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Abstract

Mediation analysis has become an important tool in the behavioral sciences for investi-
gating the role of intermediate variables that lie in the path between a randomized treatment
and an outcome variable. The influence of the intermediate variable on the outcome is of-
ten explored using structural equation models (SEMs), with model coefficients interpreted
as possible effects. While there has been significant research on the topic in recent years,
little work has been done on mediation analysis when the intermediate variable (mediator)
is a high-dimensional vector. In this work we present a new method for exploratory me-
diation analysis in this setting called the directions of mediation (DMs). The first DM is
defined as the linear combination of the elements of a high-dimensional vector of potential
mediators that maximizes the likelihood of the SEM. The subsequent DMs are defined as
linear combinations of the elements of the high-dimensional vector that are orthonormal
to the previous DMs and maximize the likelihood of the SEM. We provide an estimation
algorithm and establish the asymptotic properties of the obtained estimators. This method
is well suited for cases when many potential mediators are measured. Examples of high-
dimensional potential mediators are brain images composed of hundreds of thousands of
voxels, genetic variation measured at millions of SNPs, or vectors of thousands of vari-
ables in large-scale epidemiological studies. We demonstrate the method using a functional
magnetic resonance imaging (fMRI) study of thermal pain where we are interested in deter-
mining which brain locations mediate the relationship between the application of a thermal
stimulus and self-reported pain.

Keywords directions of mediation, principal components analysis, fMRI, mediation analy-

sis, structural equation models, high-dimensional data
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1 Introduction

Mediation and path analysis have been pervasive in the social and behavioral sciences (e.g.,

Baron and Kenny (1986); MacKinnon (2008); Preacher and Hayes (2008)), and have found

widespread use in many applications, including psychology, behavioral science, economics,

decision-making, health psychology, epidemiology, and neuroscience. In the past couple of

decades the topic has also begun to receive a great deal of attention in the statistical literature,

particularly in the area of causal inference (e.g., Holland (1988); Robins and Greenland (1992);

Angrist et al. (1996); Ten Have et al. (2007); Albert (2008); Jo (2008); Sobel (2008); Vander-

Weele and Vansteelandt (2009); Imai et al. (2010); Lindquist (2012); Pearl (2014)). When the

effect of a treatment variable X on an outcome variable Y is at least partially directed through

an intervening variable M , then M is said to be a mediator; see Figure 1 for an illustration

of the corresponding path diagram. Mediation analysis allows one to parse the effects of the

treatment on the outcome into separable direct and indirect effects. Here the direct effect is the

influence of X on Y that is unmediated by M , the indirect effect is the influence mediated by

M , and the total effect is the combination (the sum, when the effects are on the linear scale) of

the direct and indirect effects. The influence of the intermediate variable on the outcome is often

determined using linear structural equation models (SEMs), with model coefficients interpreted

as effects. These models have important limitations, especially when the goal is to interpret the

effects as causal (Ogburn (2012); VanderWeele (2015)). Under certain strong assumptions the

coefficients of linear SEMs represent causal mediation effects, but when those assumptions are

not met the effects estimated by these models may still suggest evidence of mediation that can

be followed up with additional analyses.

One fundamental limitation of mediation analysis is that the mediating variable is assumed

to be univariate. Multiple mediators can be tested either separately, or in some cases simul-
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Figure 1: The three-variable path diagram representing the standard mediation framework. The
variables corresponding to X , Y , and M are all scalars, as are the path coefficients α, β, and γ.

taneously (Preacher and Hayes, 2008). The latter approach is advantageous as it allows one

to control for other potential mediating variables when assessing the indirect effect. This ap-

proach, however, becomes problematic if the different mediators are highly correlated; or if the

total number of mediators is large. In recent years, many new applications measuring massive

numbers of variables have appeared, including brain imaging, genetics, epidemiology, and pub-

lic health studies. Applying mediation analysis to these applications requires a fundamental

extension of that framework; such an extension is the focus of this work. We focus here on the

definition and estimation of mediation effects in these settings; whether and when these effects

may have causal interpretations will be the focus of future work.

As a motivating example, consider functional magnetic resonance imaging (fMRI), which

is an imaging modality that allows researchers to measure changes in blood flow and oxygena-

tion in the brain in response to neuronal activation (Ogawa et al. (1990); Kwong et al. (1992);

Lindquist (2008)). In fMRI experiments, a multivariate time series of three dimensional brain

volumes are obtained for each subject, where each volume consists of tens to hundreds of thou-

sands of equally sized volume elements (voxels). A number of previous studies have used

fMRI to investigate the relationship between painful heat and self-reported pain (Apkarian et al.

(2005); Bushnell et al. (2013)). Recently, studies have focused on trial-by-trial modeling of the
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relationship between the intensity of noxious heat and self-reported pain (Wager et al. (2013);

Atlas et al. (2014)). In Woo et al. (2015), for example, a series of noxious thermal stimuli were

applied at various temperatures (ranging from 44.3− 49.3 ◦C in 1 ◦ increments) to the left fore-

arm of each of 33 subjects. In response, subjects gave subjective pain ratings at a specific time

point following the offset of the stimulus. During the course of the experiment, brain activity

in response to the thermal stimuli was measured across the entire brain using fMRI. One of the

goals of the study was to search for brain regions whose activity level acts as potential mediators

of the relationship between temperature and pain rating.

In this context, we are interested in whether the effect of temperature, X , on reported pain,

Y , is mediated by the brain response, M . Here both X and Y are scalars, while M is the esti-

mated brain activity measured over a large number of different voxels/regions. We assume that

the values of M are either parameters or contrasts (linear combinations of parameters) obtained

by fitting the general linear model (GLM), where for each subject, the relationship between the

stimuli and the BOLD response is analyzed at the voxel level (Lindquist et al., 2012). Standard

mediation techniques are applicable to univariate mediators, and the identification of univari-

ate mediators has come to be known as Mediation Effect Parametric Mapping (Wager et al.

(2008); Wager et al. (2009b); Wager et al. (2009a)) in the neuroimaging field. This approach,

however, ignores the relationship between brain regions, and identifies a series of univariate

mediators rather than an optimized, multivariate linear combination. A multivariate extension

should focus on identifying latent brain components that are maximally effective as mediators.

Thus, we consider the same simple three-variable path diagram depicted in Figure 1, with

the novel feature that the scalar potential mediator is replaced by a very high dimensional vec-

tor of potential mediators M = (M1,M2, . . .Mp). In our motivating example, the vector of

potential mediators consists of brain activity measured over a large number of possible regions.

The goal is to find the linear combination of the entries of M (potential mediators) that provides
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the strongest mediation signal as measured by the maximum likelihood criterion in the associ-

ated univariate SEM. To this end we propose a framework, which we denote the directions of

mediation (DMs), which is philosophically similar to principal component analysis (PCA) but

addresses a fundamentally different problem. The first direction of mediation, w1, is defined as

the linear combination of the elements of M that maximizes the likelihood of the underlying

three-variable path model. Like PCA, subsequent directions can thereafter be found that maxi-

mize the likelihood of the model, conditional on being orthogonal to the previous directions of

mediation. In the brain imaging context, w1 provides the linear combination of the activation

across brain regions. These values can be mapped back onto the brain and used to explore the

relative contribution of different brain regions to the indirect effect of X on Y . The approach

shares some similarities with partial least squares (PLS) (Wold (1982); Wold (1985); Krishnan

et al. (2011)), which is a dimension reduction approach based on the correlation between a re-

sponse variable (e.g. Y ) and a set of explanatory variables (e.g. M). In contrast, for DM the

dimension reduction is based on the complete X-M-Y relationship.

This article is organized as follows. In Section 2 we discuss the motivating thermal pain data

set. In Sections 3.1 - 3.2 we review the standard mediation analysis framework and formulate a

multivariate extension. In Sections 3.3 - 3.5 we provide an estimation algorithm and prove some

asymptotic properties of the obtained estimates. In Section 3.6 we introduce a procedure for

estimating the DM and its associated path coefficients when the mediator is high dimensional.

In Section 4 we discuss a method for performing inference on the DM. Finally, in Sections 5 - 6

the efficacy of the approach is illustrated through simulations and an application to fMRI data.

2 Data Description

The data comes from the fMRI study of thermal pain described in the Introduction; see Woo

et al. (2015) for an in-depth discussion. A total of 33 healthy, right-handed participants com-
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pleted the study (age 27.9±9.0 years, 22 females). All participants provided informed consent,

and the Columbia University Institutional Review Board approved the study.

The experiment consisted of a total of nine runs. Seven runs were “passive”, in which

participants passively experienced and rated the heat stimuli, and two runs were “regulation”,

where the participants imagined the stimuli to be more or less painful than they actually were,

in one run each (counterbalanced in order across participants). In this paper we consider only

the seven passive runs, consisting of between 58 − 75 separate trials (thermal stimulation rep-

etitions). During each trial, thermal stimulations were delivered to the volar surface of the left

inner forearm. Each stimulus lasted 12.5s, with 3s ramp-up and 2s ramp-down periods and 7.5s

at the target temperature. Six levels of temperature, ranging from 44.3− 49.3 ◦C in increments

of 1 ◦C, were administered to each participant. Each stimulus was followed by a 4.5−8.5s long

pre-rating period, after which participants rated the intensity of the pain on a scale of 0 to 100.

Each trial concluded with a 5− 9s resting period.

Whole-brain fMRI data was acquired on a 3T Philips Achieva TX scanner at Columbia

University. Structural images were acquired using high-resolution T1 spoiled gradient recall

(SPGR) images with the intention of using them for anatomical localization and warping to a

standard space. Functional EPI images were acquired with TR = 2, 000ms, TE = 20ms, field of

view = 224mm, 64 × 64 matrix, 3 × 3 × 3mm3 voxels, 42 interleaved slices, parallel imaging,

SENSE factor 1.5. For each subject, structural images were co-registered to the mean functional

image using the iterative mutual information-based algorithm implemented in SPM81. Subse-

quently, structural images were normalized to MNI space using SPM8’s generative segment-

and-normalize algorithm. Prior to preprocessing of functional images, the first four volumes

were removed to allow for image intensity stabilization. Outliers were identified using the Ma-

halanobis distance for the matrix of slice-wise mean and the standard deviation values. The
1http://www.fil.ion.ucl.ac.uk/spm/
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functional images were corrected for differences in slice-timing, and were motion corrected

using SPM8. The functional images were warped to SPMs normative atlas using warping pa-

rameters estimated from coregistered, high resolution structural images, and smoothed with an

8mm FWHM Gaussian kernel. A high-pass filter of 180s was applied to the time series data.

A single trial analysis approach was used, by constructing a general linear model (GLM)

design matrix with separate regressors for each trial (Rissman et al. (2004); Mumford et al.

(2012)). Boxcar regressors, convolved with the canonical hemodynamic response function,

were constructed to model periods for the thermal stimulation and rating periods for each trial.

Other regressors that were not of direct interest included (a) intercepts for each run; (b) linear

drift across time within each run; (c) the six estimated head movement parameters (x, y, z,

roll, pitch, and yaw), their mean-centered squares, derivatives, and squared derivative for each

run; (d) indicator vectors for outlier time points; (e) indicator vectors for the first two images

in each run; (f) signal from white matter and ventricles. Using the results of the GLM analysis,

whole-brain maps of activation were computed.

In summary, Xij and Yij are the temperature level and pain rating, respectively, assigned

on trial j to subject i, and Mij = (Mij1,Mij2, . . .Mijp) is the whole-brain activation measured

over p = 206, 777 voxels, defined as the regression parameter corresponding to the stimulus

in the associated GLM. In addition, i ∈ {1, . . . , I} and j ∈ {1, . . . , Ji}, where I = 33 and Ji

takes subject-specific values between 58− 75.

3 Methods

In this section we review the standard approach to mediation analysis with linear SEMs, which

is often used in behavioral sciences. Thereafter, we discuss the case when the mediator is

multivariate and introduce the directions of mediation approach.
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3.1 Mediation Analysis

Mediation analysis is often performed using the framework suggested by (Baron and Kenny,

1986), which is based on a linear structural equation model (LSEM). In this setting the variables

Xi, Yi, and Mi for i = 1 . . . n, all take univariate scalar values. The LSEM corresponding to the

path diagram in Figure 1, can be expressed as

Mi = δ1 + αXi + εi (1)

Yi = δ2 + γXi + βMi + ηi (2)

for i = 1 . . . n, where E(ε|Z = z) = 0 and E(η|Z = z,M = m) = 0. Here the parameters of

the LSEM can easily be estimated using a standard linear regression approach.

It can be shown that the total effect of X on Y , denoted τ , can be decomposed as follows:

τ = γ + αβ.

Here the term γ represents the direct effect of X on Y , while αβ represents the indirect (medi-

ated) effect. To demonstrate mediation one can perform a hypothesis test to determine whether

αβ is significantly different from 0. This is typically performed using either the Sobel test

(Sobel, 1982) or the bootstrap procedure (Shrout and Bolger, 2002).

3.2 Model Formulation

Now consider the case when Xi and Yi are univariate variables, but Mi ∈ Rp for all i =

1, . . . , n. In the reminder of the paper, we use bold lower case symbols for column vectors,

bold upper case symbols for matrices, with the remaining symbols, unless specified otherwise,

scalars. We use n for the total number of observations and N for the total number of subjects,

i.e., n =
∑N

i=1 Fi, where Fi is the number of observation for subject i. We denote the full

dataset D = (X,Y,M), where X = (X1, . . . Xn)ᵀ ∈ Rn, Y = (Y1, . . . Yn)ᵀ ∈ Rn, and
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Figure 2: The three-variable path diagram used to represent the multivariate mediation frame-
work. The variables corresponding to Z and Y are scalars, while the variable corresponding to
M is a vector.

M = (M1, . . .Mn)ᵀ ∈ Rn×p. Let w ∈ Rp be a vector that maps M onto Rn, and θ :=

(α0, α1, β0, β1, γ) ∈ R5 the set of parameters of the LSEM described in Eqs. (1) - (2) fit using

X, Y, and Mw as input. This can be expressed as follows:

Miw = α0 + α1Xi + ηi. (3)

Yi = β0 + γXi + β1Miw + εi (4)

Throughout we assume that εi and ηi are both independent and identically distributed normal

random variables with mean zero and variance σ2
ε and σ2

η , respectively.

Model estimation in this setting is complicated by the inclusion of the unknown parameter

w. Here we seek to find the value of w that maximizes the likelihood of the underlying LSEM

described in Eqs. (3) - (4). The first direction of mediation is defined as the linear combina-

tion of the elements of M that maximizes the likelihood of the underlying LSEM. Like PCA,

subsequent directions can be found that maximize the likelihood of the model, conditional on it

being orthogonal to the previously found directions.

To illustrate, let L (D; w1,θ) be the joint likelihood of the LSEM stated in Eqs. (3) - (4).

The Directions of Mediation are formally defined as follows:

Step 1: The 1st DM is the vector w1, with norm 1, which maximizes the conditional joint
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likelihood L (D,θ; w1), i.e.

ŵ1|θ = argmax{
w∈Rp:‖w‖=1

}{L (D,θ; w1)

}

Step 2: The 2nd DM is the vector w2, with norm 1 and orthogonal to w1, which maximizes the

conditional joint likelihood L (D,θ,w1; w2), i.e.

ŵ2|θ,w1 = argmax{
w∈Rp:‖w‖=1

w1wᵀ=0

}{L (D,θ,w1; w)

}

...

Step k: The kth DM is the vector wk, with norm 1 and orthogonal to w1, . . . ,wk−1, which

maximizes the conditional joint likelihood L (D,w1, . . . ,wk−1; wk), i.e.

ŵk|θ,w1, . . . ,wk−1 = argmax{
w∈Rp:‖w‖=1

wk′w
ᵀ=0 ∀k′∈{1,...,k−1}

}{L (D,θ,w1, . . . ,wk−1; w)

}

Remark I: The norm constraint on w1 makes it separable from the slope parameter β1.

Remark II: According to the model formulation the signs of the DMs are unidentifiable.

3.3 Estimation

In this Section we describe how to estimate the parameters of the DM model. Assuming joint

normality, the joint log likelihood function for w1 and θ, L (D; w1,θ), can be expressed as:

L (D; w1,θ) ∝ g1(D; w1,θ)

:= −
{

(Y − β0 −Xγ1 −Mw1β1)ᵀ(Y − β0 −Xγ1 −Mw1β1)

σ2
ε1

+
(Mw1 − α0 −Xα1)ᵀ(Mw1 − α0 −Xα1)

σ2
η1

}
9



The goal is to find both the parameters of the LSEM and the first DM that jointly maximize

g1(D; w1,θ), under the constraint that the L2 norm of w1 equals 1. Consider the Lagrangian

L(D; w1,θ, λ) = g1(D; w1,θ) + λ(wᵀ
1w1 − 1).

The dual problem can be expressed:

(ŵ1, θ̂)|λ = argmax{
w1∈Rp

θ∈R5

}L(D; w1,θ, λ)

where λ is the Lagrange multiplier. To solve this problem we propose a method where λ is

profiled out by one set of parameters of interest. We establish, under a regularity condition, the

closed form solution for the path coefficients, the first DM, and λ.

Regularity Condition I: (N-0) The first partial derivatives of the objective function and the

constraint function exist.

Under this condition, it can be shown that

ŵ1|θ, λ = (λI +ψ(θ))−1φ(θ) (5)

λ̂|θ = argλ

{
[(λI +ψ(θ))−1φ(θ)]ᵀ[(λI +ψ(θ)−1φ(θ)] = 1

}
(6)

θ̂|ŵ1, λ̂ = argmax
θ

L(D; ŵ1,θ, λ̂) (7)

where

ψ(θ) =
MᵀMβ2

1

σ2
ε1

+
MᵀM

σ2
η1

and

φ(θ) =
Mᵀ(α0 + α1X)

σ2
η1

+
Mᵀ(Y − β0 −Xγ1)β1

σ2
ε1

.

Using these results we outline an iterative procedure for jointly estimating the first direction

of mediation and structural path parameters as follows:
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1. Start with an initial value for θ, denoted θ(0)
1 .

2. For each k, set:

λ̂(k)|θ(k)
1 = argλ

{
[(λI +ψ(θ(k)))−1φ(θ(k))]ᵀ[(λI +ψ(θ(k)))−1φ(θ(k))] = 1

}
(8)

ŵ1
(k)|θ(k)

1 , λ̂(k) = (λ̂(k)I +ψ(θ(k)))−1φ(θ(k)) (9)

θ̂
(k+1)
|ŵ1

(k) = arg maxθ1

{
g1(X,Y,θ1, ŵ1

(k))

}
(10)

3. Repeat step 2 until convergence, each time setting k = k + 1.

3.4 Higher Order Directions of Mediation

We propose two approaches to obtain the higher order Directions of Mediation. The first uses

additional penalty parameters, and the second uses subtraction and Gram-Schmidt projections.

While the former approach is likely to achieve global maxima, the latter is computationally

more efficient, and provides a good approximation of the higher order DMs. The performance

of the projection approach is illustrated through extensive simulations in Section 5.

3.4.1 Penalty Approach

Estimates for the second direction of mediation, ŵ2, and the associated path coefficients, θ̂2,

are obtained by computing:

(ŵ2, θ̂2)|λ1, λ2 = argmax
w2,θ2

{
g2(D, ŵ1; w2,θ2) + λ1

(
wᵀ

2w2 − 1
)

+ λ2w
ᵀ
2ŵ1

}
which guarantees that ŵ2, the estimate of w2 is of unit length and orthogonal to ŵ1. Here θ2 =(
α0,2, α1,2, β0,1, β

(2)
1,1 , β

(2)
1,2 , γ2

)
, where superscript (2) indicates that the parameter is specifically
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associated with the second direction of mediation, and

g2(D,ŵ1; w2,θ2) :={
(Y− β0,2 − Xγ2 −Mŵ1β

(2)
1,1 −Mw2β

(2)
1,2)ᵀ(Y− β0,2 − Xγ2 −Mŵ1β

(2)
1,1 −Mw2β

(2)
1,2)

σ2
ε2

+
(Mw2 − α0,2 − Xα1,2)ᵀ(Mw2 − α0,2 − Xα1,2)

σ2
η2

}
Under regularity condition (N-0), it can be shown that

λ̂2|θ2, λ̂1 = argλ2

{
[(λ1I +ψ2(θ2))−1φ2(θ2, λ2)]ᵀŵ1 = 0

}
(11)

λ̂1|θ2, λ̂2 = argλ1

{
[(λ1I +ψ2(θ2))−1φ2(θ2, λ2)]ᵀ[(λ1I +ψ2(θ2)−1φ2(θ2, λ2)] = 1

}
(12)

ŵ2|θ2, λ1, λ2 = (λ1I +ψ2(θ2))−1φ2(θ2, λ2) (13)

θ̂2|ŵ1, λ̂1, λ̂2 = argmax
θ

L2(D; ŵ1,θ2, λ̂1, λ̂2) (14)

where

ψ(θ2) =
MᵀM

(2)

β2
1,2

σ2
ε2

+
MᵀM

σ2
η2

and

φ(θ2, λ2) =
Mᵀ(α0,2 + α1,2X)

σ2
η2

+
Mᵀ(Y − β0,2 −Xγ2 −

(2)

β1,1Mŵ1)
(2)

β1,2

σ2
ε2

− 1

2
λ2ŵ1.

Note that, unlike in Eqs. (5) - (7) where we only need to specify starting values for θ and

w1, here we need to specify a starting value for one of the λ’s in (11) and (12). A convenient

way is to solve for λ under the constraint that λ1 = λ2.

Estimates for the kth direction of mediation, ŵk, and the associated path coefficients, θ̂k, are

similarly obtained by computing:

(ŵk, θ̂k)|λ1, . . . , λk = argmax
wk,θk

{
gk(D, ŵ1, . . . , ŵk−1; wk,θk) + λ1

(
wᵀ
kwk − 1

)
+

k∑
j=2

λjw
ᵀ
kŵj−1

}
.
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which guarantees that ŵk is of unit length and orthogonal to all preceding k − 1 DMs. Here

θk =
(
α0,k, α1,k, β0,k, β

(k)
1,1 , . . . , β

(k)
1,k , γk

)
, where super script (k) indicates that the parameter is

specifically associated with the kth direction of mediation, and

gk(D,ŵ1, . . . , ŵk−1; wk,θk) :=

−
{

(Y− β0,k − Xγk −
∑k−1

i=1 Mŵiβ
(k)
1,i −Mwkβ

(k)
1,k )ᵀ(Y− β0,k − Xγk −

∑k−1
i=1 Mŵiβ

(k)
1,i −Mwkβ

(k)
1,k )

σ2
εk

+
(Mwk − α0,k − Xα1,k)

ᵀ(Mwk − α0,k − Xα1,k)

σ2
ηk

}
The higher-order DMs and corresponding path coefficients can be estimated in an analogous

manner as described above.

3.4.2 Projection Approach

While the penalty approach is likely to achieve global maximum, it is computationally difficult

in high dimensions. As an alternative, we introduce a projection method, which is computation-

ally more efficient, and provides a good approximation of the higher order DMs.

Estimates of the second direction of mediation, ŵ2, and the associated path coefficients, θ̂2,

are obtained by computing:

(ŵ2, θ̂2)|λ = argmax{
Z∈R̄p:w2(Z):=Z−Projŵ1

(Z)

θ2

}{g2(D, ŵ1; w2(Z),θ2)− λ
(
[w2(Z)]ᵀ[w2(Z)]− 1

)}

where Projŵ1
(Z) =

〈Z, ŵ1〉
〈ŵ1, ŵ1〉

ŵ1. Similarly, estimates for the kth direction of mediation, ŵk, and

the associated path coefficients, θ̂k, are obtained by computing:

(ŵk, θ̂k)|λ = argmax{
Z∈R̄p:wk(Z):=Z−

∑k−1
i=1 Projŵi

(Z)

θk

}{gk(D, ŵ1, . . . , ŵk−1; wk,θk)−λ
(
[wk(Z)]ᵀ[wk(Z)]−1

)}

where Projŵi
(Z) =

〈Z, ŵi〉
〈ŵi, ŵi〉

ŵi, ∀i ∈ {1, . . . , k − 1}.
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3.5 Asymptotic Properties

In this Section we provide asymptotic results related to the first DM. Define the parameter vector

ξ = (γ, λ) ∈ Ξ, where γ = (θ,w) ∈ Θ×w = Γ are our parameters of interest, and λ ∈ Λ is

a nuisance parameter. Due to regularity condition (N-0), we can express the dual function as:

G(D;θ) := g1(D;θ)− λ(θ)[w(θ)ᵀw(θ)− 1].

Define D0(θ0) = Eθ0

(
∂`(D;θ)

∂θ

)
, where `(D;θ) =

∂G(D;θ)

∂θ
is the first partial derivative of

the Lagrangian, and V (θ0) = Eθ0

(
`(D;θ)`ᵀ(D;θ)

)
.

Theorem 1. Under regularity conditions (N-1) - (N-12) [see Appendix], the structural path

coefficient estimators are asymptotically consistent, and normally distributed, i.e.

θ̂
p−→ θ0

and
√
n(θ̂ − θ0)

d−→ N(0,Σ(θ0))

where Σ(θ0) = D−1
0 (θ0)V (θ0)[D−1

0 (θ0)]ᵀ.

Theorem 2. Under regularity conditions (N-1) - (N-13) [see Appendix], the estimator of the

first direction of mediation is asymptotically consistent, and normally distributed, i.e.

w(θ̂)
p−→ w(θ0)

and
√
n(w(θ̂)−w(θ0))→ N

(
0,Σw(θ0)

)
.

where Σw(θ0) = [∇w(θ0)]ᵀD−1
0 (θ0)V (θ0)[D−1

0 (θ0)]ᵀ∇w(θ0).
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Regularity conditions and proofs are included in the Appendix and supplementary materials,

respectively. It is worth pointing out two aspects of Theorem 2. First, it is valid for dim(w) ≤

dim(θ) or dim(w) ≥ dim(θ). This lays the theoretical foundation for estimating the first DM

when dim(w) � dim(θ). Second, it involves an application of the multivariate delta method.

The conditions required for the multivariate delta method are met, because under the stated

regularity conditions, for every estimate of θ, we can find a unique function f(·) of the estimate.

Therefore, for a sufficiently large sample size n, there exists an estimate of θ, say θn, in the

neighborhood of the true value. For that particular θn, we can find a unique mapping fn(·).

3.6 High-dimensional Directions of Mediation

The proposed method works well in the low-dimensional setting. In this section we propose

two methods, based on using Singular Value Decomposition (SVD) and Population Value De-

composition (PVD), for estimating the directions of mediation when M is high dimensional.

Throughout we assume that the data for each subject i is stored in an Fi × p matrix, Mi, where

the j th row contains voxel-wise activity for the measurements of the j th trail for the ith subject.

All Mi matrices are stacked vertically to form the n× p matrix M, where n =
∑N

i=1 Fi.

3.6.1 Singular Value Decomposition Approach

Here we offer a step-by-step approach towards estimating the DM using SVD.

Step 1: Approximate the matrix M using

M = UΣVᵀ ≈ ULΣL,RVᵀ
R

where the n × L-dimensional matrix UL consists of the first L columns of the matrix U, the

p × R-dimensional matrix VR consists of the first R columns of the matrix V, and ΣL,R is

obtained by retaining the first L rows and R columns of Σ. The choice of L and R can be
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based on various criteria, such as total variance explained or signal-to-noise ratio. Let us denote

M̃ = ULΣL,R and w̃ = Vᵀ
Rw. Note that Mw ≈ M̃w̃, and dim(w̃) = R� p = dim(w).

Step 2: Place M̃ and w̃ into the DM framework:

M̃kw̃ = α0 + α1Xk + ηk (15)

Yk = β0 + γXk + β1M̃kw̃ + εk (16)

where εk and ηk are iid εk ∼ N(0, σ2
ε ), ηk ∼ N(0, σ2

η), respectively.

Step 3: Estimate (15) and (16) using the methods described in Section 3.3.

Since VR can be obtained via SVD, we can retrieve the original estimator of the DM, ŵ,

using the generalized inverse, i.e., ŵ = V−R
ˆ̃w, where − indicates the generalized inverse, or by

minimizing the L2 norm, ŵ = minw ‖ ˆ̃w −VRw ‖.

3.6.2 Generalized Population Value Decomposition Approach

While, the SVD approach is easy to implement, it only provides subject-specific information

about M. Population Value Decomposition (Crainiceanu et al., 2011) is a general method

for conducting simultaneous dimensionality reduction of a large matrix, that also provides

population-level information. While the PVD framework has a number of advantages, it as-

sumes that the number of trails per subject is equal, which does not hold in many practical

settings, including our motivating fMRI study. To address this issue, we introduce the Gener-

alized Population Value Decomposition (GPVD), which allows the number of trials per subject

to differ, while maintaining the dimension reduction benefits of the original.

Specifically, consider a subject-specific Fi × p matrix Mi, where Fi denotes the number of

trials per subject i, which may vary across subjects. The GPVD of Mi is given by

Mi = UiṼiD + Ei, (17)

where Ui is an Fi × Fi unitary matrix, Vi is an Fi × B matrix of subject-specific coefficients,
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D is a B × p population-specific matrix, Ei is an Fi × p matrix of residuals, and B is chosen

based upon a criteria such as total variance explained. The difference between GPVD and SVD

is that Ṽk is not necessarily diagonal; and the difference between GPVD and PVD is that Uk is

subject-specific, and can have varying numbers of rows.

Here we introduce a step-by-step procedure for obtaining both the GPVD and DMs.

Step 1: Perform a subject-wise SVD.

1.1. For every subject i, compute the SVD: Mi = UiΣiV
ᵀ
i , where Ui, Σi, and Vi, are Fi×Fi,

Fi × Fi, and Fi × p matrices, respectively.

1.2. Obtain the Fi × B matrix UB
i by using the first B columns of Ui, the B × B diagonal

matrix ΣB
i using the first B diagonal elements of Σi, and the B × p matrix VB

i using the

first B columns of Vi. Note in (17) we refer to UB
i as Ui.

1.3. Form a p×NB matrix V := [VB
1 |, . . . , |VB

N ].

Step 2: Form the matrix D.

When p is reasonably small, use SVD to compute VVᵀ = ĂB̆2Ăᵀ. The p×B matrix D is ob-

tained using the first B columns of Ă. When p is large, performing the SVD is computationally

impractical due to memory limitations. Here instead perform a block-wise SVD (Zipunnikov

et al., 2011), and compute the matrix D as described above. Here it should be noted that D

contains common features across subjects. At the population level V ≈ D(DᵀV), and at the

subject level VB
i ≈ D(DᵀVB

i ).

Step 3: Compute Ṽi = ΣB
i (VB

i )ᵀDᵀ.

The GPVD in (17) can be summarized as follows:

Mi = UiΣiV
ᵀ
i ≈ UB

i ΣB
i (V B

i )ᵀ

≈ UB
i {ΣB

i (VB
i )ᵀDT}D = UB

i ṼB
i D,

(18)
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where UB
i , ΣB

i , and VB
i are obtained from Step 1, D from Step 2, and ṼB

i from Step 3.

Remark: The first approximation in (18) is obtained by retaining the eigenvectors that explain

most of the observed variability at the subject level. The second results from projecting the

subject-specific right eigenvectors on the corresponding population-specific eigenvectors.

Using the GPVD framework, we can compute DMs in the high dimensional case as follows:

Step 1: Perform GPVD on the original n × p mediation matrix M =

M1
...

Mn

 =

U1Ṽ1D
...

UnṼnD

,

where N =
∑n

i=1 Fi.

Step 2: Stack all Fi ×B matrices UiṼi vertically to form an n×B matrix

M̃ =

U1Ṽ1
...

UnṼn

 . (19)

Let w̃ = Dw, where w̃ is B × 1.

Step 3: Place M̃ and w̃ into the LSEM equations:

M̃kw̃ = α0 + α1Xk + ηk (20)

Yk = β0 + γXk + β1M̃kw̃ + εk (21)

Since D can be obtained via the GPVD, we can retrieve the original estimator of the high

dimensional direction of mediation, ŵ, via the generalized inverse, i.e.,

ŵ = D− ˆ̃w (22)

where − indicates the generalized inverse, or by computing ŵ = minw ‖ ˆ̃w −Dw ‖.
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4 Inference

In low-dimensional settings, we can obtain variance estimates for the first DM and the path

coefficients using Theorems 1 and 2. In high dimensional settings, variance estimation using

the generalized inverse is under-estimated since the D obtained from (18) is random. Even if

we were to adjust for this, the covariance estimation of D (B × p,B � p) is computationally

infeasible. Therefore, using the bootstrap to perform inference is a natural alternative.

Consider M = M̃D, where M is n × p, M̃ is n × B, D is B × p, and B < n � p. The

bootstrap procedure can be outlined as follows:

1. Bootstrap n rows from M̃, stack them horizontally and form the n×B matrix M̃(j);

2. Obtain ˆ̃w(j) from M̃ (j)
, where ˆ̃w(j) is the jth bootstrap DM of length B;

3. Obtain ŵ(j) = D−1 ˆ̃w(j), where ŵ(j) is the high dimensional bootstrap DM of length p;

4. Repeat steps 1-3 J times. Stack all J values of ŵ(j) vertically and form ŵ∗ =

 ŵ(1)

...
ŵ(J)

,

where ŵ∗ is a J × p matrix.

Note ŵ∗ =
[

ŵ1 . . . ŵp

]
, where ŵk is the bootstrap values of the DM corresponding to

voxel k, for k ∈ {1, . . . , p}, from which we can form a distribution. There will be two types

of distributions: unimodal and bimodal. The occurrence of bimodal distributions is due to the

fact that the signs of the DM are not identifiable. Hence, we obtain voxel-wise p-values for

k ∈ {1, . . . , p}, by defining:

Pk = 2P
(
tJ−1 ≥| tk |

)
where tk = min

{
µ̂k,1
σ̂k,1

,
µ̂k,2
σ̂k,2

}
, µ̂k,1 (resp. µ̂k,2) and σ̂k,1 (resp. σ̂k,2) are the mean and standard

deviation estimates of a mixed normal distribution. The mixtools package (Benaglia et al., 2009)

in R includes EM-based procedures for estimating parameters from mixture distributions.
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5 Simulation

5.1 Simulation Set-up

Here we describe a simulation study to investigate the efficacy of our approach. Assume that,

for every subject i ∈ {1, . . . , n}, the mediator vector Mi and the treatment Xi can be jointly

simulated from an independent, identically distributed multivariate normal distribution with

known mean and variance. In particular, let(
Mᵀ

i

Xi

) ∣∣∣∣µ,Σ ∼MVN

{
µ,Σ

}
(23)

where µ =
(
(µM)ᵀ,µX

)ᵀ and Σ =

(
ΣM ΣM,X

ΣX,M ΣX

)
. Here Mi = (m1, . . . ,mp) and ΣX,M

have dimensions 1× p, µM and ΣM,X have dimensions p× 1, ΣM has dimensions p× p, and

Xi, µX and ΣX are all scalar.

Conditioning on µ and Σ we have{
Mi|Xi = xi

}
∼ N(µ̄, Σ̄), (24)

where µ̄ = µM + ΣM,X [ΣX ]−1(xi − µX), and Σ̄ = ΣM −ΣM,X [ΣX ]−1ΣX,M . From (3) :

E(Miw1|Xi = xi) = α0 + α1xi.

Solving (3) and (24), we can write:

α0 = w1[µM −ΣM,X [ΣX ]−1µX ];

α1 = w1[ΣM,X [ΣX ]−1].
(25)

Moreover,

Var(Miw1|Xi = xi) = ση

= wᵀ
1Var(Mi|Xi = xi)w1

= wᵀ
1Σ

M −ΣM,X [ΣX ]−1ΣX,Mw1.

Using these results we can outline the simulation process as follows:
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1. Set the values for the mean
(
µM

µMx

)
and covariance

(
ΣM ΣM,X

ΣX,M ΣX

)
, and simulate n

pairs of (Mi, Xi) according to (23) ;

2. Set the values for β0, β1, and γ1, as well as w1. Compute α0 and α1 using (25) . Consider

these to be the true path coefficients θ0 and the first direction of mediation w1;

3. Simulate random error εi from a normal distribution with known mean and variance.

Given (Mi, Xi), εi , and the path coefficients, generate Yi, i = 1, . . . n, according to (4) .

The generated data D = {(Xi,Mi, Yi)}ni=1 from Steps 1 and 3 are used as input in the LSEM.

The outputs of the algorithm are then compared with the true parameters.

We performed three sets of simulations.

Simulation 1. Let p = 3, w0 = (0.85, 0.17, 0.51),
(
(µM)ᵀ, µX

)ᵀ
= (2, 3, 4, 5), ΣM,X =

(0.60,−0.90, 0.35)ᵀ, and ΣX = 2.65. Set the true path coefficients (β0, β1, γ1) equal to (0.4, 0.2, 0.5).

From (25) it follows that (α0, α1) = (3.23, 0.20). Assuming εi ∼ N(0, 1), we simulated

{Xi, Yi,Mi}ni=1, with n = 10, 100, 500, and 1, 000. Each set of simulations was repeated 1, 000

times, and the parameter estimates were recorded.

Simulation 2. Let p = 10, w0 = (0.42, 0.09, 0.25, 0.42, 0.17, 0.34, 0.51, 0.17, 0.17, 0.34),(
(µM)ᵀ, µX

)ᵀ
= (2, 3, 4, 5, 4, 6, 2, 5, 8, 1, 3), ΣM,X = (−1.48,−0.51,−0.81, 0.98,−1.21, 0.53,

−0.66,−0.73,−1.00, 0.29)ᵀ, and ΣX = 5.10. Set the true pathway coefficients (β0, β1, γ1) to

(0.4, 0.2, 0.5). From (25) it follows that (α0, α1) = (11.08,−0.20). Assuming εi ∼ N(0, 1),

we simulated {Xi, Yi,Mi}ni=1, with n = 100, and 1, 000. Each set of simulations was repeated

1, 000 times, and the parameter estimates were recorded.

Simulation 3. Data are generated under the null hypothesis w = 0, i.e. Y is generated as-

suming no mediation effect. The number of trials and voxels are chosen to match those in the

experimental data. Let X be a vector of length 1, 149 taking values in the range [36, 48.5]. Let

(β0, γ1) = (−15, 0.5) and εi ∼ N(0, 0.5). Generate Yi according to (4) with w = 0, and let
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Mi [j] ∼ N(mi, si), where mi ∼ N(2, 5) and si ∼ N(20, 5). Here Mi [j] represents the sim-

ulated value of the jth voxel of trial i. Using the technique introduced in Section 4, we obtain

p-values for the estimated DM from the bootstrap distribution for each voxel.

5.2 Simulation Results

(a) 10 by 3 (b) 100 by 3

(c) 500 by 3 (d) 1000 by 3

Figure 3: Results for p = 3, when we increase sample size from 10 to 1,000 while keeping the ground
truth values of w and θ = (α0,α1,β0,β1,γ1) fixed. Red lines indicate truth.

Figures 3 and 4 show the results of Simulations 1 and 2. Figure 3 a-e display results for the

case when p = 3, and the sample size is 10, 100, 500, and 1, 000, respectively. Figure 4 a-b

display results for p = 10, and the sample size is 100 and 1, 000. As the sample size increases,
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(a) 100 by 10 (b) 1000 by 10

Figure 4: Results for p = 10, when we increase sample size from 100 to 1,000 while keeping the
ground truth values of w, and θ = (α0,α1,β0,β1,γ1) fixed. Red lines indicate truth.

the estimates become more accurate, while the distribution becomes increasingly normal with

a smaller standard deviation. The sign of the estimator is difficult to determine for smaller

samples sizes, but becomes more consistent as the sample size increases.

p
3 10

n

10 694 —
100 387 923
300 633 984
500 897 1,000

1,000 1,000 1,000

Table 1: The turn-out rate for different n and p combinations per 1,000 Simulations

Moreover, for fixed p, the turn-out rate (the number of estimating results an algorithm pro-

duces out of a fixed number of simulations) increases with n; see Table I. For fixed n, the

turn-out rate improves with increasing p. The reason why some runs do not produce a result

is that the function λ(θ) is not well behaved in small sample sizes, and the Newton-Raphson
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optimization algorithm fails at one of the intermediary steps. When p is sufficiently large or

high dimensional, the algorithm seems to improve. If p ∼ 3, the algorithm runs better when we

have sufficiently large sample size n ∼ 300. Performance of the algorithm improves with more

refined grid points, but this comes at the expense of computational efficiency.

Figure 5: A histogram of voxel-wise p-values under the null that w = 0, i.e. the response Y is generated only
from the treatment effect X and measurement error assuming there is no mediation effect. Notice the distribution
is approximately uniformly distributed. The heavy right tail is caused by the conservative method we used in
estimating p-values. About 2.87% voxel-wise p-values are significant at the α = 0.05 significance level.

Finally, the results of Simulation 3 are shown in Figure 5. The voxel-wise p-values are

roughly uniformly distributed in the left tail, while the heavy right tail is likely caused by the

conservative method used for estimating p-values. In addition, less than 100α% voxel-wise p-

values are significant at the α significance level, suggesting that our approach provides adequate

control of the false positive rate in the null setting.

6 Application to Data from an fMRI Study of Thermal Pain

Recall from Section 2 that the data structure is {Xij, Yij, Mij}, where Xij and Yij are the tem-

perature and pain rating, respectively, assigned on trial j to subject i, and Mij = (Mij1,Mij2, . . .Mijp)

is the whole-brain activation measured over p voxels. Note that i ∈ {1, . . . , I} and j ∈
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{1, . . . , Ji}, where I = 33 and Ji takes subject-specific values between 58− 75.

The data was arranged in a matrix M of dimension 1, 149× 206, 777, where each row con-

sists of activation from a single trial on a single subject over 206, 777 voxels, and each column

is voxel-specific. In particular, rows 1 − 48 correspond to subject 1, rows 49 − 94 correspond

to subject 2, etc. The temperature level and reported pain are represented as the vectors X and

Y, respectively, both of length 1, 149. The first DM corresponding to (X,Y,M), is a vector of

length 206, 777, whose estimation is computationally infeasible without first performing data

reduction. Hence, we use the GPVD approach outlined in Section 3.6.2.

We choose w̃ to have dimension 35, so that the number of rows of D is less than or equal

to the minimum number of trials per subject, and this number ensures that 80% of the total

variability of M is explained after dimension reduction. Furthermore, estimating a DM of

length 35 is computationally feasible using our algorithm. The population-specific matrix D of

dimension 35× 206, 777 was obtained according to (18), and the lower dimensional mediation

matrix M̃ of dimension 1, 149× 35, according to (19). The terms (X,Y, M̃) were placed into

the algorithm outlines in (8) - (10), using starting values θ(0)
1 = 0.1×J5, and w

(0)
1 = 0.1×J35.

Finally, ŵ, of length 206, 777, was computed using (22).

We compute the first two DMs and obtained estimates of θ̂1 = (−3770, 96.31,−13.9, 0.00075, 0.40)

and θ̂2 = (−638.9 − 23.18 − 13.86, 0.00075,−1.19e − 07, 0.40). Figure 6 shows the weight

maps for the first and second Directions of Mediation, thresholded using FDR correction with

q = 0.05, separated according to whether the weight values were positive or negative.

The map is consistent with regions typically considered active in pain research, but also

reveals some interesting structure that has not been uncovered by previous methods. The first

direction of mediation shows positive weights on both targets of ascending nociceptive (pain-

related) pathways, including the anterior cingulate, mid-insula, posterior insula, parietal opercu-

lum/S2, the approximate hand area of S1, and cerebellum. Negative weights were found in areas
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often anti-correlated with pain, including parts of the lateral prefrontal cortex, parahippocampal

cortex, and ventral caudate, and other regions including anterior frontal cortex, temporal cor-

tex, and precuneus. These are associated with distinct classes of functions other than physical

pain and are not thought to contain nociceptive neurons, but are still thought to play a role in

mediating pain by processing elements of the context in which the pain occurs.

Figure 6: Weight maps for the first and second Directions of Mediation fit using data from the fMRI study of
thermal pain. (A)-(B) Significant weights with positive and negative values, respectively, for the first DM. (C)-(D)
Significant weights with positive and negative values, respectively, for the second DM. All maps are thresholded
using FDR correction with q = 0.05.

The second direction of mediation is interesting because it also contains some nociceptive

targets and other, non-nociceptive regions that partially overlap with and are partially distinct

from the first direction. This component splits nociceptive regions, with positive weights on S1

and negative weights on the parietal operculum/S2 and amygdala, possibly revealing dynamics

of variation among pain processing regions once the first direction of mediation is accounted for.
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Positive weights are found on visual and superior cerebellar regions and parts of the hippocam-

pus, and negative weights on the nucleus accumbens/ventral striatum and parts of dorsolateral

and superior prefrontal cortex. The latter often correlate negatively with pain.

7 Discussion

This paper addresses the problem of mediation analysis in the high-dimensional setting. The

first direction of mediation is the linear combination of the elements of a vector of potential

mediators that maximizes the likelihood of the SEM. Subsequent directions can be found that

maximizes the likelihood of the SEM conditional on being orthogonal to previous directions.

An interesting property of the DM framework is that the signs of the estimates are unidentifi-

able. To address this issue, there are two possible solutions. First, we can use Bayesian methods

to apply a sign constraint based on prior knowledge. Second, if the magnitude of the voxel-wise

mediation effect is of interest, we can consider a non-negativity constraint. This can be nec-

essary because, under some circumstances, the coexistence of positive and negative elements

of w might cancel out potential mediation effects. For example, assume M = (0.5, 0.4, 0.9)

and w = (0.577, 0.577,−0.577)ᵀ. Then Mw = 0, making the estimate of β1 unavailable. It,

however, does not necessarily imply the non-existence of a mediation effect. In these circum-

stances, it is advantageous to impose a non-negativity constraint on w by choosing an injective

mapping w1 : R̄p 7→ [0, 1]. For example, consider w1(Z) =
exp(Z)

1 + exp(Z)
, where Z ∈ R̄p.

In many practical situations, the response Y and the mediator M are not necessarily nor-

mally distributed, but instead follow some distribution from the exponential family. It can be

shown that we can estimate both the DMs and path coefficients under the exponential family

setting using a GEE-like method. Essentially, conditioning on the DM, the direct and indirect

causal pathway coefficient can be estimated using two sets of GEEs. The DM can then be

estimated conditioning on the estimated pathway coefficients.
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Finally, it may also be of interest to estimate an analogue to the DM and corresponding

pathway coefficients that jointly maximize the indirect effect. This can be done in a similar

fashion as we estimate the DM in the exponential family setting above. Future work will be to

implement the aforementioned approaches.

8 Appendix

Here we provide the regularity conditions need for proving Theorem 1 and Theorem 2. De-

tailed proofs can be found in the supplemental material. Let D = (X,Y,M) be a data triple,

where X = (X1, . . . , Xn)ᵀ ∈ Rn, Y = (Y1, . . . , Yn)ᵀ ∈ Rn, and M = (M1, . . . ,Mn)ᵀ ∈ Rn×p.

Let w ∈ Rp and θ = (α0, α1, β0, β1, γ) ∈ R5, be the parameters of interest. In particular,

w maps M onto Rn. Let λ ∈ R1 be a nuisance parameter. Consider the joint log-likelihood

function g(·; w,θ) in (3.3) as the objective function.

Define the profiled Lagrangian L(D;θ) = g(D;θ) +λ(θ)
(
wᵀ(θ)w(θ)− 1

)
and L(d;θ) =

g(d;θ) +
λ(θ)

(
wᵀ(θ)w(θ)− 1

)
n

, where L(d;θ0) ∈ P = {L(d;θ) : θ ∈ Θ}, where Θ is

some properly defined space in R5. Define L̇(D;θ) :=
∂L

∂θ
(D;θ) =

∑n
i=1 `(di,θ), where

`(d,θ) =
∂g

∂θ
(d;θ) +

∇θλ(θ)[wᵀ(θ)w(θ)− 1] + 2λ(θ)∇θw(θ)

n
. Further define q̂(D;θ) =

1

n

∑n
i=1 L(Di;θ), q0(θ) = Eθ0(L(d;θ)), ˆ̇q(D;θ) =

1

n

∑n
i=1 `(Di;θ), and q̇0(θ) = Eθ0(`(d;θ)).

Regularity Conditions II :

(N-1) θ0 is in the interior of Θ, where Θ is a compact subset of R5;

(N-2) q0(θ) = 0 only if θ = θ0;

(N-3) L(d;θ) is continuous in θ ∈ Θ for all d ∈ D. In particular, g(·;θ), λ(θ), and w(θ) are

continuous;

(N-4) ‖ L(d;θ) ‖≤ d0(d), ∀θ ∈ Θ and Eθ0 [d0(d)] <∞;
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(N-5) Eθ0

(∂g
∂θ

(d;θ)
)

= 0 only if θ = θ0;

(N-6) Eθ0

{ ∂

∂θ
{λ(θ)[wᵀ(θ)w(θ)− 1]}

n

}
= op(n

−1/2);

(N-7) `(d,θ) is continuous in θ ∈ Θ for all d ∈ D;

(N-8) ‖ `(d,θ) ‖≤ d1(d), ∀θ ∈ Θ and Eθ0 [d1(d)] <∞;

(N-9) `(d,θ) is continuously differentiable inNr(θ0), whereNr(θ0) is a r neighborhood of θ0,

Nr(θ0) := {θ ∈ Θ : d(θ,θ0) < r};

(N-10) ‖ ∂`
∂θ

(d,θ) ‖≤ d2(d), ∀θ ∈ Nr(θ0), and Eθ0 [d2(d)] <∞;

(N-11) D(θ0) is non-singular, where D0(θ0) := Eθ0 [
∂`

∂θ
(d,θ)];

(N-12) B(θ0) := Eθ0 [`(d,θ)`ᵀ(d,θ)] exists;

Regularity Conditions III:

(N-13) λ(θ) and w(θ) are continuously differentiable in Nr(θ0).
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