High Precision Orbit Stabilization In Future Light Sources

Boris Keil Paul Scherrer Institute

Contents / Disclaimer

No comprehensive overview, but few selected aspects, topics & examples from author's field of work / experience (3G rings, 4G linac FELs):

- Introduction / New Machines
- Orbit Stability Aspects
- BPMs
- Orbit Feedbacks, Algorithms
- Summary

Some Future Light Sources

Some values coarse estimates or preliminary, just for qualitative comparison ...

	E _{max} [GeV]	ε _x /ε _z [pm rad]	σ _x [µm]	σ _z [µm]	bunch spacing	N _{train} ***	f _{train} [Hz]	Q _{bunch} [nC]
SCSS	8	50	~30	~30	4.2ns	1-50	60	0.3
SwissFEL*	5.8	10-30	10-30	10-30	50ns	1-2	100/400	0.01-0.2
E-XFEL	17.5	30	~30	~30	200ns	3250	10	0.1-1
NLS*	2.3	110	~50	~50	1ms/1µs	CW	CW	0.001-1
Cornell ERL*	5	8-500	~10- 100	~10- 100	0.77ns	CW	CW	0.0008- 0.08
NSLS-II	3	510/8**	30-180	3-12	2ns	1056	0.4M	1.25
MAX-IV	3(1.5)	240/9	44	2.6	10ns	141	0.6M	6.25

* Proposed ** With damping wigglers *** # Bunches per train or revolution (rings: 80% filling)

- New linac FELs: Trend to low charge / short bunch (single spike mode)

- New rings: Low coupling/emittance, damping wigglers, medium energy

Future Light Sources (Cont'd)

- <u>New storage rings</u>: "Sub-micron" beam stability no longer sufficient, need "sub-fraction-of-micron" (σ/10 ~ 200nm) vertical e-beam stability. Evolution of present technology (NSLS-II: Button RF BPM pickup geometry, ...).
- New linac-based machines: 2 classes
 - <u>Single bunch</u> or short bunch trains (<200ns), ~100Hz rep.
 rate (SwissFEL, SCSS): <u>Need source-suppression</u> of random orbit perturbations > few Hz
 - <u>Long bunch trains</u> or CW, bunch rep. rate up to MHz or more (E-XFEL, NLS, ERLs): <u>Feedback can suppress orbit</u> <u>perturbations</u> >>10Hz (vibrations, ...)
 - All machine types: May use adaptive feed-forward for reproducible perturbations (mains, ...)

Outline

- Introduction / New Machines
- Orbit Stability Aspects
- BPMs
- Orbit Feedbacks, Algorithms
- Summary

Orbit Stability Aspects

Storage Rings:

Need typ. Sigma/10 ~ 200nm vertical RMS orbit stability (and/or corresponding angle stability). But: Photon beamlines also need:

- Stable e-beam dimensions (control/feedback of ultra-low coupling, ...). SLS: Fast beam wobbling for polarization switching needs fast skew-quad corrections.
- Stable p-beamline mechanics (monochromator/mirror vibrations, ...) & e-/p-BPM supports (T-drift, vibrations).

Improve not just center-of-charge e-beam stability, but also source suppression (beamline elements, ...). Integrate fast high-BW photon BPMs (blade, residual gas, ...), coupling control etc. into orbit feedback.

Orbit Stability Aspects (Cont'd)

New Linac FELs:

- Round beams, not flat like rings. For low-charge modes (e.g. SwissFEL 10pC): <u>σ<10µm</u>, comes <u>close to vertical</u> <u>beam size in 3G rings</u>.
- e-Beam stability in main linac less critical (emittance growth, ...)
- Want ~σ/10 stability in undulators for lasing (electron-photon overlap & relative phase, pointing/intensity stability)
- Static Beam trajectory alignment & local straightness in undulators (Earth's field shielding, DFS, ...) much more critical than in rings

Outline

- Introduction / New Machines
- Orbit Stability Aspects
- BPMs
- Orbit Feedbacks, Algorithms
- Summary

PAUL SCHERRER INSTITUT

Common BPM Pickups: Buttons & Striplines

Beam Position = k * $(V_{x1}-V_{x2})/(V_{x1}+V_{x2})$. Factor k (~10mm) determined by geometry.

Boris Keil

PAUL SCHERRER INSTITUT

Common BPM Pickups: Cavities

Dual-resonator, waveguide connectors, mode-selective (LCLS, 11.4GHz)

Dual-resonator, coaxial connectors, mode-selective (E-XFEL, 3.3GHz)

Beam Position = k * ($V_{Pos_{Cav}} / V_{Ref_{Cav}}$). Factor k: Not fixed, variable via attenuator.

Common Pickups (Cont'd)

Pickup	Button	Matched Stripline	Resonant Stripline	Cavity	
Spectrum	E(f) M D f				
Monopole Mode Suppression	Modal (hybrid) / electronics	Modal (hybrid) / electronics	Modal (hybrid) / electronics	Modal (coupler), frequency, phase (sync. det.)	
Typical RMS Noise, 10pC, <u>*20mm pipe*</u>	>100µm	<60µm (scaled to 20mm pipe)	<10µm (estimated for 20mm pipe)	<1µm	
Typical Electronics Frequency	300800MHz	300800MHz	500-1500MHz	3-6GHz	

"Typical" noise: Examples from some existing machines & electronics, not theoretical limit ...

Common BPMs Qualitative/subjective pros & cons		"Standard" BPM types for warm linac beam lines (where ~ 5 - 50μm resolution is needed)		Typical choice for SASE undulators, intra-train & IP feedbacks: sub-µm single-bunch resolution	
machines: SNR uncritical (averaging over many bunches), minimal beam impact	Button	Matched Stripline	Resonant Stripline, Normal Coupling	Single Cavity Normal Coupling	Two Cavities, Hybrid Coupling
Signal/Noise	-	- / +	+	+	+
Monopole Mode Suppression	-	-	-	-/+	+ mance
Single-Bunch Reso- lution (@ low charge)	-	-/+	+	+	++ perfor
Electronics Drift	- / +	- / +	- / +	- / +	×+/
Weight 10mm pipe	++	+	+	+	+
Weight 40mm pipe	++	- / +	- / +	- / +	-/+ 🕁
Design Effort	+ +	- / +	-/+	- / +	_ pn
Fabrication Costs	+ +	- / +	-/+	- / +	-/+ ⁰
Tuning Effort	+ +	+ +	-/+	+	+

Y

 \sim

BPMs: Impact of Transverse Beam Profile

Ring Light Sources

Synchrotron radiation damping: <u>Gaussian 3D profile</u>, no bunch tilt

Linac FELs

- Machines without higher-harmonic RF: nonlinear (sine) accelerating RF fields cause <u>non-Gaussian longitudinal</u> <u>& transverse profile</u>
- Result: <u>fraction of bunch that is lasing is not at center of charge</u>
 → suboptimal (or no) lasing although BPMs show ideal straight
 undulator trajectory
- Is problem for trajectory feedback (<u>not</u> for magnet alignment!)
- Cure: Linearize RF accel. field via higher-harmonic structures
 → ~Gaussian profile → necessary for sub-µm position
 measurement of the lasing part of the bunch

PAUL SCHERRER INSTITUT

BPMs: Transverse Beam Profile (Cont'd)

BPM Electronics

- Main challenge is fulfilling all specifications simultaneously, not just one (e.g. resolution).
- People tend to focus on low resolution, but e.g. low drift & bunch charge/pattern dependence are often more difficult to achieve.

	Typical (3G Ring, ID BPMs)	Typical (Linac, SASE-Undulator)
Resolution / BW	200nm < 1 kHz	500nm < <mark>50MHz</mark>
Drift (hour/week) For Specified Environment	100nm/1µm	100nm/1µm
Beam Charge Dependence		100nm/1%
Bunch Pattern Dependence		n.a.
Position Range	+-5mm	+-1mm
Bunch Charge/Current Range	0.1-400mA	0.01-0.5nC
Differential Nonlinearity		0.03% FS
Integral Nonlinearity		2% FS
Bunch-to-Bunch Crosstalk	n.a.	100nm
x-y Coupling	2%	1%
Initial Offset & Gain Error	100µm / 3%	100µm / 3%

Outline

- Introduction / New Machines
- Orbit Stability Aspects
- BPMs
- Orbit Feedbacks, Algorithms
- Summary

Feedback Algorithms for Rings & Linacs:

"Standard" Algorithm: SVD, PID Control, Uniform Gains

- SVD: rotate BPM & corrector vectors into space where beam response matrix has only diagonal elements (eigenvalues)
- Drawback: BPM vectors ("perturbation patterns") with smallest eigenvalues (huge corrector ΔI for tiny orbit Δx) mainly unreal, caused by BPM noise: vector least useful for correction of real perturbations, but main cause of feedbackinduced beam noise
- Usual cure: do not correct such BPM patterns (set small eigenvalues to 0: "eigenvalue cut-off")
- Usual problem: orbit not corrected (exactly) to desired positions

Feedback Algorithm (Cont'd)

Improvement Idea (M. Heron et al., EPAC'08, THPC118):

- Feedback will modulate much less noise onto orbit if <u>each</u> <u>BPM pattern ("eigenvector") has its own PID loop</u>, with gain weighted by eigenvalue (→ "Tikhonov regularization"):
 - ✓ Real perturbations: corrected fast (high loop gain)
 - ✓ Perturbations mainly pretended by BPM electronics noise: corrected slowly → noise averaged, much less feedback noise on the beam
- <u>Algorithm can reduce BPM noise requirements</u> for new 3G rings & improve beam stability at existing machines

Machine Design: Impact on Transverse Feedback

Impact of BPM noise reduced by:

- Minimization of quotient between largest & smallest SVD eigenvalue (conditioning number) – depends on lattice/optics & BPM/corrector locations.
- Large beta functions @ BPMs

BPM electronics bunch charge & pattern dependence irrelevant by:

- Top-up injection
- Filling pattern feedback

BPM position drift of mechanics & electronics reduced/eliminated by:

- Air temperature stabilization
- Photon BPMs for orbit feedback

SVD Algorithm For Linacs

- No. of BPMs & correctors can be chosen as desired/(2+2, more)
- Robustness (energy variation, …): Depends on BPM/corr. loc.

Ideal case: SVD touches just 3 correctors

if 1 BPM changes → superposition of localized bumps, robust

Example: Diamond FOFB Performance

E-XFEL: Transverse Intra-Train Feedback (IBFB)

- Downstream BPMs for fast feedback loop, RF stripline kickers, latency ~1µs.
- Additional adaptive feed-forward (train-to-train) for repetitive perturbations.
- Upstream BPMs for calibration (kicker amp gain & phase, ...).
- Undulator BPM pickups used to correct perturbations between IBFB & undulators, and for slow (~10Hz) global feedback with normal magnets.

Transverse Beam Trajectory Perturbations

... in E-XFEL undulators, preliminary/estimated (W. Decking)

Train-To-Train Perturbations (Peak-To-Peak)	Horizontal [µm]	Vertical [µm]	Random
Mechanical Vibrations	28	28	yes
Power Supply Noise	12.6	12.6	yes
Vibration-Induced Dispersion Variation	2.5	2.5	yes
Sum Train-To-Train	<u>43.1</u>	<u>43.1</u>	
Additional Intra-Train Perturbations (Peak-To-Peak)			
Beam Distribution Kicker Drift	0	120	no
Beam Distribution Kicker Noise	0	1	yes
Wake Fields	25	25	no
Spurious Dispersion (3% E-Chirp)	30	30	no
Spurious Dispersion (1E-4 E-Jitter)	0.1	0.1	yes
Nonlinear Residual Dispersion (3% E-Chirp)	136	0	no
Nonlinear Residual Dispersion (1E-4 E-Jitter)	0.5	0	yes
Sum Intra-Train	<u>191.6</u>	<u>176.1</u> ~	
Sum Overall	<u>234.7</u>	<u>219.2</u>	

Low-frequency perturbations (<< 10kHz): Random position offset of each bunch train, should be corrected to ~σ/10 (~3µm) within ~20µs after 1st bunch (dump first ~100 bunches) → needs fast intra-bunchtrain feedback (IBFB), latency ~1µs

<u>High-frequency</u> perturbations (>10kHz): Mainly non-random, i.e. reproducible → correct by adaptive feed-forward (train-to-train) PAUL SCHERRER INSTITUT

Fast Intra-Train Feedback: Typical Electronics

PAUL SCHERRER INSTITUT

Fast Intra-Train Feedback: Typical Components

Outline

- Introduction / New Machines
- Orbit Stability Aspects
- BPMs
- Orbit Feedbacks, Algorithms
- Summary

Summary

- New storage rings need "sub-fraction-of-micron" orbit stability (~200nm).
- New low-charge linac FELs: Close to vertical orbit stability requirements of 3G rings. Feedback BW limited by bunch rep. rate -> need source suppression of perturbations, or long bunch trains / CW + feedback.
- Cavity BPMs offer good cost-to-performance ratio, interesting as standard BPM for new low-charge linac FELs. Buttons are low-cost option for main linac of medium-high charge FELs.
- Linacs & rings can share BPM electronics components, can use same feedback algorithm & hardware (typ. 0.1-10kHz correction rate). Long-train or CW FELs may need ultrafast Intra-Bunchtrain feedback (E-XFEL) & MHz correction rate.