High Precision Orbit Stabilization

 In Future Light SourcesBoris Keil
Paul Scherrer Institute

Contents / Disclaimer

No comprehensive overview, but few selected aspects, topics \& examples from author's field of work / experience (3G rings, 4G linac FELs):

- Introduction / New Machines
- Orbit Stability Aspects
- BPMs
- Orbit Feedbacks, Algorithms
- Summary

Some Future Light Sources

Some values coarse estimates or preliminary, just for qualitative comparison ...

	$\mathrm{E}_{\max }$ $[\mathrm{GeV}]$	$\varepsilon_{\mathrm{x}} / \varepsilon_{\mathrm{z}}$ $[\mathrm{pm} \mathrm{rad}]$	σ_{x} $[\mu \mathrm{m}]$	σ_{z} $[\mu \mathrm{~m}]$	bunch spacing	$\mathrm{N}_{\text {train }}$ $* * *$	$\mathrm{f}_{\text {train }}[\mathrm{Hz}]$	$\mathrm{Q}_{\text {bunch }}$ $[\mathrm{nC}]$
SCSS	8	50	~ 30	~ 30	4.2 ns	$1-50$	60	0.3
SwissFEL* *	5.8	$10-30$	$10-30$	$10-30$	50 ns	$1-2$	$100 / 400$	$0.01-0.2$
E-XFEL	17.5	30	~ 30	~ 30	200 ns	3250	10	$0.1-1$
NLS* *	2.3	110	~ 50	~ 50	$1 \mathrm{~ms} / 1 \mu \mathrm{~s}$	CW	CW	$0.001-1$
Cornell ERL* 2	5	$8-500$	$\sim 10-$	$\sim 10-$	0.77 ns	CW	CW	$0.0008-$ 100 100
NSLS-II	3	$510 / 8^{* *}$	$30-180$	$3-12$	2 ns	1056	0.4 M	1.25
MAX-IV	$3(1.5)$	$240 / 9$	44	2.6	10 ns	141	0.6 M	6.25

* Proposed ** With damping wigglers *** \# Bunches per train or revolution (rings: 80% filling)
- New linac FELs: Trend to low charge / short bunch (single spike mode)
- New rings: Low coupling/emittance, damping wigglers, medium energy

Future Light Sources (Cont'd)

- New storage rings: "Sub-micron" beam stability no longer sufficient, need "sub-fraction-of-micron" ($\sigma / 10 \sim 200 \mathrm{~nm}$) vertical e-beam stability. Evolution of present technology (NSLS-II: Button RF BPM pickup geometry, ...).
- New linac-based machines: 2 classes
- Single bunch or short bunch trains (<200ns), $\sim 100 \mathrm{~Hz}$ rep. rate (SwissFEL, SCSS): Need source-suppression of random orbit perturbations > few Hz
- Long bunch trains or CW, bunch rep. rate up to MHz or more (E-XFEL, NLS, ERLs): Feedback can suppress orbit perturbations $\gg 10 \mathrm{~Hz}$ (vibrations, ...)
- All machine types: May use adaptive feed-forward for reproducible perturbations (mains, ...)

Outline

- Introduction / New Machines
- Orbit Stability Aspects
- BPMs
- Orbit Feedbacks, Algorithms
- Summary

Orbit Stability Aspects

Storage Rings:

Need typ. Sigma/10 ~ 200nm vertical RMS orbit stability (and/or corresponding angle stability). But: Photon beamlines also need:

- Stable e-beam dimensions (control/feedback of ultra-low coupling, ...). SLS: Fast beam wobbling for polarization switching needs fast skew-quad corrections.
- Stable p-beamline mechanics (monochromator/mirror vibrations, ...) \& e-/p-BPM supports (T-drift, vibrations).

Improve not just center-of-charge e-beam stability, but also source suppression (beamline elements, ...). Integrate fast high-BW photon BPMs (blade, residual gas, ...), coupling control etc. into orbit feedback.

Orbit Stability Aspects (Cont'd)

- New Linac FELs:
- Round beams, not flat like rings. For low-charge modes (e.g. SwissFEL 10pC): $\sigma<10 \mu \mathrm{~m}$, comes close to vertical beam size in 3G rings.
- e-Beam stability in main linac less critical (emittance growth, ...)
- Want $\sim \sigma / 10$ stability in undulators for lasing (electron-photon overlap \& relative phase, pointing/intensity stability)
- Static Beam trajectory alignment \& local straightness in undulators (Earth's field shielding, DFS, ...) much more critical than in rings

Outline

- Introduction / New Machines
- Orbit Stability Aspects
- BPMs
- Orbit Feedbacks, Algorithms
- Summary

Common BPM Pickups: Buttons \& Striplines

Button (Bergoz)

Matched Stripline (FLASH)

$$
{ }^{q} \underset{\longrightarrow}{\longrightarrow}
$$

Resonant Stripline (SLS Linac, ...)

q
\longrightarrow

Beam Position $=k$ * $\left(\mathrm{V}_{\mathrm{x} 1}-\mathrm{V}_{\mathrm{x} 2}\right) /\left(\mathrm{V}_{\mathrm{x} 1}+\mathrm{V}_{\mathrm{x} 2}\right)$. Factor $\mathrm{k}(\sim 10 \mathrm{~mm})$ determined by geometry.

Common BPM Pickups: Cavities

Dual-resonator, waveguide connectors, mode-selective (LCLS, 11.4GHz)

Dual-resonator, coaxial connectors, mode-selective (E-XFEL, 3.3GHz)

Reference cavity

 (1 connector): 3.3 GHz signal~ bunch charge

Common Pickups (Cont'd)

Pickup	Button	Matched Stripline	Resonant Stripline	Cavity
Spectrum	f			

"Typical" noise: Examples from some existing machines \& electronics, not theoretical limit ...

Common BPMs

Qualitative/subjective pros \& cons .
Standard for ring machines: SNR uncritical (averaging over many bunches), minimal beam impact

minimal beam impact			Coupling	Coupling	Coupling
Signal/Noise	-	- / +	+	+	+ +
Monopole Mode Suppression	-	-	-	- / +	+ + U
Single-Bunch Resolution (@ low charge)	-	- / +	+	+	++
Electronics Drift	- / +	- / +	- / +	- / +	+
Weight 10mm pipe	+ +	+	+	+	+
Weight 40mm pipe	+ +	- / +	- / +	- / +	- $1+$ +
Design Effort	+ +	- / +	- I +	- / +	-
Fabrication Costs	+ +	- / +	- I +	- / +	$-1+$
Tuning Effort	+ +	+ +	- $1+$	+	+

BPMs: Impact of Transverse Beam Profile

Ring Light Sources

- Synchrotron radiation damping: Gaussian 3D profile, no bunch tilt

Linac FELs

- Machines without higher-harmonic RF: nonlinear (sine) accelerating RF fields cause non-Gaussian longitudinal \& transverse profile
- Result: fraction of bunch that is lasing is not at center of charge \rightarrow suboptimal (or no) lasing although BPMs show ideal straight undulator trajectory
- Is problem for trajectory feedback (not for magnet alignment!)
- Cure: Linearize RF accel. field via higher-harmonic structures $\rightarrow \sim$ Gaussian profile \rightarrow necessary for sub- $\mu \mathrm{m}$ position measurement of the lasing part of the bunch

BPMs: Transverse Beam Profile (Cont‘d)

Courtesy B. Faatz et al., SINAP 2008

BPM Electronics

- Main challenge is fulfilling all specifications simultaneously, not just one (e.g. resolution).
- People tend to focus on low resolution, but e.g. low drift \& bunch charge/pattern dependence are often more difficult to achieve.

	Typical (3G Ring, ID BPMs)	Typical (Linac, SASE-Undulator)
Resolution / BW	$200 \mathrm{~nm}<1 \mathrm{kHz}$	$500 \mathrm{~nm}<50 \mathrm{MHz}$
Drift (hour/week) For Specified Environment	$100 \mathrm{~nm} / 1 \mu \mathrm{~m}$	$100 \mathrm{~nm} / 1 \mu \mathrm{~m}$
Beam Charge Dependence	\ldots	$100 \mathrm{~nm} / 1 \%$
Bunch Pattern Dependence	\ldots	n.a.
Position Range	+-5 mm	+-1 mm
Bunch Charge/Current Range	$0.1-400 \mathrm{~mA}$	$0.01-0.5 \mathrm{nC}$
Differential Nonlinearity	\ldots	0.03% FS
Integral Nonlinearity	\ldots	2% FS
Bunch-to-Bunch Crosstalk	n.a.	100 nm
x-y Coupling	2%	1%
Initial Offset \& Gain Error	$100 \mu \mathrm{~m} / 3 \%$	$100 \mu \mathrm{~m} / 3 \%$

BPM Electronics (Cont'd)

- Typical 3G ring button electronics (simplified): direct sampling

Common housing, fan, power supply

- Typical 4G linac cavity BPM electronics (simplified): homodyne rec.

Common housing, fan, power supply
\rightarrow Modular system: 3G ring \& 4G linac BPM systems can use same ADC \& FPGA boards \& crates/housing, with customized RF front-ends

Outline

- Introduction / New Machines
- Orbit Stability Aspects
- BPMs
- Orbit Feedbacks, Algorithms
- Summary

Feedback Algorithms for Rings \& Linacs:

${ }^{2}$ Standard" Algorithm: SVD, PID Control, Uniform Gains

- SVD: rotate BPM \& corrector vectors into space where beam response matrix has only diagonal elements (eigenvalues)
- Drawback: BPM vectors („perturbation patterns") with smallest eigenvalues (huge corrector Δl for tiny orbit Δx) mainly unreal, caused by BPM noise: vector least useful for correction of real perturbations, but main cause of feedbackinduced beam noise
- Usual cure: do not correct such BPM patterns (set small eigenvalues to 0 : "eigenvalue cut-off")
- Usual problem: orbit not corrected (exactly) to desired positions

Feedback Algorithm (Cont'd)

Improvement Idea (M. Heron et al., EPAC'08, THPC118):

- Feedback will modulate much less noise onto orbit if each BPM pattern (,eigenvector") has its own PID loop, with gain weighted by eigenvalue (\rightarrow "Tikhonov regularization"):
\checkmark Real perturbations: corrected fast (high loop gain)
\checkmark Perturbations mainly pretended by BPM electronics noise: corrected slowly \rightarrow noise averaged, much less feedback noise on the beam
- Algorithm can reduce BPM noise requirements for new 3G rings \& improve beam stability at existing machines

Machine Design: Impact on Transverse Feedback

Impact of BPM noise reduced by:

- Minimization of quotient between largest \& smallest SVD eigenvalue (conditioning number) - depends on lattice/optics \& BPM/corrector locations.
- Large beta functions @ BPMs

BPM electronics bunch charge \& pattern dependence irrelevant by:

- Top-up injection
- Filling pattern feedback

BPM position drift of mechanics \& electronics reduced/eliminated by:

- Air temperature stabilization
- Photon BPMs for orbit feedback

SVD Algorithm For Linacs

Example: Diamond FOFB Performance

Plots: Courtesy G. Rehm et al. (EPAC'08)

E-XFEL: Transverse Intra-Train Feedback (IBFB)

- Downstream BPMs for fast feedback loop, RF stripline kickers, latency $\sim 1 \mu \mathrm{~s}$.
- Additional adaptive feed-forward (train-to-train) for repetitive perturbations.
- Upstream BPMs for calibration (kicker amp gain \& phase, ...).
- Undulator BPM pickups used to correct perturbations between IBFB \& undulators, and for slow $(\sim 10 \mathrm{~Hz})$ global feedback with normal magnets.

Transverse Beam Trajectory Perturbations

... in E-XFEL undulators, preliminary/estimated (W. Decking)

Fast Intra-Train Feedback: Typical Electronics

\square

Fast Intra-Train Feedback: Typical Components

Outline

- Introduction / New Machines
- Orbit Stability Aspects
- BPMs
- Orbit Feedbacks, Algorithms
- Summary

Summary

- New storage rings need "sub-fraction-of-micron" orbit stability (~200nm).
- New low-charge linac FELs: Close to vertical orbit stability requirements of 3G rings. Feedback BW limited by bunch rep. rate -> need source suppression of perturbations, or long bunch trains / CW + feedback.
- Cavity BPMs offer good cost-to-performance ratio, interesting as standard BPM for new low-charge linac FELs. Buttons are low-cost option for main linac of medium-high charge FELs.
- Linacs \& rings can share BPM electronics components, can use same feedback algorithm \& hardware (typ. 0.1-10kHz correction rate). Long-train or CW FELs may need ultrafast Intra-Bunchtrain feedback (E-XFEL) \& MHz correction rate.

