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o a wealth of data.....yet a paucity of information

@ for statisticians: many exciting challenges and opportunities!
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A story in three parts

© Graphical models

» Motivating applications: epidemiology, biology, social networks
» Problem of model selection
» Neighborhood-based discovery

© Exploiting low-rank structure

» Motivating applications: Recommender systems and collaborative filtering
» Nuclear norm as a rank surrogate

© Matrix decomposition problems

» Motivating applications: robust PCA, security issues, hidden variables
» Sparse plus low-rank: a simple relaxation
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Epidemiological networks

(a) Cholera epidemic (London, 1854)
Snow, 1855

@ network structure associated with spread of disease




Epidemiological networks

(a) Cholera epidemic (London, 1854) (b) “Spoke-hub” network
Snow, 1855

@ network structure associated with spread of disease

@ useful diagnostic information: contaminated water from Broad Street
pump
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Biological networks
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@ gene networks during Drosophila life cycle (Ahmed & Xing, PNAS, 2009)

@ many other examples:

» protein networks
» phylogenetic trees

» neural networks for brain-machine interfaces (e.g., Carmena et al., 2009)



Social networks
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(b) US senators (2004-2006)
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41 if individual s votes “yes”

Vote of person s: Ty = .
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5 O
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Example: Voting and graphical models

41 if individual s votes “yes”
Vote of person s: Ts =

—1 if individual s votes “no”

(1) Independent voting O
5 O O
P(zy,...,25) exp(fsxy
(71 5) s:H1 (0s55) S

(2) Cycle-based voting

5
P(xy,...,25) x H exp(fsxs) H exp(fstxs xt)
s=1 (s,t)eC
(3) Full clique voting

5
]P(l'lv s (E5) X H exp(gsxs) H exp(astxsxt)
s=1 s#t



Possible voting patterns




Underlying graphs




Markov property and neighborhood structure

@ Markov properties encode neighborhood structure:

d
(Xs | XV\s) = (Xs | XN(S))
—_— —
Condition on full graph Condition on Markov blanket

N(s) = {t1,t2,t3,t4,t5}

@ basis of pseudolikelihood method (Besag, 1974)
@ used for Gaussian model selection (Meinshausen & Buhlmann, 2006)



Graph selection via neighborhood regression

Ravikumar, Wainwright & Lafferty, 2006, 2010
Key: Graph recovery G equivalent to recovering neighborhood sets N(s).

Method: Based on n samples:
@ For each node s, predict X, based on other variables X\,:

| — _ (1)
Ofs] = argoerflkznl ZlogP (0; X + Ann Z |05
%’_’ teV\{s}
—_——
negative log likelihood ¢y regularization

© Estimate local neighborhood N (s) by extracting non-zero positions within é\[s]

© Combine the neighborhood estimates to form a graph estimate G.
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Prob. success

Empirical behavior: Unrescaled plots
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Empirical behavior: Appropriately rescaled

Star graph; Linear fraction neighbors
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lllustration: Social network of US senators
@ originally studied by Bannerjee, Aspremont and El Ghaoui (2008)

@ discrete data set of voting records for p = 100 senators:

X +1 if senator i voted yes on bill j
7 1=1 otherwise.

o full data matrix X € R™"*P with n = 542:

X1 X2 o0 Xy
Xo1 Xog -+ Xop
¥ = |X31 X322 - X3

an Xn2 T an



Estimated senator network (subgraph of 55)
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2. (Nearly) low-rank matrices

U D

Matrix ©* € R%*42 with rank r < min{d;, ds}.

VT

Singular value decomposition:
@ matrix of left singular vectors U € R4*"

@ matrix of right singular vectors V € R%*"
@ singular values 01(0*) > 02(0*) > --- > ¢,.(0%) > 0.



Example: Matrix completion

1

Universe of d; individuals and ds films Observe n < djds ratings
Typical numbers for Netflix: d; ~ 10°-10% and dy ~ 105-10°



Geometry of low-rank model
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Nuclear norm as a rank surrogate

@ Rank as an #p-“norm” on vector of singular values:

d
rank(© Z]I where d = min{d;,d>}.

@ Non-convexity: rank constraints computationally hard.
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Nuclear norm as a rank surrogate

@ Rank as an #p-“norm” on vector of singular values:

d
rank(© Z]I where d = min{d;,d>}.

@ Non-convexity: rank constraints computationally hard.

@ Nuclear norm: convex relaxation of rank:

d
[CIEDBEAC)
j=1

@ Estimator for matrix completion:

© carg min { Z (Yap — @ab)2 + /\n”@”nuC}
(

e Rdl Xdo
€ a,b)eQ

(Fazel, 2001; Srebro et al., 2004; Candes & Recht, 2009; Negahban & Wainwright, 2010)



Frob. norm MSE
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Frob. norm MSE
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A simple iterative algorithm

Projected gradient descent over nuclear norm ball with stepsize o > 0:
© Compute gradient at current iterate ©*

0!, — Yy, if entry (a,b) observed.
0 otherwise.

[Vﬁ(@t)]ab = {
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Projected gradient descent over nuclear norm ball with stepsize o > 0:
© Compute gradient at current iterate ©*

0!, — Yy, if entry (a,b) observed.
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© Return ©*F! by soft-thresholding the singular values of " at level \,,.

Implemented by Mazumber, Hastie & Tibshirani, 2009
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A simple iterative algorithm

Projected gradient descent over nuclear norm ball with stepsize o > 0:
© Compute gradient at current iterate ©*

0!, — Yy, if entry (a,b) observed.

[VL(O")]ap = { ‘

0 otherwise.

© Compute singular value decomposition of matrix I' = ©f — aVL(O?).

© Return ©*F! by soft-thresholding the singular values of " at level \,,.

Implemented by Mazumber, Hastie & Tibshirani, 2009

Question:
How quickly does this algorithm converge?

Without additional structure, would expect slow (sub-linear) convergence:

~ 1
1o - 8ll3 ~ 5.



Log optimization error

Sub-linear versus linear convergence

Sub-linear versus linear convergence
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Fast convergence rates for matrix completion
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§3. Matrix decomposition: Low-rank plus sparse

Matrix Y can be (approximately) decomposed into sum:

U D VT
. II- .

Y

Y = e* + e
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Low-rank component Sparse component




§3. Matrix decomposition: Low-rank plus sparse

Matrix Y can be (approximately) decomposed into sum:

Y U D VT
~ + " .
" o
L] L]

Y = e* + e
~—~— ~—
Low-rank component Sparse component

@ exact decomposition: initially studied by Chandrasekaran et al., 2009
@ Various applications:

» robust collaborative filtering
» graphical model selection with hidden variables
» image/video segmentation




Matrix decomposition: Low-rank plus column sparse

Matrix Y can be (approximately) decomposed into sum:
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Matrix decomposition: Low-rank plus column sparse

Matrix Y can be (approximately) decomposed into sum:

U D VT
. II- .

Y

Y = o + r
~—~ ~—~
Low-rank component Column sparse component

@ exact decomposition: initially studied by Xu et al., 2010
@ Various applications:

» robust collaborative filtering
» robust principal components analysis



Example: Collaborative filtering

1

Universe of d; individuals and ds films Observe n < dads ratings

(e.g., Srebro, Alon & Jaakkola, 2004)



Security and robustness issues
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Break-down of Amazon recommendation system (New York Times, 2002).



Security and robustness issues

Awnan sy Pows I Yous Lir

PAT ROBERTSON

Spiritual guide Sex manual

Break-down of Amazon recommendation system (New York Times, 2002).



Example: Robustness in PCA

Standard PCA fits a low-rank matrix to a data matrix.



Example: Robustness in PCA

A small amount of data corruption can have a large influence.



Example: Structure of Gauss-Markov random fields

Zero pattern of inverse covariance

1 2 3 4 5 4

Multivariate Gaussian with graph-structured inverse covariance I"*:

1
P(z1,x2,...,%p) X exp ( — §J:TF*9L‘).



Gauss-Markov models with hidden variables

Z1 T2 X3 Xy

Problems with hidden variables: conditioned on hidden z, vector
x = (1,22, 23,x4) is Gauss-Markov.



Gauss-Markov models with hidden variables

Z1 T2 X3 Xy

Problems with hidden variables: conditioned on hidden z, vector
x = (1,22, 23,x4) is Gauss-Markov.

Inverse covariance of z satisfies {sparse, low-rank} decomposition:

I—p p % %

poo o l—p  p % T
=1 —plls.

1 1 1—p 1 4x4 — /

1% 1% oo l—p

(Chandrasekaran, Parrilo & Willsky, 2010)



Method for noisy matrix decomposition

o* I
" u - ™
o m
n -.- L= |+
" .
" = .

Given noisy observations:

Y =0+ + W
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Method for noisy matrix decomposition

o r#

Given noisy observations:

Y=0"+T"+W

Solve convex program

©.5) € arg in {1 - (@ +7)

o + AdlOllnuc + pall Tl }

plus “spikiness” constraint ||O]|o, < —34

Vdids®

Martin Wainwright (UC Berkeley) High-dimensional data August 2011
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lHlustration

Original observations




lHlustration

Low rank component Sparse component

Noise matrix W



Summary

@ characteristics of modern data sets:
» large-scale: many samples, many predictors
» high-dimensional: data dimension may exceed sample size

@ challenges and opportunities for statisticians:
» how to model low-dimensional structure?
» new theory: non-asymptotic, allowing for high-dimensional scaling
» closer coupling between statistical and computational concerns
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