High growth rate homoepitaxial diamond deposition on off-axis substrates for detector applications

T. Bauer, H. Sternschulte, M. Schreck, B. Stritzker

Universität Augsburg, Institut für Physik, D-86135 Augsburg (Germany)

Outline

- Motivation
- Growth on on-axis substrates
- Growth on off-axis substrates
- Structural characterisation
 - high resolution x-ray diffraction (HRXRD)
 - µ-Raman
 - photoluminescence
 - chemical purity (N, B)
- Detector properties
- Summary

Motivation

- high quality CVD diamond films on HPHT substrates feasible
 - very high charge carrier mobilities (e.g. $\mu_{electron}$ =4500 cm²/Vs, Isberg et al.)
 - strong excitonic recombination at room temperature (Watanabe et al.)
- high growth rate
 - moderate cost of CVD diamond
 - avoiding of nitrogen (deteriation of electronic properties)
 - stable growth (without forming of non-epitaxial crystallites)

General growth conditions

- substrates:
 - (001)-oriented Ib-HPHT diamond (nominally on-axis or 3-8° offaxis towards [100])
 - containing 10-100 ppm nitrogen
- process parameters:
 - $T_{substrate} \approx 1200 \text{ °C}$
 - p=130-<u>200</u> mbar
 - P_{microwave}=1400 W
 - 5-20% CH₄ concentration in H₂, for some samples up to 2% CO₂
 - nominally no nitrogen
- growth rate: 6-30 µm/h
- film thickness: 100-1300 μm

Growth on on-axis substrates I: pyramidal hillocks/non-epitaxial diamond

- sample:
 - 100 µm thick
 - growth rate: 6 µm/h
- forming of pyramidal hillocks (PH)
 - height \approx 20 μm , width \approx 1000 μm
 - inclination $\approx 3^{\circ}$ towards [110]
 - non-epitaxial crystallites on top
 - side faces free of non-epitaxial crystallites, step bunching
- non-epitaxial crystallites (NC)
 - height \approx 30 μ m
 - growth rate higher than surrounding epitaxial diamond

1000

DISTANCE (µm)

1500

500

[100]

100

60

50

40

30

10

- 0

2000

HEIGHT (µm)

Growth on on-axis substrates II: formation of pyramidal hillocks

- How do PHs develop?
 - 1. formation of non-epitaxial crystallites
 - 2. NCs are nucleation centers for new lattice planes
 - 3. lateral spread of the lattice planes
 - 4. macro-steps due to step bunching
- Why are no NCs on side-faces of pyramidal hillocks?
 - growth by lateral step flow mechanism
 - steps of side-faces sources of new lattice planes

 \Rightarrow suppression of NCs by lateral overgrowth

Idea: reproduce conditions on sidefaces by using off-axis substrates

Growth on off-axis substrates I

Idea works

• Complete suppression of NCs and PHs

Growth on off-axis substrates II

- - surface almost free of non-epitaxial diamond
 - side length increased by about 1 mm mainly by **polycrystalline** growth
 - removing of substrate / polycrystalline rim by mechanical polishing / laser cutting

[100]

Growth on off-axis substrates IV: flexible growth conditions

10 %

- CH₄ concentration: 5-20 %
- CO₂ concentration: 0-2 %
- samples about 400 µm thick
- no non-epitaxial diamond
- narrow rocking curve line widths
- ⇒ off-axis substrates allow a very broad range of process parameters
- two regions with different morphology

Growth on off-axis substrates V: mechanisms

Ti (20nm) / Pt (20nm) / Au (100nm) electrodes with diameter of 1-2.5 mm

- lattice planes of CVD film originate from
 - off-axis surface
 - polycrystalline rim
 - nucleation on (001) terraces

 \implies Inhomogeneity in structural and electronic properties??

Growth on off-axis substrates VI: varying off-axis angle

- 20h growth @ 10% CH₄
- thicknesses of 0.09 to 0.56 mm
- huge improvement in growth rate
- decreasing off-axis angle during growth causes reappearance of non-epitaxial diamond
- 6° sufficient for desired film thickness of 0.5 mm

Characterisation: HRXRD

- lateral resolved measurement of diamond (004) rocking curves
- beam width: 0.2 mm
- 0.37 mm freestanding CVD film
- line widths homogeneous
- no bending of this CVD film
- line width only slightly higher than substrate (0.0027°)

Characterisation: µ-Raman

- sample: 350 µm thick freestanding CVD film
- λ=514.53 nm
- shown: single point measurement
- average values of 10 measurements:
 - position=1332.25±0.1 cm⁻¹
 - FWHM=1.63 cm⁻¹
- position equals substrate
 ⇒ no strain (due to N in substrate)
- FWHM very low compared with other diamond samples
 - \Rightarrow good crystal quality

TABLE I. Phonon linewidths of high quality diamonds.

Sample ^a	Linewidth, cm^{-1} estimated error, 0.05 cm^{-1}
Synthetic Ib (Yumi)	1.68
Natural IIa (Eva)	1.87
Natural IIa (Liz)	1.92
Natural IIa (Zsa-Zsa)	2.16
Polycrystalline (Norton, Run 939)	2.31
Polycrystalline (Norton, Run 846)	2.40
Polycrystalline (Crystallume 17z05-2)	2.73
Polycrystalline (Sumitomo)	7.80
our sample	1.63
D. Kirillov & G.J. Reynolds	s, Appl. Phys. Lett.
(13) 1641 (1994)	

1325 1330 1335 1340 RAMAN SHIFT (cm⁻¹)

Photoluminescence

Chemical purity: Nitrogen

- no clear absorption peak
- N concentration of CVD film \leq 3 ppm
- ESR measurement in preparation

H. Sumiya, S. Satoh: *High-pressure synthesis of high-purity diamond crystal*; Diamond Relat. Mater. 5 (1996) 1359.

Chemical purity: Boron

Detector properties I: ⁶⁰Co gamma

- 0.18 Gy/min, 160 V/mm
- very good sensitivity: 10⁻⁶
 C/Gy (natural detector crystals
 0.5-5·10⁻⁷ C/Gy)
- fast and reproducible response
- persistent dark current of several 100 pA (before irradiation < 1 pA)!</p>

Detector properties II: persistent current after irradiation

- before irradiation: boron completely compensated by deep donors (nitrogen?)
- shortly after irradiation: non-equilibrium state with many uncompensated acceptors ⇒ generation of holes in VB ⇒ temporarily high dark current

Detector properties III: persistent current after irradiation

- are contacts also important?
- P.J. Sellin, A. Galbiati: *Performance of a diamond x-ray sensor fabricated with metal-less graphitic contacts*, APL **87**, 093502 (2005), published online 23 August 2005
- used coplanar electrodes on polycrystalline diamond from E6
- metal contacts resulted in persistent photocurrent
- no persistent photocurrent for graphite electrodes fabricated by boron implantation

Detector properties IV: permanent high conductivity

- high conductivity @ RT
- boron concentration $\approx 10^{15}$ cm⁻³
- activation energy in low temperature range: ≈ E_A(boron)
- boron not completely compensated

 \Rightarrow very low donor density

 using as Schottky diode type detector?

Detector properties IV: single particle detection

 Results for detection of electrons and alpha particles will be presented at the talk of Christian Grah

on Thursday @ 9:30 am (Session V)

Summary

- Growth on on-axis substrates:
 - non-epitaxial diamond and pyramidal hillocks (at our process conditions)
- off-axis substrates:
 - complete suppression of NCs and PHs
 - broad range of process parameters
- Structural characterisation: CVD-films feature
 - extremely low FWHM of rocking curve and of Raman peak
 - very low photoluminescence (only very weak Si signal)
- Detector properties:
 - very good sensitivity and fast and reproducible response
 - boron causes persistent photo currents and low resistivity

Growth on off-axis substrates III: origin of non-epitaxial diamond

- diamond after mechanical polishing
 - sharp transition between yellow (nitrogen containing) Ib substrate and transparent colorless homoepitaxial diamond film
 - dark pyramidal holes
 - \rightarrow NCs broken out during polishing
 - process
 - NCs continuously increase in lateral size during deposition process
 - growth of NCs not necessarily starts directly on Ib surface
 ⇒ nucleation of NCs at local instabilities or impurities of the
 - growing film (not at structural defects of substrate)

Characterisation: HRXRD I

Ila natural diamond homoepitaxial CVD Ib HPHT substrate diamond (004) diamond 104 = rocking curves 0 • CVD film: 560 μm 0 INTENSITY (a. u.) DOUBLE CRYSTAI CURVE (arcsec) thick, removed 10^{3} 0 0 8 from substrate 8 0 0 IIa natural 10^{2} natural diamond: used as crystal detector crystal ЧS •CVD film ğ FWHM of natural 10¹ FWHM 9 diamond and CVD Theoretical film extremely 10[°] low compared with Ib Ia IIa IIb other IIa crystals S. Fujii et al., Appl. Phys. A 61 (1995) 331

Chemical purity: Boron

