High-field states of Dirac-like electrons in graphene and bismuth

J. G. Checkelsky, Lu Li, Y. S. Hor, R. J. Cava and N.P.O. *Princeton University* C. Uher, *U. Michigan* A. Hebard, *U. Florida, Gainsville*

Dirac point in graphene in high fields
3D Dirac ellipsoids in Bi
Phase transitions in high field

Princeton seminar Mar 2008

Momentum Space

 $E = v_0 |\mathbf{p}|$ massless Dirac spectrum

 $v_0 = 10^6 \text{ m/s} = c/300$

"Fine-structure" const $\alpha \sim 3$

Orbital quantization in a few Tesla (need 10⁹ T in vacuum)

Quantum Hall Effect in graphene

Y.Zhang, Kim et al., Nature **438**, 201 (05)

Novoselov, Geim et al., Nature 438, 197 (05)

Single atomic-layer graphene

- Graphene sheets peeled off onto Si/SiO₂ wafers
- Single atomic-layer samples identified
- Au contacts attached by e-beam lithography

Checkelsky, Li, Ong

Offset Gate voltage V_0 -- an important parameter

Small offset V_0 correlates with low disorder

The Quantized Hall Effect in graphene

Checkelsky, Li, Ong

Panel (a) Resistivity R_{xx} of graphene vs gate voltage V_g at fields H = 8, 11 and 14 T. R_{xx} peaks at Landau Levels n = 0 and +1 and -1. The peak at n = 0 is singularly large. Temperature fixed at 0.3 K

Panel (b) The Hall conductivity σ_{xy} shows step-quantization at universal values 0, $2e^2/h$, $6e^2/h$,...

Resistance at Dirac point R_0 diverges with H

Comparison of divergent R_0 with earlier reports

Divergent $R_0 \rightarrow$ gap "opens" at lower fields

2D phase transition in graphene in high magnetic field

Evidence for a 2D phase transition in intense H field

Contour map of R_0 at Dirac point in *H*-*T* plane

Role of Coulomb Interaction -- quantum Hall ferromagnet

alignment of pseudospins (Hund's rule)

Quantum Hall ferromagnet?

Layer index \rightarrow Valley index K, K

Nomura, MacDonald, PRL06 Goerbig, Moessner, Ducot, PRB06 Alicia, Fisher PRB 06

Coulomb exchange
Splits 4-fold degeneracy
Of n = 0 Landau Level

2. In high fields (and low disorder), have QHF state.

Approaching KT transition?

Difficulties in following divergent R_0 from severe sample heating and non-Ohmicity

Phase transitions in bismuth in high fields

Lu Li, J. G. Checkelsky, Y. S. Hor, R. J. Cava and N. P. Ong, *Princeton* C. Uher, *Univ. Michigan* A. Hebard, *U. Florida, Gainsville*

- 1. Fractional filling (Behnia, Balicas, Kopelovich)
- 2. High-field Torque and magnetization
- 3. First-order transitions

Signatures of Electron Fractionalization in Ultraquantum Bismuth

Kamran Behnia,¹* Luis Balicas,² Yakov Kopelevich³

Behnia, Balicas, Kopelevich

SCIENCE VOL 317 21 SEPTEMBER 2007

Are they surface states (2D)? Are electron pockets (vs. hole) involved?

Topological Insulator with surface Hall modes D. Hsieh, M.Z. Hasan et.al., Princeton University (2007)

THO O BEER TE

Fermi Surface in Bi: 1 hole ellipsoid + 3 electron ellips.

First-order transitions in Bi in high magnetic fields

Transv Magnetiz. $M_{\rm T} = \tau/VH$

Transitions at H_1 (red arrows) and H_2 (black)

Landau levels resolved In derivative curves dM_T/dH

$$(M_{\rm T}=\tau/VH)$$

Dirac model for Bismuth (Cohen Blount '60, Wolff '64)

 (\mathbf{w})

$$H = \frac{p^2}{2m} + V + \frac{1}{8m^2}\nabla^2 V + \frac{1}{2m^2}\mathbf{p}\cdot\mathbf{s}\times\nabla V$$

Dominant spin-orbit energy

In **k.p** approx., at *L* point

$$H = \frac{E_G}{2}\beta + \frac{k^2}{2m} \cdot 1 + \mathbf{k} \cdot \mathbf{\Gamma} \qquad \Psi = \begin{bmatrix} \psi_{c\uparrow} \\ \psi_{c\downarrow} \\ \\ \psi_{v\uparrow} \\ \\ \psi_{v\downarrow} \\ \\ \psi$$

$$\mathbf{\Gamma} = i \sum_{\mu} \mathbf{W}(\mu) \beta \alpha_{\mu} \qquad (\mathbf{k} \cdot \mathbf{\Gamma})^2 = E_G \begin{bmatrix} H^* & 0 \\ 0 & H^* \end{bmatrix} \qquad H^* = \frac{\mathbf{k} \cdot \boldsymbol{\alpha} \cdot \mathbf{k}}{2}$$

Squared H may be block-diagonalized

$$H^{2}\psi = E^{2}\psi$$
$$E_{Nk} = \pm \left[\left(\frac{E_{G}}{2}\right)^{2} + E_{G} \left\{ \left(N + \frac{1}{2}\right)\omega_{c} \pm \frac{\omega_{c}}{2} + \frac{k^{2}}{2m} \right\} \right]^{\frac{1}{2}}$$

Have identified electron FS sublevels n = 0, 1, 2, ... 10

High-field phase diagram of bismuth

Sloped background from weak-field anisotropy (Fukuyama Kubo '80) Torque signal vanishes inside cone region? High-field $M_{\rm T}$ vs. *H* curve not understood

Fractional-filling states obs. in Hall resistivity but not in magnetization. Also independent of tilt angle θ (surface states?)

Graphene

- 1. Fate of zero-energy Dirac point in high field is insulating state
- 2. Energy gap opens -- QHF state?
- 3. Unusual approach to insulator in *H*-*T* phase diagram
- 4. Suggests a KT transition destroys insulating state when $H < H_c$ (17 Tesla).

Bi results

- 1. Fractional filling confirmed in R_{xx} , R_{xy} and magnetization
- 2. Additional anomalies in fractional regime
 - -- jumps in torque at 18-25 Tesla range
- 3. Orbital diamagnetic response not understood in quantum limit

Fractional filling evidence from Rxx and Rxy

Li, Checkelsky, NPO 2008

Large Diamagnetism – From Dirac dispersion and large spin-orbit energy

(Fukuyama Kubo, JPSJ 1970)

Earlier theories Peierls, Landau, Jones, Adams, Kohn, Roth, Cohen Blount, Wolff

Landau Levels in 2-band Dirac model (Cohen Blount '60, Wolff '64)

Large universal conductance quantum (UCF) oscillations vs. V_q and H

Electron FS diamagnetization gives *positive* torque signal

τ || **z x H**

Large spin-orbit energy ($E_{so} \sim 1 \text{ eV}$) and very small gap ($E_{G} \sim 20 \text{ meV}$) Magnetization dominated by orbital currents

$$\mathbf{\mu} = \mathbf{\mu}_{s} + \mathbf{\mu}_{L} \qquad \text{Orbital angul. momtm}$$
$$\mathbf{\mu}_{L} = -\mu_{B} \mathbf{X} \times m \mathbf{v} \hbar^{-1}$$
$$\left\langle n \mathbf{k} \mid \mathbf{X} \mid m \mathbf{k} \right\rangle = \left(u_{n \mathbf{k}}, i \nabla_{\mathbf{k}} u_{m \mathbf{k}} \right)$$

(Cohen, Blount Phil. Mag. 1960 Laura Roth, PR 1962)

Berry potential

Semiclassical theory (effective mass model) $E(\mathbf{k}) = \mathbf{k}.\alpha.\mathbf{k}/2m$

- 1. g-factor ~ 200
- 2. Spin mass equal to cyclotron mass
- 3. Susceptibility diamagnetic and very anisotropic
- 4. Deep connection to Berry curvature

5. What happens in quantum limit?

$$\chi \sim -D_F \mu_B^2 [\alpha_1 \alpha_2 \cos^2 \theta + \alpha_2 \alpha_3 \sin^2 \theta] \varphi$$

 α_i = Inverse mass tensor

(Fukuyama, Kubo JPSJ 1970)

Physics at the Dirac Point (*n* = 0 Landau Level)

(a) R_{xx} in n = 0 Landau Level increases steeply as $T \rightarrow 0$.

(b) Conductivity shows sublevel split.Hall conductivity displays plateau.

(c) Quantum oscillations in conductance at 0.3 K

Divergent R_0 -- a technical challenge to measure accurately above 1 M Ω

Conductance G_0 at Dirac point $\mu = 0$

Checkelsky, Li, Ong

- 1. At large *H*, G_0 falls as T \rightarrow 2 K revealing gap
- 2. G_0 saturates to G_{res} below 2 K *Gapless* excitations
- 3. G_{res} strongly suppressed by H Faster than Gaussian $exp(-H^2)$
- Phase diagram reveals unusual approach to insulating state
 - a) Fixed H, gapless conductanceb) Fixed T, insulating limit at large H

Hall effect

Torque magnetometry with cantilever

Incipient v = 1 Hall steps

No Hall current $R_{xy}=0$, but ideal spin current: $I_s=2e^2V/h$. Also predicts longitudinal charge current, ie $R_{xx}=h/2e^2$. (13 kOhms)

Torque magnetization of Bi with **H** near trigonal axis Li, Checkelsky, NPO 2007

Geim et al

Spin-filtered chiral edge states

Abanin, Lee and Levitov, PRL (2006)

No Hall current $R_{xy}=0$, but ideal spin current: $I_s=2e^2V/h$. Also predicts longitudinal charge current, i.e. $R_{xx}=h/2e^2$. (13 kOhms)

Divergent resistance in high field

Approaching KT transition?

Correlation length

$$\xi = a \exp\left[\frac{b}{\sqrt{h-1}}\right]$$

Data suggest
$$H_0 \sim 17 - 18$$
 Tesla

