High-performance Geometric Multigrid (HPGMG) and quantification of performance versatility This talk: https://jedbrown.org/files/20160217-CISLVersatility.pdf

Jed Brown jed@jedbrown.org (CU Boulder)

CISL Seminar, NCAR, 2016-02-17

What is performance?

Dimensions

- Model complexity
- Accuracy
- Time
 - per problem instance
 - for the first instance
 - compute time versus human time
- Cost
 - incremental cost
 - subsidized?
- Terms relevant to scientist/engineer
- Compute meaningful quantities needed to make a decision or obtain a result of scientific value—not one iteration/time step

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

No flop/s, number of elements/time steps

Work-precision diagram: de rigueur in ODE community

[Hairer and Wanner (1999)]

- Tests discretization, adaptivity, algebraic solvers, implementation
- No reference to number of time steps, flop/s, etc.
- Useful performance results inform *decisions* about *tradeoffs*.

Strong Scaling: efficiency-time tradeoff

- Good: shows absolute time
- Bad: log-log plot makes it difficult to discern efficiency
 - Stunt 3: http://blogs.fau.de/hager/archives/5835

э

Bad: plot depends on problem size

Strong Scaling: efficiency-time tradeoff

- Good: absolute time, absolute efficiency (like DOF/s/cost)
- Good: independent of problem size for perfect weak scaling
- Bad: hard to see machine size (but less important)

Exascale Science & Engineering Demands

- Model fidelity: resolution, multi-scale, coupling
 - Transient simulation is not weak scaling: $\Delta t \sim \Delta x$
- Analysis using a sequence of forward simulations
 - Inversion, data assimilation, optimization
 - Quantify uncertainty, risk-aware decisions
- Increasing relevance \implies external requirements on time
 - Policy: 5 SYPD to inform IPCC
 - Weather, manufacturing, field studies, disaster response
- "weak scaling" [...] will increasingly give way to "strong scaling" [The International Exascale Software Project Roadmap, 2011]
- ACME @ 25 km scaling saturates at < 10% of Titan (CPU) or Mira
 - Cannot decrease Δx : SYPD would be too slow to calibrate
 - "results" would be meaningless for 50-100y predictions, a "stunt run"
- ACME v1 goal of 5 SYPD is pure strong scaling.
 - Likely faster on Edison (2013) than any DOE machine –2020
 - Many non-climate applications in same position.

HPL and the Top500 list

- High Performance LINPACK
- Solve $n \times n$ dense linear system: $\mathcal{O}(N^{3/2})$ flops on $N = n^2$ data
- Top500 list created in 1993 by Hans Meuer, Jack Dongarra, Erich Strohmeier, Horst Simon

Role of HPL

- The major centers have their own benchmark suites (e.g., CORAL)
- Nobody (vendors or centers) will say they built an HPL machine
- HPL ranking and peak flop/s are still used for press releases
- Machines need to be justified to politicians holding the money
 - Politicians are vulnerable to propaganda and claims of inefficient spending

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It is naive to believe HPL has no influence on procurement or on scientists' expectations

Floating Point Operations per Byte, Double Precision

[c/o Karl Rupp]

Arithmetic intensity is not enough

- QR and LU factorization have same complexity.
- Stable QR factorization involves more synchronization.
- Synchronization is much more expensive on Xeon Phi.

< □ > < //>

How much parallelism out of how much cache?

Processor	v width	threads	F/inst	latency	L1D	L1D/#par
Nehalem	2	1	2	5	32 KiB	1638 B
Sandy Bridge	4	2	2	5	32 KiB	819 B
Haswell	4	2	4	5	32 KiB	410 B
BG/P	2	1	2	6	32 KiB	1365 B
BG/Q	4	4	2	6	32 KiB	682 B
KNC	8	4	4	5	32 KiB	205 B
Tesla K20	32	*	2	10	64 KiB	102 B

- Most "fast" algorithms do about O(N) flops on N data
- xGEMM does $O(N^{3/2})$ flops on N data
- Exploitable parallelism limited by cache and register load/store

L2/L3 performance highly variable between architectures

Vectorization versus memory locality

- Each vector lane and pipelined instruction need their own operands
- Can we extract parallelism from smaller working set?
 - Sometimes, but more cross-lane and pipeline dependencies
 - More complicated/creative code, harder for compiler
- Good implementations strike a brittle balance (e.g., Knepley, Rupp, Terrel; HPGMG-FE)
- Applications change discretization order, number of fields, etc.
 - CFD: 5-15 fields
 - Tracers in atmospheric physics: 100 species
 - Adaptive chemistry for combustion: 10-10000 species
 - Crystal growth for mesoscale materials: 10-10000 fields

- AoS or SoA?
 - Choices not robust to struct size
 - AoS good for prefetch and cache reuse
 - Can pack into SoA when necessary

SPECint is increasing despite stagnant clock

Karl Rupp's update to figure by Horowitz et al.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Algorithms keep pace with hardware (sometimes)

[c/o David Keyes]

- Opportunities now: uncertainty quantification, design
- Incentive to find optimal algorithms for more applications

What does "representative" mean?

Diverse applications

- Explicit PDE solvers (seismic wave propagation, turbulence)
- Implicit PDE solvers and multigrid methods (geodynamics, structural mechanics, steady-state RANS)
- Irregular graph algorithms (network analysis, genomics, game trees)
- Dense linear algebra and tensors (quantum chemistry)
- Fast methods for N-body problems (molecular dynamics, cosmology)
- Cross-cutting: data assimilation, uncertainty quantification

- Diverse external requirements
 - Real-time, policy, manufacturing
 - Privacy
 - In-situ processing of experimental data
 - Mobile/energy limitations

Necessary and sufficient

Goodhart's Law

When a measure becomes a target, it ceases to be a good measure.

Features stressed by benchmark necessary for some apps

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Performance on benchmark sufficient for most apps

HPGMG: a new benchmarking proposal

- https://hpgmg.org, hpgmg-forum@hpgmg.org mailing list
- Mark Adams, Sam Williams (finite-volume), Jed (finite-element), John Shalf, Brian Van Straalen, Erich Strohmeier, Rich Vuduc
- Gathering momentum, SC14 BoF
- Implementations

Finite Volume memory bandwidth intensive, simple data dependencies, 2nd and 4th order Finite Element compute- and cache-intensive, vectorizes, overlapping writes

- Full multigrid, well-defined, scale-free problem
- Matrix-free operators, Chebyshev smoothers

Full Multigrid (FMG): Prototypical Fast Algorithm

- start with coarse grid
- truncation error within one cycle
- about five work units for many problems
- no "fat" left to trim robust to gaming
- distributed memory restrict active process set using Z-order
 - $\mathcal{O}(\log^2 N)$ parallel complexity stresses network
- scale-free specification
 - no mathematical reward for decomposition granularity

don't have to adjudicate "subdomain"

Multigrid design decisions

- ► *Q*₂ finite elements
 - Partition of work not partition of data sharing/overlapping writes
 - Q2 is a middle-ground between lowest order and high order
 - Matrix-free pays off, tensor-product element evaluation
- Linear elliptic equation with manufactured solution
- Mapped coordinates
 - More memory streams, increase working set, longer critical path
- No reductions
 - Coarse grid is strictly more difficult than reduction
 - Not needed because FMG is a direct method
- Chebyshev/Jacobi smoothers, V(3,1) cycle
 - Multiplicative smoothers hard to verify in parallel
 - Avoid intermediate scales (like Block Jacobi/Gauss-Seidel)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Full Approximation Scheme

HPGMG-FE on Edison, SuperMUC, Titan

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - の久(で)

HPGMG-FE on Edison (Aries, E5-2695v2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

HPGMG-FV, 2015-11, 2nd order

HPGMG			HPGMG	Fraction of	Parallelization		DOF per	Top500	
Rank	System	Site	DOF/s	System	MPI	OMP	GPU	Process	Rank
1	К	RIKEN	2.83E+12	100%	82944	8		72M	4
2	Titan (CPU+GPU)	Oak Ridge	9.16e+11	100%	16384	4	1	32M	2
	(CPU-only)	Oak Ridge	2.53E+11	100%	32768	8		16M	
3	Mira	Argonne	7.21E+11	100%	49152	64		16M	5
4	Edison	NERSC	3.85E+11	100%	131072	1		4M	40
5	Stampede (CPU-only)	TACC	1.49E+11	64%	8192	8		2M	10
6	Hopper	NERSC	1.21E+11	86%	21952	6		2M	72
7	Piz Daint (CPU-only)	CSCS	1.02E+11	78%	4096	8		18M	7
8	SuperMUC	LRZ	7.13E+10	15%	2744	8		16M	23
9	BiFrost	NSC	4.67E+10	100%	1260	16		176M	-
10	Stampede (MIC-only)	TACC	2.16E+10	8%	512	180		16M	7
11	Peregrine (IVB-only)	NREL	1.08E+10	18%	512	12		2M	-
12	Carver	NERSC	1.35E+09	5%	125	4		2M	-
13	Babbage (MIC-only)	NERSC	8.24E+08	30%	27	180		16M	-

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

HPGMG-FV, 2015-11, 4th order

	System		HPGMG DOF/s			Parallelization			DOF per	Top500
Rank	Name	Site	h	2h	4h	MPI	OMP	ACC	Process	Rank
1	Mira	ALCF	5.00e11	3.13e11	1.07e11	49152	64		36M	5
			3.95e11	2.86e11	1.07e11	49152	64		36M	
2	Edison	NERSC	2.96e11	2.46e11	1.27e11	10648	12		128M	34
3	Titan (CPU-only)	OLCF	1.61e11	8.25e10	2.37e10	36864	8		48M	2
4	Hopper	NERSC	7.26e10	5.45e10	2.74e10	21952	6		16M	62
5	SuperMUC (22%)	LRZ	7.25e10	5.25e10	2.80e10	4096	8		54M	20
6	Hazel Hen (7%)	HLRS	1.82e10	8.73e09	2.02e09	1024	12		16M	-
7	SX-ACE (vector)	HLRS	3.24e09	1.77e09	7.51e08	256	1		32M	-
8	Babbage (MIC-only)	NERSC	7.62e08	3.16e08	9.93e07	256	45		8M	-

▲□▶▲圖▶▲臣▶★臣▶ 臣 のへで

Messaging from threaded code

- Off-node messages need to be packed and unpacked
- Many MPI+threads apps pack in serial bottleneck
- Extra software synchronization required to pack in parallel
 - Formally O(log T) critical path, T threads/NIC context
 - Typical OpenMP uses barrier oversynchronizes
- MPI_THREAD_MULTIPLE atomics and O(T) critical path
- Choose serial or parallel packing based on T and message sizes?
- Hardware NIC context/core now, maybe not in future
- What is lowest overhead approach to message coalescing?

(日)

HPGMG-FV: flat MPI vs MPI+OpenMP (Aug 2014)

CAM-SE dynamics numbers

- 25 km resolution, 18 simulated seconds/RK stage
- Current performance at strong scaling limit

Edison	3 SYPD
Titan	2 SYPD
Mira	0.9 SYPD

- Performance requirement: 5 SYPD (about 2000x faster than real time)
 - 10 ms budget per dynamics stage
 - Increasing spatial resolution decreases this budget
- ACME strong scaling saturates while too small for the Capability Queue on DOE LCFs

- Null hypothesis: Edison will run ACME faster than any DOE machine through 2020
 - Difficult to get large allocations

Tim Palmer's call for 1km (Nature, 2014)

Running a climate simulator with 1-kilometre cells over a timescale of a century will require 'exascale' computers capable of handling more than 10¹⁸ calculations per second. Such computers should become available within the present decade, but may not become affordable for individual institutes for another decade or more.

- ▶ Would require 10⁴ more total work than ACME target resolution
- 5 SYPD at 1km is like 75 SYPD at 15km, assuming infinite resource and perfect weak scaling
- Two choices:
 - 1. compromise simulation speed—this would come at a high price, impacting calibration, data assimilation, and analysis; or
 - 2. ground-up redesign of algorithms and hardware to cut latency by a factor of 20 from that of present hardware
- DE Shaw's Anton is an example of Option 2
- Models need to be constantly developed and calibrated
 - custom hardware stifles algorithm/model innovation
- Exascale roadmaps don't make a dent in 20x latency problem

Outlook

- Application scaling mode must be scientifically relevant
- Algorithmic barriers exist
 - Throughput architectures are not just "hard to program"
- Vectorization versus memory locality
- Over-decomposition adds overhead and lengthens critical path
- Versatile architectures are needed for model coupling and advanced analysis
 - How to include dynamic range in ranking metric?
 - Why is NERSC installing DRAM in Cori?
- Abstractions must be durable to changing scientific needs
- "Energy efficiency" is not if algorithms give up nontrivial constants
- What is the cost of performance variability?
 - Measure best performance, average, median, 10th percentile?

- HPGMG https://hpgmg.org
- The real world is messy!