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ABSTRACT: High order compact finite difference scheme for stochastic advection – diffusion 

equations (SCDEs) of Ito type is designed.  Firstly, Modified Mathematical formulation of the 

stochastic advection – diffusion was developed, followed by the derivation of stochastic differential 

advection – diffusion using compact finite difference schemes. Explicit- implicit Euler’s scheme 

was adopted to established the stability criteria in the resulting linear stochastic system of 

differential equations. The stability criterion was investigated using Fourier mode. Numerical 

examples were conducted to test the validity, efficient, accuracy and robustness of the derived 

schemes. 
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INTRODUCTION 

In recent years, there has been interested regarding the study of stochastic advection - diffusion 

equations. Stochastic advection- diffusion equation is one of the most important  parts of partial 

differential equations, observed in a wide range of engineering, mathematical sciences, and 

practical industrial application. Due to the importance of stochastic advection – diffusion the 

present paper, solves and analyzes these problems using a new finite difference method called 

compact finite difference schemes as well as numerical experience. The developed scheme is based 

on Ito type of stochastic differential equation. Stochastic advection- diffusion equations is used to 

describes dynamic of stochastic process defined on space and time Continuum, heat transfer in a 

draining film, water Transfer in soil dispersion of tracers in porous media, contaminant dispersion 

in shallow lakes, the spread of solute in a liquid flowing through tube, long range transport of 

pollutants in the atmosphere and dispersion of dissolved salts in groundwater. Analytic solution 

can be obtained for very few stochastic advection – diffusion equations and some authors have 

studied then theoretically and these includes the initial works of Ben berg and Gut finger (1992), 

presented that while obtaining the analytical solutions of dispersion problem in the ideal 

conditions, the basic approach was to reduce the advection- diffusion equation into a diffusion 

equation by eliminating the advection terms. Ahmed, S.G (2012), A numerical algorithms for 

solving advection- diffusion equation with constant and variable coefficients. Dai,W and Nassir 
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(2002)  finite difference methods (FDM), Lele, S.K (1992)(CFDS), Bertram D and F. Michel 

(2008) demonstrated in his paper titled  stochastic differential equation using compact finite 

difference schemes (SDEUCFDS). Oyakhire et al. (2016), presented paper on high order compact 

finite difference schemes for Poisson equation using Pade approximation (HOCFDSPUPA), where 

stochastic differential compact finite difference schemes was treated using Taylor series approach. 

Wade, W .R (2001), presented a paper titled Linear programming stochastic partial differential 

equations (LPSPDEs), Kalita, J  and Dala (2002),demonstrated paper on explicit and implicit finite 

difference method. The outline of the paper is as follows: in section 2, we stated the mathematical 

formulation of the stochastic advection- diffusion equations by integral form, derivation of 

stochastic advection – diffusion equation using compact finite difference schemes for discretizing 

spatial and time in section 3 , in section 4 treats the establishment of stability criteria by applying 

the explicit- implicit Euler’s method and Fourier mode,  numerical examples in section 5 and 

finally conclusion.  

MODIFIED MATHEMATICAL FORMULATION   

In this section, we consider the mathematical formulation of one dimensional stochastic 

advection- diffusion equations 

   


 )(),(),(),(),( tWtxutxutxutxu xxxt   

   ),(),( 0 xutxu   

   )(),(),(),0( 21 tftLutftu       (1) 

where ],0[],,[ 0 LxTtt  . In equation (1)  ,,0  are constants and )(tw  is a random 

noise which related to the Brownian notation ).(tw Equation (1) can be rewritten as:  

                       
1

0

1

0
)(),()),(),(()0,(),( sdwsxudssxusxuxutxu xxx    (2) 

The stochastic integral is then the Ito integral with respect to R  valued Wiener process 

 TttFfw ,0)),((   defined on a complete probability space ),,( F  , adapted to the standard 

filtration. 

DERIVATION OF ( SADEs) COMPACT FINITE DIFERENCE SCHEMES  

Here, we introduce the standard compact approximations for the spatial derivatives of equation 

(1). Considering the following differential equations: 
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      (3) 

If we denote the central difference scheme of order two for standard and first order derivatives of 

u  as 
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Respectively, then we obtain the following approximation for equation (3) at point ix :  

   iiiixix ftwuuu 


 )(2      (5) 

where i  is the local truncation error in one dimension in which 
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In order to obtain a higher –order scheme, the fourth and the third derivatives of u  can be 

approximated as in Lele (1992). 
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Substituting the above derivatives into equation (5): 

 )(2 twuuu iixix    
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Equation (8) can be rewritten as 
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For an integer positive M  if 
M

X
x   and time step size respectively, and define 

   Mjxjx j .,.,..1,0,   

   ...,2,1,0,  jtjt j  

In order derivative of high-order difference algorithm, equation (1) must be discrete in space at 

point  ix  according to equation (9) to obtain a system of stochastic differential equation as follows: 
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Further simplification of equation (8) gives, 
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Let the boundary conditions be homogenous, then our system can be written as: 
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In which   A and B  are Tridiagonal matrices as follows: 
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and  

            TMi tUtUU )(,..),( 1  

              TMi tUtUU )(,..),( 1
      (16) 

STABILITY ANALYSIS  

Considering the  advection-diffusion test problem  xxxt uauu   with periodicity condition at 

0x  where both of these terms appear , then we integrate the advective term using different time 

stepping schemes and such approach is called splitting and is used to apply the appropriate method 

for each term in the advection – diffusion equation. Considering the splitting method. First we 

consider a comparison of cases where the advective term is integrated in time with the explicit 

Euler but the diffusive term is integrated in time with the Euler’s method (FTCS) or the implicit 

Euler’s method. The standard semi- discrete system is  
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With mww 0  and 11 wwm  . First, consider utilizing the Euler’s method for both for both the 

advective and diffusive term (FTCS) . With the discretization of the original equation we obtain  

       (18) 

Application  of the  explicit Euler-method now gives the fully discrete scheme
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the stability criteria  can  be  established by inserting  the discrete Fourier modes.Thus, we put 
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Inserting into equation (19) yields, 
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Solving the equation for the amplification factor A , we discovered that 
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Where  C  is the courant number we saw with discussion of the advection equation, R  is the non 

dimensional number that compares the viscous and interval effects over grid. 
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When 0k  and , the stability of scheme become critical  1A . Expanding equation (22) 

using Taylor series about these critical points of k , we observe that 

  42222
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which we need then to satisfy 1
2
A  for stability. Therefore, we find that  
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must be satisfied for the stable numerical integration based on the  explicit  Euler’s  method for 

both advective and diffusive stochastic terms.                                                                                                                                      

Considering the implicit Euler’s scheme or method to demonstrate the changes in stability 

characteristics from  equation (18) as 
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Utilizing the Fourier interpretation in the above equation we can find 
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Therefore, the stability condition indicates : 

(1) 1  where the system is symmetric. (2) 1  must be. Since our schemes are tridiagonal 

matrix we obtain 1...,2,1.
2

8
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NUMERICAL ANALYSIS 

Some numerical examples were conducted to test the validity, accuracy, efficient and robustness 

of the schemes derived. 
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Problem A: 
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The initial and boundary conditions are obtained from the analytic solution as 
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Considering different times 9.0,5.0,1.0t Secs .As it clear from these figures  that a good 

agreement between the two results are obtained. 

Problem B: 

 Considering one dimensional stochastic advection – diffusion equation 
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Exact solution is given by 
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The problem is solved at different cases for space size step and time step.  

Problem C: 
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Considering one dimensional stochastic advection – diffusion equation with  0.2,0.1  C  

with initial and boundary condition respectively is given by 
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Table 1: Assume values for the parameters 

      Parameters                symbols  Assumed value 

    Dispersion coefficients                     v                1 

Velocity of the water flow                                     1 

Gradient  interval                   x                2.5 

 Decay coefficient                                   0.2 

Concentration at the inlet                  inC                100 

Length of the channel                   L                10 

 

Table 2:  Computation of the exact solution for the  concentration of the 

reaction                 at   x=0.0m,  2.5m, 5.0m, 7.5m and 10m. 

C(ml/dm 3 ) 0.0x  mx 5.2  mx 5  mx 5.7    mx 10  

Exact solution 85.4102 55.7245 36.3626 23.8408  17.7334 

0125.0x  85.4100 55.7259 36.3644 23.8417 17.7247 

25.0x  85.4095 55.7299 36.3697 23.8443 17.6987 

5.2x  85.3426 56.2335 37.0471 24.4888 17.0750 

Table 2, shows the results for difference space size step and difference time size step. It is clear 

that a good agreement between the analytic solution and scheme derived because results obtained 

converges to the same point thereby reducing the errors obtained, 
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Table 3: Comparison of the numerical results 

              x  Simple explicit- 

implicit  method 

 Exact solution  Absolute  Error 

              0.0 85.40949391791340 85.410217907988ii 0,00072399007471 

              2.5 55.72990523497476 55.72454779633919 0.00535743863357 

                5 36.36967495688857 36.36263229460928 0.00704266227029 

               7.5 23.84930920620534 23.84077640806307 0.00353279814227 

                10 1.69873908593070 17.73340643352621 0.03466734729551 

 It is clear in table 3 that there is a good agreement between the analytic solution and scheme 

derived with minimum error obtained, and the error become clear when using larger size step for 

time and space. 

 Figure 1:Comparison of the numerical results 

 

 

It is clear in figure 1 that there is a good agreement between the exact solution and  numerical 

solution with minimum error obtained, and the error become clear when using larger size step for 

time and space. Finally errors obtain are less than zero. 
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CONCLUSION 

In this paper, we solved stochastic advection- diffusion differential equation using compact finite 

difference techniques, explicit – implicit Euler’s method and investigated the stability condition 

theoretically and numerically. Mathematical software was used in the implementation .Numerical 

experiment conducted show that the proposed schemes are unconditionally stable for                    . 
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