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Some Future Light Sources

Emax

[GeV]
εx

 

/εz

[pm rad]
σx

[μm]
σz

[μm]
bunch 

spacing
Ntrain

***
ftrain

 

[Hz] Qbunch

[nC]

SCSS 8 50 ~30 ~30 4.2ns 1-50 60 0.3

SwissFEL* 5.8 10-30 10-30 10-30 50ns 1-2 100/400 0.01-0.2

E-XFEL 17.5 30 ~30 ~30 200ns 3250 10 0.1-1

NLS* 2.3 110 ~50 ~50 1ms/1μs CW CW 0.001-1

Cornell ERL* 5 8-500 ~10-

 
100

~10-

 
100

0.77ns CW CW 0.0008-

 
0.08

NSLS-II 3 510/8** 30-180 3-12 2ns 1056 0.4M 1.25
MAX-IV 3(1.5) 240/9 44 2.6 10ns 141 0.6M 6.25

** With damping wigglers* Proposed *** # Bunches per train or revolution (rings: 80% filling)

Some values coarse estimates or preliminary, just for qualitative comparison ...

- New linac FELs: Trend to low charge / short bunch (single spike

 

mode) 
-

 

New rings: Low coupling/emittance, damping wigglers, medium energy
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Future Light Sources (Cont’d)
 New storage rings: “Sub-micron”

 
beam stability no longer

sufficient, need “sub-fraction-of-micron”
 

(σ/10 ~ 200nm) vertical
e-beam stability. Evolution of present technology (NSLS-II:
Button RF BPM pickup geometry, ...).

 New linac-based machines: 2 classes
- Single bunch

 
or short bunch trains (<200ns),  ~100Hz rep.

rate (SwissFEL, SCSS): Need source-suppression
 

of random
orbit perturbations > few Hz

- Long bunch trains
 

or CW, bunch rep. rate up to MHz or 
more (E-XFEL, NLS, ERLs): Feedback can suppress orbit
perturbations

 
>>10Hz (vibrations, ...)

- All machine types: May use adaptive feed-forward for 
reproducible perturbations (mains, ...)
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Orbit Stability Aspects
Storage Rings:

Need typ. Sigma/10 ~ 200nm vertical RMS orbit stability (and/or
corresponding angle stability) . But: Photon beamlines

 
also need:

-
 

Stable e-beam dimensions (control/feedback of 
ultra-low coupling, ...). SLS: Fast beam wobbling for
polarization switching needs fast skew-quad corrections.

- Stable p-beamline
 

mechanics (monochromator/mirror
vibrations, ...) & e-/p-BPM

 
supports (T-drift, vibrations).

Improve not just center-of-charge e-beam stability, but also
source suppression (beamline

 
elements, ...). Integrate fast 

high-BW photon BPMs (blade, residual gas, ...), coupling 
control etc. into orbit feedback.
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Orbit Stability Aspects (Cont’d)
 New Linac FELs:

-
 

Round beams, not flat like rings. For low-charge modes
(e.g. SwissFEL 10pC):  σ<10μm, comes

 
close

 
to vertical

beam
 

size
 

in 3G rings.

- e-Beam
 

stability
 

in main
 

linac less
 

critical
 

(emittance 
growth, ...)

- Want ~σ/10 stability
 

in undulators for
 

lasing
 

(electron-photon
overlap

 
& relative phase, pointing/intensity

 
stability)

- Static
 

Beam
 

trajectory
 

alignment
 

& local
 

straightness
in undulators (Earth‘s

 
field

 
shielding, DFS, ...) much

more
 

critical
 

than
 

in rings
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Common BPM Pickups: Buttons & Striplines

q 

Vx1 

Vx2 

Zw = 50 

q 

Vx1 

Vx2 

Zw = 50  

Button
(Bergoz)

Matched Stripline
(FLASH)

Resonant Stripline
(SLS Linac, …)

q 

Vx1 

Vx2 

Beam Position = k * (Vx1

 

-Vx2

 

)/(Vx1

 

+Vx2

 

). Factor k (~10mm) determined by geometry.
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Dual-resonator,
waveguide connectors,

mode-selective
(LCLS, 11.4GHz)

Dual-resonator,
coaxial connectors,

mode-selective
(E-XFEL, 3.3GHz)

100mm

Reference cavity
(1 connector):
3.3GHz signal

~ bunch charge

Position cavity
(4 connectors) :
3.3GHz signal

~ position * charge 

Mode-selective 
couplers suppress 

undesired other modes 

Visible: Vacuum, 
couplers

D. Lipka/DESY, based 
on SCSS design

Beam Position = k * (VPos_Cav / VRef_Cav

 

). Factor k:
Not fixed, variable via attenuator.

Common BPM Pickups: Cavities
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Common Pickups (Cont’d)

D

M

f 

E(f) 
D

M

f 

E(f) 
D

M

f 

E(f) 

D 

M 

f 

E(f) 

Pickup Button Matched Stripline Resonant Stripline Cavity

Spectrum

Monopole 
Mode 
Suppression

Modal (hybrid) / 
electronics

Modal (hybrid) / 
electronics

Modal (hybrid) / 
electronics

Modal (coupler),
frequency,

phase (sync. det.)

Typical RMS 
Noise, 10pC, 
*20mm pipe*

>100μm <60μm 
(scaled to 20mm 

pipe)

<10μm 
(estimated for
20mm pipe)

<1μm

Typical 
Electronics 
Frequency

300…800MHz 300…800MHz 500-1500MHz 3-6GHz

“Typical”

 

noise: Examples from some existing machines & electronics, not theoretical limit …
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Button Matched
Stripline

Resonant 
Stripline, 
Normal 

Coupling

Single 
Cavity 
Normal 

Coupling

Two 
Cavities, 
Hybrid 

Coupling
Signal/Noise – –

 

/

 

+ + + +
Monopole Mode 
Suppression

– – – –

 

/

 

+ +

Single-Bunch Reso-

 
lution (@ low charge)

– –

 

/

 

+ + + ++

Electronics Drift –

 

/

 

+ –

 

/

 

+ –

 

/

 

+ –

 

/

 

+ +
Weight 10mm pipe + + + + + +
Weight 40mm pipe + + –

 

/

 

+ –

 

/

 

+ –

 

/

 

+ –

 

/ +
Design Effort + + –

 

/

 

+ –

 

/ + –

 

/

 

+ –
Fabrication Costs + + –

 

/ + –

 

/ + –

 

/ + –

 

/ +
Tuning Effort + + + + –

 

/ + + +

Common BPMs

Standard for ring 
machines: SNR 

uncritical (averaging 
over many bunches), 
minimal beam impact 

Typical choice for SASE 
undulators, intra-train & 
IP feedbacks: sub-μm 

single-bunch resolutionQualitative/subjective pros & cons ...

pe
rf

or
m

an
ce

bu
dg

et

“Standard”

 

BPM types 
for warm linac beam 

lines (where ~ 5 -

 

50μm 
resolution is needed)



PAUL SCHERRER INSTITUT

Boris Keil FLS2010

BPMs: Impact of Transverse Beam Profile
Ring Light Sources
 Synchrotron radiation damping: Gaussian 3D profile, no bunch tilt

Linac FELs
 Machines without higher-harmonic RF: nonlinear (sine) 

accelerating RF fields cause non-Gaussian longitudinal
& transverse profile
 Result:

 

fraction of bunch that is lasing is not at center of charge
→ suboptimal (or no) lasing although BPMs show ideal straight
undulator trajectory
 Is problem for trajectory feedback (not

 

for magnet alignment!)
 Cure: Linearize RF accel. field via higher-harmonic structures
→ ~Gaussian profile → necessary for sub-μm position
measurement of the lasing part of the bunch
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Example: Correlation 
between transverse 

and longitudinal 
charge distribution @ 

FLASH (measured 
by transverse 

deflecting cavity, H. 
Schlarb et al.).

Lasing electrons not 
at transverse center 

of charge. Cure 
(FLASH + E-XFEL): 

3rd harmonic RF

Courtesy B. Faatz et al., SINAP 2008

BPMs: Transverse Beam Profile (Cont‘d)
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BPM Electronics

Typical (3G Ring, ID 
BPMs)

Typical (Linac, 
SASE-Undulator)

Resolution / BW 200nm < 1 kHz 500nm < 50MHz

Drift (hour/week) For Specified Environment 100nm/1μm 100nm/1μm

Beam Charge Dependence ... 100nm/1%

Bunch Pattern Dependence ... n.a.

Position Range +-5mm +-1mm

Bunch Charge/Current Range 0.1-400mA 0.01-0.5nC

Differential Nonlinearity ... 0.03% FS

Integral Nonlinearity ... 2% FS

Bunch-to-Bunch Crosstalk n.a. 100nm

x-y Coupling 2% 1%

Initial Offset & Gain Error 100μm / 3% 100μm / 3%

 Main challenge is fulfilling all specifications simultaneously,
not just one (e.g. resolution).
 People tend to focus on low resolution, but e.g. low drift & bunch
charge/pattern dependence are often more difficult to achieve.
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BPM Electronics (Cont’d)
 Typical 3G ring button electronics (simplified): direct sampling

ADC
16bit

160Msps

FPGA
Virtex-5

FXT

 Typical 4G linac cavity BPM electronics (simplified): homodyne rec.

500MHz Control
System

Control
System

3-5GHz

RF Front-end Mezzanine
Carrier
board

RF Front-end Mezzanine
Carrier
board

→ Modular system: 3G ring & 4G linac BPM systems can use same
ADC & FPGA boards & crates/housing, with customized RF front-ends

Common housing, fan, power supply

Common housing, fan, power supply

LO

ADC
16bit

160Msps

FPGA
Virtex-5

FXT

IQ
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Feedback Algorithms for Rings & Linacs:
„Standard“

 
Algorithm: SVD, PID Control, Uniform Gains

 SVD: rotate BPM & corrector vectors into space where beam
response matrix has only diagonal elements (eigenvalues)

 Drawback: BPM vectors („perturbation patterns“) with
smallest eigenvalues (huge corrector ΔI for tiny orbit Δx)
mainly unreal, caused by BPM noise: vector least useful for 
correction of real perturbations, but main cause of feedback-
induced beam noise

 Usual cure: do not correct such BPM patterns (set small
eigenvalues to 0: “eigenvalue cut-off”) 

 Usual problem: orbit not corrected (exactly) to desired
positions
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Feedback Algorithm (Cont’d)
Improvement Idea (M. Heron et al., EPAC’08, THPC118):

 Feedback will modulate much less noise onto orbit if each
BPM pattern („eigenvector“) has its own PID loop, with gain 
weighted by eigenvalue (→ “Tikhonov

 
regularization”):

 Real perturbations: corrected fast (high loop gain)

 Perturbations mainly pretended by BPM electronics
noise: corrected slowly → noise averaged, much 
less feedback noise on the beam

 Algorithm can reduce BPM noise requirements
 

for new
3G rings & improve beam stability at existing machines
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Machine Design: Impact on Transverse Feedback
Impact of BPM noise reduced by:
 Minimization of quotient between largest & smallest SVD eigenvalue

(conditioning number) –

 

depends on lattice/optics & BPM/corrector
locations.
 Large beta functions @ BPMs
BPM electronics bunch charge & pattern dependence irrelevant by:
 Top-up injection
 Filling pattern feedback
BPM position drift of mechanics & electronics reduced/eliminated

 

by:
 Air temperature stabilization
 Photon BPMs for orbit feedback
SVD Algorithm For Linacs
 No. of BPMs & correctors can be chosen as desired (2+2, more)
 Robustness

 

(energy

 

variation, …): Depends

 

on BPM/corr. loc.

Ideal case: SVD touches just 3 correctors 
if 1 BPM changes → superposition of 

localized bumps, robust
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Example: Diamond FOFB Performance
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Plots: Courtesy G. Rehm et al. (EPAC’08)
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E-XFEL: Transverse Intra-Train Feedback (IBFB)

• Downstream BPMs for fast feedback loop, RF stripline kickers, latency ~1μs.
• Additional adaptive feed-forward (train-to-train) for repetitive perturbations.
• Upstream BPMs for calibration (kicker amp gain & phase, …).
• Undulator BPM pickups used to correct perturbations between IBFB & 

undulators, and for slow (~10Hz) global feedback with normal magnets.

SA SE  1

e-beam
LIN AC

SA SE  2

D igita l Signals (D uplex Fiber Optic Cables )

- - - - - - - - - - - Ana log Signals  (Coax C ables ) - - - - - - - - - -

IBFB  Up stream
BP M P ickup s

IBFB  Kicker Magnets
(Horizon t. & V ertical)

IBF B Do wn stream
BP M P ickups

V 1H 1 H 2 V2

IB FB E le ctronics

Daisy-Chain 2 of BP M U nits

D aisy-Chain 1 of  BPM  Un its

IBFB

Trains of 3000 
bunches, 200ns bunch 

spacing, 10Hz train 
rep. rate. Perturbations 

> bunch size, needs 
feedback for lasing.
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Transverse Beam Trajectory Perturbations

Train-To-Train Perturbations
(Peak-To-Peak)

Horizontal 
[μm]

Vertical 
[μm]

Random

Mechanical Vibrations 28 28 yes

Power Supply Noise 12.6 12.6 yes

Vibration-Induced Dispersion Variation 2.5 2.5 yes

Sum Train-To-Train 43.1 43.1

Additional Intra-Train Perturbations
(Peak-To-Peak)

Beam Distribution Kicker Drift 0 120 no

Beam Distribution Kicker Noise 0 1 yes

Wake Fields 25 25 no

Spurious Dispersion (3% E-Chirp) 30 30 no

Spurious Dispersion (1E-4 E-Jitter) 0.1 0.1 yes

Nonlinear Residual Dispersion (3% E-Chirp) 136 0 no

Nonlinear Residual Dispersion (1E-4 E-Jitter) 0.5 0 yes

Sum Intra-Train 191.6 176.1

Sum Overall 234.7 219.2

… in E-XFEL undulators, preliminary/estimated (W. Decking)

Low-frequency 
perturbations (<< 10kHz):
Random position offset 

of each bunch train, 
should be corrected to 

~σ/10

 

(~3μm) within 
~20μs

 

after 1st bunch 
(dump first ~100 

bunches) → needs fast 
intra-bunchtrain

 

feedback 
(IBFB), latency ~1μs

High-frequency 
perturbations (>10kHz):
Mainly non-random, i.e. 
reproducible → correct 

by

 

adaptive feed-forward 
(train-to-train)
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D
SP/FPGA

 Carrier Board
Piggyback Boards

DSP 2
VME 64x/2eSST

Transceivers

VMEbus (PSI/FLASH
control system, …)

DSP 1

DRAM DRAM

Compact
Flash &

Controller

BPM 4

RFFE

ADCs

LVDS (0.5-1 Gbps)

BPM 3

RFFE

ADCs

Test/
Calibr.

DACs Clocks

BPM 2

RFFE

ADCs

LVDS (0.5-1 Gbps)

• ADC/DAC
Clock

• Trigger IOs

BPM 1

RFFE

ADCs

Kicker
1+2

Ampl.

DACs Clocks

2x Rocket I/O (2-5 Gbps)

Flash Memory

SRAM

DRAM

SRAM

DRAM

Feedback
FPGA 1

Feedback
FPGA 2

DRAM User
Defined
I/Os

Service FPGA

• Optional:
X-BPMs,
LLRF,
Debug, …

System
FPGA

VXS: 8x Rocket-I/O (2-5 Gbps)
(E-XFEL Control System, Main-

tenance, Undulator/X-ray BPMs, …)

VM
E-P2

Backplane
Board

RFFE & Kicker Control, Triggers, …

Service FPGA

2 SFP
Fiber
Optic

Transceivers

Flash Memory

Config.
FPGA

SEU FPGA

Communication
FPGA

• ADC/DAC
Clock

• Trigger IOs

Transceivers & Buffers

Fast Intra-Train Feedback: Typical Electronics

ADC/DAC 
Mezzanine

DSP/FPGA 
Carrier Board

FPGAs: Low-

 

latency (<1μs)

 

bunch-to-bunch 
feedback

DSPs: slower 
adaptive feed-

 

forward 
(bunchtrain-to-

 

bunchtrain)
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Fast Intra-Train Feedback: Typical Components
3-6GHz Cavity BPM 

Pickup
Cavity BPM 

RFFE
ADC/DAC 
Mezzanine

FPGA/DSP 
Carrier

Low-Latency RF Power 
Amplifier

In-Vacuum Stripline 
Kicker
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Summary
 New storage rings need “sub-fraction-of-micron”

 
orbit

stability (~200nm).

 New low-charge
 

linac FELs: Close to vertical
 

orbit
 

stability
requirements

 
of 3G rings. Feedback BW limited

 
by

 
bunch

rep. rate -> need
 

source
 

suppression
 

of perturbations,
or

 
long

 
bunch

 
trains

 
/ CW + feedback.

 Cavity
 

BPMs offer
 

good cost-to-performance
 

ratio, interesting
as standard

 
BPM for

 
new

 
low-charge

 
linac FELs. Buttons are

low-cost
 

option
 

for
 

main
 

linac of medium-high
 

charge
 

FELs.

 Linacs
 

& rings can
 

share
 

BPM electronics
 

components, can
use

 
same

 
feedback

 
algorithm

 
& hardware

 
(typ. 0.1-10kHz

correction
 

rate). Long-train
 

or
 

CW FELs
 

may
 

need
 

ultrafast
Intra-Bunchtrain

 
feedback

 
(E-XFEL) & MHz correction

 
rate.
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