a, b) observed.

0 otherwise.

2 Compute singular value decomposition of matrix Γ = Θt − α∇L(Θt).

3 Return Θt+1 by soft-thresholding the singular values of Γ at level λn.

Implemented by Mazumber, Hastie & Tibshirani, 2009

Question:

How quickly does this algorithm converge?

Without additional structure, would expect slow (sub-linear) convergence:

|||Θt − Θ̂|||2F ≈
1

t
.



Sub-linear versus linear convergence
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Fast convergence rates for matrix completion

20 40 60 80 100
−10

−8

−6

−4

−2

0

2

Iteration Count

lo
g(
‖
Θ

t
−

Θ̂
‖
)

(r
es

ca
le

d
)

q = 0 , d2 = 40000

 

 

 1
 2
 5
25



§3. Matrix decomposition: Low-rank plus sparse

Matrix Y can be (approximately) decomposed into sum:

Y U V TD

d1 × d2 d1 × r

r × r r × d2

≈
+

Y = Θ∗
︸︷︷︸

Low-rank component

+ Γ∗
︸︷︷︸

Sparse component
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Sparse component

exact decomposition: initially studied by Chandrasekaran et al., 2009

Various applications:
◮ robust collaborative filtering
◮ graphical model selection with hidden variables
◮ image/video segmentation
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Matrix decomposition: Low-rank plus column sparse

Matrix Y can be (approximately) decomposed into sum:

Y U V TD

d1 × d2 d1 × r

r × r r × d2

≈
+

Y = Θ∗
︸︷︷︸

Low-rank component

+ Γ∗
︸︷︷︸

Column sparse component

exact decomposition: initially studied by Xu et al., 2010

Various applications:
◮ robust collaborative filtering
◮ robust principal components analysis



Example: Collaborative filtering




. . . . . .

4 ∗ 3 . . . . . . ∗

3 5 ∗ . . . . . . 2

5 4 3 . . . . . . 3

2 ∗ ∗ . . . . . . 1




Universe of d1 individuals and d2 films Observe n ≪ d2d2 ratings

(e.g., Srebro, Alon & Jaakkola, 2004)



Security and robustness issues

Spiritual guide

Break-down of Amazon recommendation system (New York Times, 2002).



Security and robustness issues

Spiritual guide Sex manual

Break-down of Amazon recommendation system (New York Times, 2002).



Example: Robustness in PCA

Standard PCA fits a low-rank matrix to a data matrix.



Example: Robustness in PCA

A small amount of data corruption can have a large influence.



Example: Structure of Gauss-Markov random fields

Zero pattern of inverse covariance

1 2 3 4 5

1

2

3

4

5

1 2

3

4

5

Multivariate Gaussian with graph-structured inverse covariance Γ∗:

P(x1, x2, . . . , xp) ∝ exp
(
−

1

2
xTΓ∗x

)
.



Gauss-Markov models with hidden variables

x1 x2 x3 x4

z

Problems with hidden variables: conditioned on hidden z, vector
x = (x1, x2, x3, x4) is Gauss-Markov.



Gauss-Markov models with hidden variables

x1 x2 x3 x4

z

Problems with hidden variables: conditioned on hidden z, vector
x = (x1, x2, x3, x4) is Gauss-Markov.

Inverse covariance of x satisfies {sparse, low-rank} decomposition:




1− µ µ µ µ

µ 1− µ µ µ

µ µ 1− µ µ

µ µ µ 1− µ


 = I4×4 − µ11T .

(Chandrasekaran, Parrilo & Willsky, 2010)



Method for noisy matrix decomposition

Y Θ∗ Γ∗
W

++=n1 × n2

Given noisy observations:

Y = Θ∗ + Γ∗ +W
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Method for noisy matrix decomposition

Y Θ∗ Γ∗
W

++=n1 × n2

Given noisy observations:

Y = Θ∗ + Γ∗ +W

Solve convex program

(Θ̂, Γ̂) ∈ arg min
(Θ,Γ)

{
|||Y − (Θ + Γ)|||2frob + λd|||Θ|||nuc + µd‖Γ‖1

}

plus “spikiness” constraint ‖Θ‖∞ ≤ αd√
d1d2

.
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Illustration

Original observations



Illustration

Low rank component Sparse component

Low rank component Sparse component
Noise matrix W

Noise matrix W



Summary
characteristics of modern data sets:

◮ large-scale: many samples, many predictors
◮ high-dimensional: data dimension may exceed sample size

challenges and opportunities for statisticians:
◮ how to model low-dimensional structure?
◮ new theory: non-asymptotic, allowing for high-dimensional scaling
◮ closer coupling between statistical and computational concerns
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(2010). Annals of Statistics, 38(3): 1287–1317. With P. Ravikumar and J.
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Estimation rates of (near) low-rank matrices with noise and high-dimensional
scaling (2011). Annals of Statistics, 39(2): 1069–1097. With S. Negahban.

Restricted strong convexity and (weighted) matrix completion: Optimal bounds
with noise. arxiv.org/abs/0112.5100, September 2010, With S. Negahban.

Noisy matrix decomposition via convex relaxation: Optimal rates in high
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