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What is performance?

Dimensions

I Model complexity

I Accuracy
I Time

I per problem instance
I for the first instance
I compute time versus human time

I Cost
I incremental cost
I subsidized?

I Terms relevant to scientist/engineer

I Compute meaningful quantities – needed to make a decision or
obtain a result of scientific value—not one iteration/time step

I No flop/s, number of elements/time steps



Work-precision diagram: de rigueur in ODE community

[Hairer and Wanner (1999)]

I Tests discretization, adaptivity, algebraic solvers, implementation
I No reference to number of time steps, flop/s, etc.
I Useful performance results inform decisions about tradeoffs.



Strong Scaling: efficiency-time tradeoff

I Good: shows absolute time
I Bad: log-log plot makes it difficult to discern efficiency

I Stunt 3: http://blogs.fau.de/hager/archives/5835
I Bad: plot depends on problem size

http://blogs.fau.de/hager/archives/5835


Strong Scaling: efficiency-time tradeoff

I Good: absolute time, absolute efficiency (like DOF/s/cost)
I Good: independent of problem size for perfect weak scaling
I Bad: hard to see machine size (but less important)



Exascale Science & Engineering Demands
I Model fidelity: resolution, multi-scale, coupling

I Transient simulation is not weak scaling: ∆t ∼∆x
I Analysis using a sequence of forward simulations

I Inversion, data assimilation, optimization
I Quantify uncertainty, risk-aware decisions

I Increasing relevance =⇒ external requirements on time
I Policy: 5 SYPD to inform IPCC
I Weather, manufacturing, field studies, disaster response

I “weak scaling” [. . . ] will increasingly give way to “strong scaling”
[The International Exascale Software Project Roadmap, 2011]

I ACME @ 25 km scaling saturates at < 10% of Titan (CPU) or
Mira

I Cannot decrease ∆x : SYPD would be too slow to calibrate
I “results” would be meaningless for 50-100y predictions, a “stunt

run”
I ACME v1 goal of 5 SYPD is pure strong scaling.

I Likely faster on Edison (2013) than any DOE machine –2020
I Many non-climate applications in same position.



HPL and the Top500 list
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I High Performance LINPACK
I Solve n×n dense linear system: O(N3/2) flops on N = n2 data
I Top500 list created in 1993 by Hans Meuer, Jack Dongarra, Erich

Strohmeier, Horst Simon



Role of HPL

I The major centers have their own benchmark suites (e.g.,
CORAL)

I Nobody (vendors or centers) will say they built an HPL machine

I HPL ranking and peak flop/s are still used for press releases
I Machines need to be justified to politicians holding the money

I Politicians are vulnerable to propaganda and claims of inefficient
spending

I It is naive to believe HPL has no influence on procurement or on
scientists’ expectations
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Arithmetic intensity is not enough

I QR and LU factorization have same complexity.
I Stable QR factorization involves more synchronization.
I Synchronization is much more expensive on Xeon Phi.



How much parallelism out of how much cache?

Processor v width threads F/inst latency L1D L1D/#par

Nehalem 2 1 2 5 32 KiB 1638 B
Sandy Bridge 4 2 2 5 32 KiB 819 B
Haswell 4 2 4 5 32 KiB 410 B
BG/P 2 1 2 6 32 KiB 1365 B
BG/Q 4 4 2 6 32 KiB 682 B
KNC 8 4 4 5 32 KiB 205 B
Tesla K20 32 * 2 10 64 KiB 102 B

I Most “fast” algorithms do about O(N) flops on N data

I xGEMM does O(N3/2) flops on N data

I Exploitable parallelism limited by cache and register load/store

I L2/L3 performance highly variable between architectures



Vectorization versus memory locality

I Each vector lane and pipelined instruction need their own
operands

I Can we extract parallelism from smaller working set?
I Sometimes, but more cross-lane and pipeline dependencies
I More complicated/creative code, harder for compiler

I Good implementations strike a brittle balance (e.g., Knepley,
Rupp, Terrel; HPGMG-FE)

I Applications change discretization order, number of fields, etc.
I CFD: 5-15 fields
I Tracers in atmospheric physics: 100 species
I Adaptive chemistry for combustion: 10-10000 species
I Crystal growth for mesoscale materials: 10-10000 fields

I AoS or SoA?
I Choices not robust to struct size
I AoS good for prefetch and cache reuse
I Can pack into SoA when necessary



SPECint is increasing despite stagnant clock
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I Karl Rupp’s update to figure by Horowitz et al.



Algorithms keep pace with hardware (sometimes)

[c/o David Keyes]

I Opportunities now: uncertainty quantification, design

I Incentive to find optimal algorithms for more applications



What does “representative” mean?

I Diverse applications
I Explicit PDE solvers (seismic wave propagation, turbulence)
I Implicit PDE solvers and multigrid methods (geodynamics,

structural mechanics, steady-state RANS)
I Irregular graph algorithms (network analysis, genomics, game

trees)
I Dense linear algebra and tensors (quantum chemistry)
I Fast methods for N-body problems (molecular dynamics,

cosmology)
I Cross-cutting: data assimilation, uncertainty quantification

I Diverse external requirements
I Real-time, policy, manufacturing
I Privacy
I In-situ processing of experimental data
I Mobile/energy limitations



Necessary and sufficient

Goodhart’s Law
When a measure becomes a target, it ceases to be a good measure.

I Features stressed by benchmark necessary for some apps

I Performance on benchmark sufficient for most apps



HPGMG: a new benchmarking proposal

I https://hpgmg.org, hpgmg-forum@hpgmg.org mailing list

I Mark Adams, Sam Williams (finite-volume), Jed (finite-element),
John Shalf, Brian Van Straalen, Erich Strohmeier, Rich Vuduc

I Gathering momentum, SC14 BoF

I Implementations

Finite Volume memory bandwidth intensive, simple data
dependencies, 2nd and 4th order

Finite Element compute- and cache-intensive, vectorizes,
overlapping writes

I Full multigrid, well-defined, scale-free problem

I Matrix-free operators, Chebyshev smoothers

https://hpgmg.org


Full Multigrid (FMG): Prototypical Fast Algorithm
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I start with coarse grid

I truncation error within one cycle

I about five work units for many problems

I no “fat” left to trim – robust to gaming
I distributed memory – restrict active process set using Z-order

I O(log2 N) parallel complexity stresses network
I scale-free specification

I no mathematical reward for decomposition granularity
I don’t have to adjudicate “subdomain”



Multigrid design decisions

I Q2 finite elements
I Partition of work not partition of data – sharing/overlapping writes
I Q2 is a middle-ground between lowest order and high order
I Matrix-free pays off, tensor-product element evaluation

I Linear elliptic equation with manufactured solution
I Mapped coordinates

I More memory streams, increase working set, longer critical path
I No reductions

I Coarse grid is strictly more difficult than reduction
I Not needed because FMG is a direct method

I Chebyshev/Jacobi smoothers, V (3,1) cycle
I Multiplicative smoothers hard to verify in parallel
I Avoid intermediate scales (like Block Jacobi/Gauss-Seidel)

I Full Approximation Scheme



HPGMG-FE on Edison, SuperMUC, Titan

Titan >200ms
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HPGMG-FE on Edison (Aries, E5-2695v2)
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HPGMG-FV, 2015-11, 2nd order



HPGMG-FV, 2015-11, 4th order



Messaging from threaded code

I Off-node messages need to be packed and unpacked

I Many MPI+threads apps pack in serial – bottleneck
I Extra software synchronization required to pack in parallel

I Formally O(logT ) critical path, T threads/NIC context
I Typical OpenMP uses barrier – oversynchronizes

I MPI_THREAD_MULTIPLE – atomics and O(T ) critical path

I Choose serial or parallel packing based on T and message
sizes?

I Hardware NIC context/core now, maybe not in future

I What is lowest overhead approach to message coalescing?



HPGMG-FV: flat MPI vs MPI+OpenMP (Aug 2014)
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I c/o Sam Williams



CAM-SE dynamics numbers

I 25 km resolution, 18 simulated seconds/RK stage

I Current performance at strong scaling limit

Edison 3 SYPD
Titan 2 SYPD
Mira 0.9 SYPD

I Performance requirement: 5 SYPD (about 2000x faster than real
time)

I 10 ms budget per dynamics stage
I Increasing spatial resolution decreases this budget

I ACME strong scaling saturates while too small for the Capability
Queue on DOE LCFs

I Null hypothesis: Edison will run ACME faster than any DOE
machine through 2020

I Difficult to get large allocations



Tim Palmer’s call for 1km (Nature, 2014)

I Would require 104 more total work than ACME target resolution
I 5 SYPD at 1km is like 75 SYPD at 15km, assuming infinite

resource and perfect weak scaling
I Two choices:

1. compromise simulation speed—this would come at a high price,
impacting calibration, data assimilation, and analysis; or

2. ground-up redesign of algorithms and hardware to cut latency by a
factor of 20 from that of present hardware

I DE Shaw’s Anton is an example of Option 2
I Models need to be constantly developed and calibrated

I custom hardware stifles algorithm/model innovation
I Exascale roadmaps don’t make a dent in 20x latency problem



Outlook

I Application scaling mode must be scientifically relevant
I Algorithmic barriers exist

I Throughput architectures are not just “hard to program”

I Vectorization versus memory locality

I Over-decomposition adds overhead and lengthens critical path
I Versatile architectures are needed for model coupling and

advanced analysis
I How to include dynamic range in ranking metric?
I Why is NERSC installing DRAM in Cori?

I Abstractions must be durable to changing scientific needs

I “Energy efficiency” is not if algorithms give up nontrivial constants
I What is the cost of performance variability?

I Measure best performance, average, median, 10th percentile?

I HPGMG https://hpgmg.org
I The real world is messy!

https://hpgmg.org

