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HIGH-RESOLUTION SOIL MOISTURE RETRIEVAL USING 

SENTINEL-1 DATA FOR MONITORING REGENERATIVE 

AGRICULTURAL PRACTICES 

A feasibility study from Alentejo, Portugal. 

 

ABSTRACT 

Timely, reliable, and cost-efficient information about soil moisture is important for 

supporting agricultural practitioners in monitoring the impact of alternative agricultural 

practices. Regenerative agriculture is increasingly gaining traction; however, farmers lack 

easy access to information on key agricultural parameters such as soil moisture. Therefore, 

this study seeks to explore the feasibility of soil moisture estimation at high-resolution 

(around 10 m) using Sentinel-1 remote sensing radar data. A machine learning model was 

developed using a random forest regression algorithm with a combination of SAR-based, 

topography and Seninel-2 optical-based data as inputs. Through a k-fold cross-validation of 

the model, an average r-squared (R²) of 0.17, a root mean squared error (RMSE) of 3.51 (% 

VMC), and an mean absolute percentage error (MAPE) of 83.34, was achieved. 
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1. Introduction 

1.1 Thesis organisation 

The thesis is organised into four chapters. In the first chapter, I introduce the background 

and motivation behind this thesis, the problem I’m trying to solve and the objectives of the 

work. I also present the research questions, a brief introduction to the methodology and 

approach, and elaborate on what the expected contributions of the research will be to the 

broader literature. In the second chapter I perform a review of relevant literature and 

discuss previous findings on the topics of soil moisture retrieval using SAR data, and based 

on this, I stake out the path of this study, and how I seek to build on what has been done 

and contribute to filling gaps in the present knowledge. In the third chapter I elaborate on 

the choices of data and machine learning model. I further present the how I process my SAR 

data and how optical-based indices and topographic data are implemented in the model, as 

well as model training, testing and evaluation procedures. In the fourth chapter I present 

and discuss the results and evaluate the performance of the model. While in the final fifth 

chapter I discuss the overall contributions of the study, attempt to compare it to other 

similar studies, discuss the potential applicability of the model to practitioners, potential 

points of improvement, as well as elaborate paths for future research. 

1.2 Background 

This study is written in collaboration with Climate Farmers, an industry leading company, 

working with farmers to increase adoption of regenerative agricultural practices (Climate 

Farmers n.d a). The goal of the study is to explore the feasibility of monitoring soil moisture 

using open access remotely sensed SAR data, at a high enough resolution for it to be a 

useful tool for Climate Farmers as an organisation and the collective of farmers they are 

trying to help. 

In the following sections, I will further introduce the motivation behind the study, the 

objectives, and what I hope to contribute to the research literature. 

In recent years, regenerative agriculture is increasingly being applied as a strategy for 

improving the health of farm soil and surrounding ecosystems. According to Climate 

Farmers regenerative agriculture can be defined as “agricultural practices which enhance 
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and improve soils’ capacity to deliver the above soil functions and increase the long-term 

resilience of its functions” (Climate Farmers, n.d b, para. 6). Soil functions refers to the 

ability of the soil to produce food and provide ecosystem services, while ecosystem services 

refer to general ecological processes or functions of value to people and society at large, 

such as such providing food, clean air and water (IPPC, 2019).  

Especially in the context of the looming global climate crisis, the ability of soil to sequester 

carbon is increasingly coming into focus for policy makers, researchers, and the agriculture 

industry. Largely this is because effective methods for removing carbon from the 

atmosphere are challenging to find (IPPC, 2019). This has also resulted in a recent explosion 

of interest in and active promotion of regenerative agriculture by civil society and NGOs as 

well many of the key multi-national commercial actors (Giller et al. 2021).  

Soil moisture as a factor in regenerative agriculture.  

The Global Climate Observing System (GCOS), one of the major actors in climate 

monitoring, names soil moisture as one of their 54 Essential Climate Variables (ECVs) 

(GCOS, n.d). The Intergovernmental Panel on Climate Change (IPCC) (2019), highlights that 

“precipitation, by affecting soil moisture content, is considered to be the principal 

determinant of the capacity of drylands to sequester carbon” (p.271)  

Half of the total 119 Gt carbon emitted into the Earth’s atmosphere from the terrestrial 

ecosystem is attributed to soil microbial respiration (IPCC, 2019), meaning the CO2 

produced by biological activities of soil organisms. To put things into perspective, this 

process makes up 10 times more of the CO2 in the global carbon cycle than fossil fuel 

combustion annually (Phillips & Nickerson, 2015). 

Decomposition of so-called soil organic content, meaning the organic content of the soil, 

which is the part of the soil that contains carbon, is a major factor in global net CO2 

emissions (IPCC, 2019). On global scale industrial agriculture is a major contributor to soil 

organic content decomposition due, among others, the use of pesticides that kill 

microorganisms in the soil and tillage that destabilise the soil structure and leaves the soil 

more exposed to the sun and other weather, which in turn kills of organic organisms in the 

soil (Hes & Rose, 2019). Regenerative agriculture largely focuses on practises that increase 

soil organic content and reverse the loss cycles often associated with modern industrial 

farming. 
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Soil moisture plays a key role in the decomposition of soil organic content as microbial 

processes rely on water to survive. However, studies have shown that some land 

restoration projects, with the intention of increasing ecosystem health, has had negatively 

impacted soil moisture rather than increased it. For example, Deng et al. (2016), studying 

83 sites in eight provinces in the north of China found that “changes in land use for 

restoration of ecosystems led to severe depletion in soil moisture levels” (p.1).  

SAR remote sensing and agriculture 

Remote sensing based on satellite data for monitoring agriculture has long been a useful 

tool for the agricultural industry, for monitoring crops and other agricultural targets (Lui et 

al. 2019). 

Soil moisture, as a key feature of agricultural production, has received a great degree of 

research attention as something possible to monitor using satellite-based data. Remote 

sensing can provide an opportunity for characterizing the spatial and temporal structure 

and dynamics of soil moisture but is somewhat limited in terms of providing a high degree 

of detail (Ma et al., 2020).  

Most models resulting from this research only enable retrieval of soil moisture values at a 

very coarse spatial resolution, mostly around 25-50 km (Peng et al., 2021). For a farmer 

however, data at this scale has limitations for being practically applied to agricultural 

monitoring and planning. There is therefore a need to explore how to produce data at 

higher resolutions, preferably down to the field scale and below. Among satellite-based 

remote sensing approaches, synthetic aperture radar (SAR) data have shown the most 

potential in providing soil moisture estimates at a high enough resolution to be useful for 

small scale planning and monitoring purposes (Ma et al., 2020). This is largely due to the 

inherent properties of SAR data not being influenced by weather conditions, sensitivity to 

geometrical structures, as well as dielectric properties of objects and surfaces. 

Furthermore, in the case of some agricultural targets, SAR has a degree of penetration 

ability, for example, through vegetation (Lui et al., 2019). 

 

1.3 Problem statement and motivation to do this work  

The European Space Agency (ESA) Sentinel-1 C-band SAR mission grants free access to high-

resolution data (around 10 m) every six days (ESA, n.d a). Due to the limited accessibility of 
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commercial high-resolution SAR images and the mostly shorter wavelengths of these, with 

less ability to penetrate vegetation canopies especially, Sentinel-1 data has largely been the 

focus of studies on high-resolution soil moisture retrieval. The simple fact that Senitinel-1 

data is freely accessible, makes research on the use of this data for modelling phenomena 

such as soil moisture more relevant to broader society than commercial SAR data. 

Considering this openly accessible stream of data, if soil moisture retrieval is possible using 

Sentinel-1 data, this could be an affordable and powerful way of monitoring soil moisture 

developments over time at field level and in turn using this for evaluation of the effects of 

regenerative agriculture.  

Thus, the motivation and rationale behind the study is that if remote sensing-based soil 

moisture retrieval is possible, it could potentially lower the cost of acquiring information 

about soil moisture in the regenerative farming industry. An improvement in information 

access that hopefully could play a small role in improving agricultural practices that in 

ultimately, in extension, would mitigate against climate change.  

1.4 Research question and objectives 

The main objective of the study is to statistically explore the feasibility of using Sentinel-1 

data for monitoring soil moisture at around 10 meters resolution. In more concrete terms 

doing a case study of soil moisture retrieval in two small fields at a farm in Alentejo, 

Portugal, over a limited time-period of one month. The feasibility of soil moisture retrieval 

is to be evaluated through the development of a site-specific machine learning-based 

model for soil moisture prediction, leveraging Sentinel-1 data in combination with other 

topographic data and Sentinel-2 optical-based data. 

Research questions 

The current study seeks to answer the following questions: 

1) Is it feasible to extract soil moisture values from agricultural fields at a resolution of around 

10 meters using Sentinel-1 data?  

2) What are the key limitations and technical challenges in performing high-resolution soil 

moisture estimation in agricultural fields? 

Methodology 
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To answer the above research questions, the development of a machine learning-based 

model using a random forest regressor algorithm is proposed. As discussed, the model will 

be based on Sentinel-1 SAR backscatter data for prediction, but also other relevant auxiliary 

data to control for key influences on the SAR backscatter. The auxiliary data used are water 

and vegetation indices calculated from Sentinel-2 optical satellite images and digital 

elevation model derived topographic features. 

 

1.5 Expected contributions 

The expected contribution is first of all a better understanding of the challenges and 

limitations in SAR-based soil moisture estimation at this scale. In addition, using machine 

learning and different relevant auxiliary data, the goal is to achieve results that show 

improved prediction values compared to a more simple predictor baseline. 

2.Litterature Review 

In this section, set the scene discussing the key challenges identified the literature when it 

comes to estimating high-resolution soil moisture. After setting the scene I review the main 

SAR-based soil moisture estimation models found in the literature: empirically based 

models, physically based models and machine learning based models. 

2.1 Key challenges 

In a review paper on the use of SAR data for soil moisture estimation by Kornelsen & 

Coulibaly (2013), they highlight that it is a well-established truth that that SAR radar waves, 

generally, give less backscatter the more water or moisture is present in the surface it 

scatters off of, such as soil in agricultural fields. However, as they also emphasize that 

moisture is only one of many physical properties of scattering surfaces that influences the 

radar backscatter, and that a key challenge remains: to isolate the effects of the 

water/moisture from especially the effects of surface roughness and vegetation. These two 

properties are also the main reason SAR-based soil moisture retrieval at a high-resolution is 

difficult (Ma et al., 2020). As I will discuss further below, in most research on trying to 

estimate soil moisture using SAR data, the focus is on disentangling these two properties 

from the backscatter. 

Vegetation 
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A study recent by Bousbih et al. (2017) confirms that Sentinel-1 backscatter sensitivity to 

soil moisture decreases with increase in surface vegetation. In theory, the radar waves of 

Sentinel-1, with a wavelength of around 5.6 cm, has some ability to penetrate sparse 

vegetation. However, tree canopies and plants scatter the SAR signal if the size of the 

leaves or branches are equal or above the size of 5.6 centimiters and has an orientation 

parallel to the polarisation of incoming signal (Alemohammad et al., 2019). This means that 

density and size of vegetation matters. In addition to the scattering effects of the 

vegetation the SAR microwaves are also affected by water content in the vegetation. This 

also means that there is a threshold of how much vegetation can be present before soil 

moisture is practically impossible to estimate from SAR data. 

Surface roughness 

The surface roughness property creates unpredictable scattering as the angles on the 

surface that the radar waves bounce off of vary over space beyond what can be controlled 

for using terrain correction data processing methods, which relies on satellite derived 

digital elevation models (DEMs) with insufficient detail to control for smaller variations such 

as tramlines in agricultural fields. Studies have shown that this is a major limiting factor in 

estimation of soil moisture values (Sahebi et al., 2002; Schuler et al., 2002). 

Other influences 

Other influences are linked to topography, land cover, local incidence angle, as well as 

radiometric noise or speckle, inherent to SAR data (Massonnet & Souyris 2008). Some of 

these influences can be controlled for through image processing techniques such as terrain 

correction in the case of incidence angle and topography, and speckle filtering in the case of 

radiometric noise. Another issue is that the influence of vegetation and surface roughness, 

are also affected by the frequency, polarization, and incidence angle of the SAR satellites 

(Bousbih et al., 2017; Sahebi et al., 2002; Schuler et al., 2002). 

2.2 Three approaches 

In the literature, the main ways in which researchers have approached the problem of 

extracting soil moisture using SAR data can be divided into four groups: physically based 

models, empirically based models, change detection-based models, and machine learning 

based models (Barrett et al., 2009).  

Physically based models  
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Examples of physical based models found in the literature are: Water Cloud Model, 

Kirchhoff Approximation model, and Integral Equation Model (Baghdadi et al., 2017; Gu et 

al., 2019; Paloscia et al., 2013). These models are all trying to establish the concrete sensor-

specific relationship between to scattering surfaces at the ground and backscatter values. 

The advantage is that they are non-site specific and therefore can in theory be universally 

applicable, the challenge is that the lack of vegetation parameters makes it not usable in 

when vegetation is present. 

Empirically backscatter models  

In the case of empirically backscatter models, they investigate the interaction of 

microwaves with site-specific surface characteristics and estimate soil moisture based on 

this empirically observed interaction. These models rely on high-quality vegetation 

parameters and surface roughness that are measured in-situ. They can achieve high 

accuracy in predictions; however, as they are limited to the specific location being 

measured and are very labour intensive, they have a limited potential for scalability (Barrett 

et al., 2009). 

Change Detection Approach 

A third approach worth mentioning is soil moisture retrieval using change detection. This 

approach relies on the assumption that if surface roughness and vegetation are constant, 

the variations in over time in the SAR backscatter can be accredited to variations in 

moisture. Gao et al. (2017), for example, are fairly successful in extracting soil moisture at a 

100-meter scale by leveraging time series of SAR images. 

Machine learning based models. 

Machine-learning based approaches have the advantage of taking in a variety of data and 

extracting linear or non-linear relationships between mainly satellite-based parameters and 

in-situ soil moisture reference data (Chakrabarti et. al., 2015). These models are also the 

most promising in terms of being able to estimate soil moisture values at a high-resolution 

and being less labour intensive than the empirical-based models. In a recent paper by 

Schönbrodt-Stitt et al. (2021), the authors developed a model based on Sentinel-1 data and 

a Random Forest (RF) machine learning algorithm to estimate soil moisture values of an 

agroforestry area in Central Italy. As this SAR model shows great promise in terms of 

accuracy of estimation (RMSE 0.028 m3, mean absolute error of 0.022 m−3, and R² 0.86), 
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the current study will build on this model’s SAR parameters. The model specifically uses a 

series of mathematical band combinations of multiple polarisations of the SAR data, 

Vertical and Vertical (VV), and Vertical Horizontal (VH), that papers such as Omar et al., 

(2017), and Ahmadian et al., (2019) have found to counteract radiometric instability and as 

well as vegetation moisture variations introduced by original non-synthetic band 

polarization. 

Summary and presentation of this approach used in this study 

Although a series of attempts have been made by researchers to extract soil moisture at a 

resolution close to or around 10 meters, as is the project of the current study, they are 

mostly site-specific and therefore not necessarily relevant or valid in the geographic context 

of this study. This study seeks to further build on what has been done, using insights from 

different studies on the topic of interest, to experiment with building an improved model 

for soil moisture estimation.  

Thus, based on the promising results of studies using machine learning to entangle 

relationships between SAR backscatter and soil moisture this is also the proposed approach 

for the current study. In terms of SAR data preparation and feature engineering the 

methodology used in this study builds on the study by Schönbrodt-Stitt et al. (2021).  

In terms of choice of machine learning algorithms this study will use, as in the Schönbrodt-

Stitt et al. (2021) study, a random forest regressor algorithm. Other algorithms identified in 

the literature as having a high performance in soil moisture estimation such as Support 

Vector Machine (SVM) and Artificial Neural Networks (ANNs) (Ayehu et al. 2020; Ezzahar et 

al. 2020; Hajdu et al. 2018; Schonbrodt-Stitt et al. 2021) were also considered. However, 

due to time constraints only random forrest regressor was chosen. 

Inspired by studies such as Xu et al. (2020) and Ayehu et al. (2020), which applies 

vegetation and water indices derived from Sentinel-2 data to control for vegetation, a set of 

optical based indices will also be used to improve the machine learning model’s ability to 

control for vegetation and water content in the vegetation. 

Furthermore, the geographical distribution of soil moisture over a given terrain will 

logically, simply due to gravity, to some extent follow topographic patterns such as water 

gathering in local depressions. Based on this rational a series of topographic parameters 

were developed based on a DEM, to capture these effects in the model. The parameters 
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chosen are slope (degrees), elevation (meters), Topographic Position Index (TPI) which is 

designed to represent topographic slope positions, i.e. ridge top, valley bottom, mid-slope, 

etc. (De Reu et al., 2013), and finally Terrain Ruggedness Index (TRI) is used to try to control 

for the local ruggedness of the terrain. In the case of the latter, as the DEM has a resolution 

of 30 meters, this will presumably not help control for the previously discussed small-scale 

surface roughness effects on the SAR backscatter, however, it might support the algorithm 

in separating other topographic effects on soil moisture or SAR backscatter. 

Having discussed available research literature on the use of SAR data for soil moisture 

extraction, as well as presenting the approach this research seeks to take based on insights 

from previous studies, I will in the following chapter elaborate further on the methodology 

and data preparation process used. 

3.Data and Methodology 

The methodology is divided into two main steps, 1) the collection of in-situ soil moisture 

data, and 2) based on the in-situ data, train a machine learning model for estimation of soil 

moisture values. I will start elaborating the data collection step.  

3.1 In-situ data collection 

In order to train and validate the machine learning model, in-situ reference data for soil 

moisture is needed. The following subsections I elaborate on the process of collecting these 

reference data, the sites of collection and sampling strategy; and I present an exploratory 

analysis of the reference data.   

About Terramay 

The data was collected at a farm in the Alentejo region of Portugal by the name of 

Terramay (Terramay, n.d). Climatically, the area is semi-arid and suffers from periods of 

little rain and water access during summer. Soil moisture is especially important to 

ecosystem sustainability in the context of more arid regions of the world where water is a 

more scares resource (IPCC, 2019). Since 2018, the owners of Terramay have applied 

various targeted farming techniques in hopes of regenerating soil health and stopping 

desertification on the farm. This makes Terramay an interesting case for potentially 

analysing the effects of regenerative practises on soil moisture, on top of the core mission 

of collecting soil data for training the model. 
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Figure 1. Overview map of data collection site (Terramay) and in reference data points. 

Description of data collection sites 

At Terramay two different fields or sites, were selected for the soil moisture sampling, 

based on having their own unique properties (see figure 1 and 2). The first one is a field 

without significant vegetation, mainly consisting of bare soil, thus having as few 

disturbances on the SAR backscatter signal as possible. The second is an agroforestry area 

which has more disturbing elements regarding the SAR backscatter such as some scattered 

vegetation and the occasional tree. Furthermore, tramlines have been constructed across 

the second field to preserve water in the soil and prevent runoff. Both sites have a degree 

of topographic variations across the fields in terms of soft slopes and slight differences in 

elevation.  
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Figure 2. Pictures taken by author of field A (left) and field B (right). 

 

Sampling 

In order for the in-situ data to be as relevant as possible sampling was coordinated with the 

overpass of the two Sentinel-1 satellites (A and B). The initial plan was to collect soil 

moisture data for each of the sites on five consecutive Sentinel-1 overpasses between 7th of 

November and 1st of December 2021, specifically, 7th, 13th, 19th, 25th of November and 1st of 

December (table 1).  

Collection dates Nr. of points 

07.11 35 

13.11 60 

19.11 60 

25.11 0 

01.12 60 

Table 1. Overview of reference data collection. Colour scheme to highlight missed date Nov. 25th 

and less than planned number of points on Nov. 7th. 

Each of the Sentinel-1 A and B satellites, at the time, had an overpass every 6 days 

alternating between one of them overpassing in the morning around 06:30 and the other in 

the evening around 18:30 on the same day (table 2). 

Overpass times Satellite Relative orbit/ Track Incidence angle 

07.11.2021, 18:30 S1A 147 39.39 

07.11.2021, 06:30 S1B 52 36.6 



12 
 

13.11.2021, 06:30 S1A 52 36.6 

13.11.2021, 18:30 S1B 147 39.39 

19.11.2021, 18:30 S1A 147 39.39 

19.11.2021, 06:30 S1B 52 36.6 

01.12.2021, 06:30 S1A 52 36.6 

01.12.2021, 18:30 S1B 147 39.39 

Table 2. Overview of Sentinel-1 scenes used for in study. 

The reference data was collected across each of the days, between the two acquisition 

times. As sampling controls of the same extract points in different times of the day showed 

little to no variations across the day, effects of sun and heat exposure are considered to be 

negligible. 

However, as there was it was raining on the 25th of November, data could not be collected 

on this day. Collecting data on a rainy day would ruin the reliability of the reference data as 

variations would be dependent on the time of the day they were sampled, and thus not be 

representative for the whole day and both overpasses.  

Soil moisture measurements were taken with a portable time domain reflectometry (TDR) 

system (TRASE SYSTEM 1) (ICT International, n.d). The system measures volumetric 

moisture content (VMC) with a measuring range of 0 – 100 percent, and a precision of +/- 2 

VMC percent or better.  When I throughout this study refer to soil moisture, reference data, 

in-situ data, or target data; the unit is VMC, expressed in percentage of the soils volume 

that is water. 

VMC can be expressed as: 

VMC =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 (𝑐𝑚3)

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙 (𝑐𝑚3)
𝑥 100 

For each of the sites, samples were planned to be taken at 30 sample points (with some 

variation on the 7th of November). The samples were collected along three parallel 

transects of roughly 200-250 meters with roughly 20-30 meter spacing between the 

samples taken along the transect lines using a handheld GPS to estimate the location and 

distances. Each of the three lines were positioned roughly 20-30 meters apart. In order to 

avoid errors in single samples taken at each of the sampling points, the soil moisture was 

measured three times at each point along the line, with only a few centimetres apart (see 

figure 3). 
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Figure 3. Picture from field sampling taken by author. 

As mentioned, as samples were taken across the day, the effects of heat and sunshine 

during could have had a small effect on the sampling accuracy. However, to control for this 

effect additional samples were taken at the same points at varying times of the day, 

showing no significant changes in the moisture content. 

In table 3, the results of the sampling can be observed. The first day of sampling, November 

7th was done following a short period of heavy rain which came after a long period of no 

rain. Thus, the soil was very dry before this initial rainfall in the beginning of November. The 

rest of November there was little rain, only sporadic short periods of light rain throughout 

the month. This weather pattern observable in terms of the mean of the first and second 

day being higher than the last two days where the soil had had more time to dry following 

the aforementioned heavy rain. 

Date 07.11 13.11 19.11 01.12 

Max 27.5 30.7 26.5 27.4 

Min 14.5 10.3 10 9.2 

Range 13 20.4 16.5 18.2 

Stdev 3.1 4.3 3.2 3.8 

Mean 19.7 17.1  15.3 15.68 

Table 3. Sampled data statistics aggregated per day. 
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Figure 4. All soil moisture reference data (across all days aggregated to each point). 

3.2 Preparation of model features/parameters for the machine learning model 

In the following section I focus on how the different features or parameters used for 

prediction in the machine learning model are developed.  

In a machine learning model, you need to establish what features or parameters you want 

to use as inputs to do training and prediction with. The choice of these is usually based on a 

rationale or hypothesis that they might have some explanatory power of the target variable 

of interest. Depending on what type of machine learning algorithm one is using, these 

features can be either categorical or continuous, meaning either referring to categories of 

for example landcover, or a continuous range of elevation values. As this study aims to 

perform a prediction of a value, meaning a regression type prediction, as opposed to 

classification, all the features will be continuous numerical values.  

As discussed, SAR backscatter data has shown to be sensitive to soil moisture, however, to 

control for the key impacts of surface roughness and vegetation effects, as well as basic 

topographic effects on soil moisture distribution over terrain, a series of additional 

parameters are developed based on 10 meters resolution Sentinel-2 optical data, and 
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digital elevation model (DEM) The Shuttle Radar Topography Mission (SRTM) digital 

elevation model which has a cell resolution of 30 meters (NASA, n.d) was chosen. 

In the following subsections I elaborate on how each of the features are designed. For the 

sake of clarity, they are organised into three groups: 1) SAR-based, 2) optical-based, and 3) 

topography-based parameters. 

SAR-based parameters 

As discussed, this study leans on the approach of Schönbrodt-Stitt et al. (2021). Following 

this, synthetic bands based on combinations of the two Sentinel-1 polarisations VV and VH, 

and the three SAR backscatter conventions Beta0, Gamma0 and Sigma0 are developed. The 

data used are a series of Interferometric Wide (IW) level-1 Ground Range Detected (GRD) 

(ESA n.d b) Sentinel-1 scenes from both satellites A and B (see table 2). All SAR processing 

was done with the ESA’s SAR processing software, Sentinel Application Platform (SNAP), 

mainly using the SNAP Python API. 

The three radar backscatter conventions or “products” are produced by three different 

radiometric calibration approaches.  

Radiometric calibration is the conversion of digital numbers recorded by the SAR sensor 

into physical units, or the conversion of the raw registered intensity for each pixel, into 

pixel values that can be directly related to the radar backscatter of the image. The 

calibration happens using a specified function applied to the raw SAR data, and each of the 

three products are derived using different functions (ESA, n.d c). Beta0, is the most basic 

calibration of a SAR product, also referred to as the “radar brightness”. By using an 

“internal calibration constant” derived from the metadata. Sigma0, considers both the 

internal calibration constant and the incidence angle (also, most of the time derived from 

metadata). Gamma0, takes into account not just the incidence angle of the radar wave, but 

also uses the “local incidence angle”, meaning the angle at which the radar wave is hitting 

the Earth’s surface, which can be calculated using a DEM (Massonnet & Souyris 2008). 

Thus, these products were calculated from the raw SAR data in addition a fourth Terrain-

Flattened Gamma0 (TF Gamma0) was calculated, using a series of processing steps (figure 

5).  
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Figure 5. SNAP processing graphs for Beto0, Sigma0, Gamma0 (top) and TF Gamma0 (bottom) 

The Beta0, Sigma0 and regular Gamma0, were produced using the following processing 

steps: 1) application of orbit file, 2) subsetting to the region of interest, 3) radiometric 

calibration (Beta0, Sigma0 and Gamma0), and 4) Doppler terrain correction using GLO-30 

(Copernicus DEM with 30 m resolution). 

While the terrain flattened gamma0 was produced using the following processing steps: 1) 

application of orbit file, 2) subsetting to the region of interest, 3) radiometric calibration 

(Gamma0), and 4) gamma terrain flattening using GLO-30 (Copernicus DEM with 30 m 

resolution); outputting the final Terrain Flattened Gamma0. 

The orbit file is applied to attach the most precise available information about the satellites 

positioning during acquisition, while the Doppler terrain correction and the terrain 

flattening are methods for calibrating and controlling for local topographic effects on the 

SAR backscatter (Massonnet & Souyris 2008). 

After the above SAR processing steps, a series of band maths operations were performed 

on the four products to create the final synthetic bands used in the machine learning 

model.  

Synthetic bands were created for each of the acquisitions, two per day. As the two 

acquisitions on each day had different relative orbits/tracks (147 and 52 (see table 2), each 

were processed as separate stacks. The reason being that the different tracks have different 

incidence angles (39.4 and 26.6 degrees, respectively), and as the incidence angles had not 

been normalised, keeping them separately was necessary to achieve optimal radiometric 

and geometric correction results.  
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Thus, for each of the tracks per day, synthetic bands were calculated for Beta0, Sigma0, 

Gamma0 and TF Gamma0 using combinations of the two polarisations, in terms of addition 

(VH+VV), subtracting (VH-VV, VV-VH), division (VH/VV, VV/VH), and multiplication (VH∗VV) 

with the other (table 4) 

Parameter name Band maths operations Parameter name Band maths operations 

Beta0_VH_min_VV Beta0 (VH) - Beta0 (VV) Sigma0_VH_min_VV Sigma0 (VH) - Sigma0 (VV) 

Beta0_VV_min_VH Beta0 (VV) - Beta0 (VH) Sigma0_VV_min_VH Sigma0 (VV) - Sigma0 (VH) 

Beta0_VH_plus_VV Beta0 (VH) + Beta0 (VV) Sigma0_VH_plus_VV Sigma0 (VH) + Sigma0 (VV) 

Beta0_VH_div_VV Beta0 (VH)/ Beta0 (VV) Sigma0_VH_div_VV Sigma0 (VH)/ Sigma0 (VV) 

Beta0_VV_div_VH Beta0 (VV)/ Beta0 (VH) Sigma0_VV_div_VH Sigma0 (VV)/ Sigma0 (VH) 

Beta0_VH_multi_VV Beta0 (VH) * Beta0 (VV) Sigma0_VH_multi_VV Sigma0 (VH) * Sigma0 (VV) 

    

Gamma0_VH_min_VV Gamma0 (VH) - Gamma0 (VV) TFGamma0_VH_min_VV TFGamma0 (VH)-TFGamma0 (VV) 

Gamma0_VV_min_VH Gamma0 (VV) - Gamma0 (VH) TFGamma0_VV_min_VH TFGamma0 (VV)-TFGamma0 (VH) 

Gamma0_VH_plus_VV Gamma0 (VH) + Gamma0 (VV) TFGamma0_VH_plus_VV TFGamma0 (VH)+TFGamma0 (VV) 

Gamma0_VH_div_VV Gamma0 (VH)/ Gamma0 (VV) TFGamma0_VH_div_VV TFGamma0 (VH)/TFGamma0 (VV) 

Gamma0_VV_div_VH Gamma0 (VV)/ Gamma0 (VH) TFGamma0_VV_div_VH TFGamma0 (VV)/TFGamma0 (VH) 

Gamma0_VH_multi_VV Gamma0 (VH) * Gamma0 (VV) TFGamma0_VH_multi_VV TFGamma0 (VH)*TFGamma0 (VV) 

Table 4. Overview of band math operations for producing synthetic bands. 

This process resulted in 48 synthetic bands per day, 24 for each track. After having 

computed the synthetic bands, values were extracted at the geographic coordinates of the 

in-situ soil moisture sampling. Values were extracted using a mean of a 3x3 window centred 

on each of the collection points. The result being a total of 48 SAR based features. 

Optical based parameters 

Three optical based indices are used in order to control for effects of vegetation on the 

backscatter.   

In order to control for vegetation water content (VWC), a normalized difference water 

index (NDWI) is used, as well as the similar index normalized difference infrared index 

(NDII) is calculated. Furthermore, normalised difference vegetation index (NDVI), is used to 

further identify green vegetation in the fields. 

Thus, using Quantum GIS (QGIS), the following three vegetation indices were calculated 

using combinations of Sentinel-2 band data: 

1. NDVI (Normalized Difference Vegetation Index), 10 meters resolution. 

2. NDWI (Normalized Difference Water Index), 20 meters resolution. 
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3. NDII (Normalized Difference Infrared Index), 20 meters resolution. 

NDVI was calculated with:  

𝑁𝐷𝑊𝐼 =
𝐵8 − 𝐵4

𝐵8 + 𝐵4
 

NDWI was calculated with:  

𝑁𝐷𝑊𝐼 =
𝐵8 − 𝐵12

𝐵8 + 𝐵12
 

NDII was calculated with:  

𝑁𝐷𝐼𝐼 =
𝐵8 − 𝐵11

𝐵8 + 𝐵11
 

Sentinel-2 data was gathered from dates as close as possible to the Sentinel-1 acquisition 

and reference data sampling dates (see table 5). For each of the three surfaces standard 

deviation, mean and median values were extracted using a 3x3 window, centred at the 

points where reference data was collected, resulting in a total of nine features used in the 

machine learning model.  

 

 Table 5. Overview of Sentinel-2 data acquisitions. 

DEM based parameters 

As discussed, to simulate topographical effects on soil moisture distribution in space, a 

series of DEM-based features were developed. With QGIS, using the SRTM 30m DEM 

(NASA, n.d) five features were calculated and extracted: 

1. aspect 

2. slope 

3. elevation 

4. Topographic Positioning Index (TPI)  

5. Terrain Ruggedness Index (TRI)  

Date of acquisition 

07.11.2021 

12.11.2021 

17.11.2021 

02.12.2021 
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Based on these five DEM based surfaces, values were extracted only at the points of the in-

situ data collection, as opposed to the two previously described feature categories where a 

3x3 window was used. Thus, I used a total of five DEM based machine learning features. 

3.3 Machine learning 

In the section I explain the implementation and design of the random forest regression 

model including hyperparameters and the training, testing and evaluation process.  

As mentioned, the random forest regression implementation in the Scikit-learn Python 

package was used to build the machine learning model. According to Scikit-learn, “a 

random forest is a meta estimator that fits a number of classifying decision trees on various 

sub-samples of the dataset and uses averaging to improve the predictive accuracy and 

control over-fitting” (Scikit-learn n.d, para. 2). The advantage of the Random Forrest 

algorithm is that it is easy to use and performs well in most use cases. The key 

hyperparameters of the algorithm are 1) the “criterion” for predictive accuracy, 2) 

“maximum depth” of the tree in terms of vertical nodes, 3) the “minimum samples split”, 

meaning the minimum number of samples required to split an internal node, and 4) the 

“number of trees” in the forest.  

My model was build using the following fixed parameters: “criterion” = squared error, 

“maximum depth” = None, “minimum samples split” = 2, and “number of trees” = 5000. 

Training and testing the machine learning model 

The Random Forest model was trained and tested using a K-fold cross-validation process. 

As the data covers four days, I chose to perform a 4-fold cross-validation splitting the data 

into one fold for each day. Thus, four different permutations were made with three days 

being used for training and one day used for testing in each permutation (table 6). 

Permutation nr. Training folds (dates) Testing folds (dates) 

1 13.11,   19.11,   1.12 7.11 

2 7.11,   19.11,   1.12 13.11 

3 7.11,   13.11,   1.12 19.11 

4 7.11, 13.11,  19.11 1.12 

Table 6. Permutations and fold splits. 
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Each of the folds/days had 60 records, except from the first day, 7th of November that had 

only 35 records for training and testing (table 7), add 

Fold/days Number of records 

7.11 35 

13.11 60 

19.11 60 

1.12 60 

Total 215 

Table 7. Number of records per. fold. 

Evaluation of machine learning model 

To check if the stability and the robustness of the model, this process was done seven times 

using the standard deviation within each run and between all the runs as an evaluation 

metric. 

In terms of the success or accuracy of the model, the model is evaluated using root mean 

squared error (RMSE), r-squared (R²), and mean absolute percent error (MAPE). The choice 

of evaluation metrics is based on what is commonly used in similar studies (for example, 

Ma et al., 2020; Schönbrodt-Stitt et al., 2021). The RMSE metric gives an idea of the level of 

error involved in predictions but weighting individual large prediction errors more heavily 

than typical absolute errors metrics. While the MAPE just gives an idea of the overall 

accuracy without penalising outlier predictions like the RMSE. The R² metric gives an idea of 

how the prediction and target values are correlated with each other. In the context of this 

study, R² is to what extent the variance of the target explains the variance of the 

predictions. 

Having explained the methodology of the study, I will in the following chapter present 

results and analysis, as well as evaluate the random forest regressor model’s performance 

and robustness. 

 

4.Analysis and Results 

In this chapter, I present and evaluate the results of the Random Forest model that was 

trained using all the 62 features discussed in the previous chapter. Furthermore, I will 
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present an analysis of the errors as well discuss the potential causes of errors and potential 

for improvement of the model.  

4.1 Summary of results 

After a doing the 4-fold cross-validation process seven times, I got the following results (see 

table 8): an average root mean squared error (RMSE) of 3.51, meaning the average of all 

the seven runs’ RMSE averages, with a standard deviation (all 28 permutations) of 0.07; and 

an average R² of 0.17, meaning the average of all the seven runs’ R² averages, with a 

standard deviation of 0.22. Furthermore, the average MAPE (of the seven runs) was 

83.34%, with a standard deviation of 2.16%. 

To contextualise the results, a baseline RMSE was also calculated for each of the 28 

permutations using the mean of all the training data target values of each respective 

permutation. Comparing with this baseline, the model has an average of 16.1 % relative 

improvement from the baseline RMSE, with an average standard deviation of 5.3 % 

between all 28 permutations. This metric is useful as it accounts for the diversity of data 

ranges, and data variation of target values in each fold (see table 8). 

Run nr. r-squared (R²) MAPE 

(%) 

RMSE 

predictions 

RMSE 

baseline 

Relative 

improvement 

from RMSE vs. 

baseline (%) 

Folds 

1 0.079 86.33  3.580 4.789 25.25 07.11 

1 0.201 84.26 3.816 4.302 11.30 13.11 

1 0.146 81.92 3.223 3.709 13.09 19.11 

1 0.255 80.60 3.439 4.015 14.33 01.12 

mean of 1: 0.17 83.28 3.514 4.204 15.99  

stdev of 1: 0.075 2.53 0.248 0.459 6.293 

2 0.072 86.33 3.593 4.789 24.98 07.11 

2 0.195 84.26 3.830 4.302 10.97 13.11 

2 0.145 81.91 3.227 3.709 12.99 19.11 

2 0.249 80.62 3.442 4.015 14.26 01.12 

mean of 2: 0.165 83.28 3.523 4.204 15.80  

stdev of 2: 0.065 2.188 0.219 0.397 5.42 

3 0.071 86.29 3.609 4.789 24.62 07.11 

3 0.199 84.27 3.821 4.302 11.18 13.11 

3 0.154 82.07 3.202 3.709 13.66 19.11 

3 0.257 80.71 3.423 4.015 14.73 01.12 

mean of 3: 0.170 83.34 3.514 4.204 16.05  

stdev of 3: 0.068 2.124 0.228 0.397 5.11 

4 0.082 86.36 3.572 4.789 25.40 07.11 

4 0.198 84.18 3.822 4.302 11.16 13.11 

4 0.148 81.99 3.217 3.709 13.25 19.11 

4 0.249 80.66 3.433 4.015 14.48 01.12 

mean of 4: 0.169 83.30 3.518 4.204 15.94  

stdev of 4: 0.062 2.17 0.219 0.397 5.51 
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5 0.07 86.31 3.603 4.789 24.76 07.11 

5 0.199 84.22 3.821 4.302 11.18 13.11 

5 0.154 82.05 3.208 3.709 13.51 19.11 

5 0.252 80.61 3.440 4.015 14.30 01.12 

mean of 5: 0.171 83.34 3.51 4.204 16.14  

stdev of 5: 0.067 2.163 0.224 0.397 5.22 

6 0.077 86.3 3.585 4.789 25.14 07.11 

6 0.199 84.32 3.821 4.302 11.18 13.11 

6 0.154 82.15 3.195 3.709 13.86 19.11 

6 0.254 80.60 3.438 4.015 14.37 01.12 

mean of 6: 0.174 83.41 3.499 4.204 16.41  

stdev of 6: 0.065 2.156 0.227 0.397 5.33 

7 0.076 86.33 3.590 4.789 25.03 7.11 

7 0.204 84.34 3.809 4.302 11.45 13.11 

7 0.157 82.11 3.192 3.709 13.95 19.11 

7 0.259 80.85 3.405 4.015 15.19 01.12 

mean of 7: 0.174 83.41 3.499 4.204 16.41  

stdev of 7: 0.067 2.09 0.228 0.397 5.15 

mean of all runs: 0.171 83.34 3.511 4.204 16.10 

stdev of all 28 records: 0.065 2.15 0.223 0.397 5.321 

Table 8. Overview of all results from each run of the seven runs and 28 permutations. 

In terms of individual folds (see table 9), the November 7th fold, meaning the permutation 

using data from this day for testing, is an outlier in terms of having an 25% RMSE 

improvement from the baseline (vs. 11.2%, 13.5% and 14.5%, respectively) and the highest 

MAPE of all the folds (86.32%). However, interestingly, it has the lowest R² (0.075).   

Folds r-squared 

(R²) 

MAPE (%) RMSE 

predictions 

RMSE 

baseline 

Improvement 

from RMSE 

baseline (%) 

07.11 0.075 86.324 3.591 4.71 25.03 

13.11 0.199 84.269 3.82 4.303 11.211 

19.11 0.151 82.033 3.21 3.71 13.479 

01.12 0.254 80.672 3.432 4.016 14.527 

Table 9. Evaluation metric averages of each fold across all seven runs. 

Another interesting case is the December 1st fold that has a significantly higher R² than the 

other folds (0.254), meaning that the prediction variable explains 25.4 % of the variance of 

the target variable, while having the worst MAPE (80.7 %). 

Having presented the key aggregated results of the model training and testing process, I 

will in the following section explore error distributions and variations between folds in 

more detail.  
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4.2 Exploration of results and errors 

In this section I first present first a statistical exploration of errors focusing on over and 

under prediction of low and high target values respectively; second, I analyse and discuss 

the errors from a geographical perspective; and third, I discuss the cumulative distribution 

of errors using empirical cumulative distribution functions.  

Statistical exploration of errors 

In figure 6 one can see the distribution of the all the 215 target values and all the average 

predicted values by the model per point. This shows that the predictions are clustering 

around the middle values of the target range, and thus, consistently underpredicting the 

highest target values and overpredicting lowest target values.  

 

Figure 6. Histogram of targets vs. predictions (% VMC). 

Figure 7 provides a clear perspective on the aforementioned dynamic of under and over 

prediction. As one can clearly observe that the model has some degree of sensitivity of the 

high peaks and low points as the prediction values follow the general pattern of the target 

values, although not merely to the same extent when observing for example the highest 

peak (around point ID 9).  

 

Figure 7. Line graph of target and prediction values per sampling ID point. 
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Furthermore, if you look at figure 8, where the absolute errors are plotted against the 

target values, there is a clear pattern between higher and lower errors and higher and 

lower target values.   

 

Figure 8. Scatterplot of absolute errors and target values with line of best fit.  

Geographical exploration of results 

In figure 9, the geographical distribution of the observed soil moisture data and the 

predicted soil moisture data is clearly showing a similar pattern. Thus, the model seems to 

be able to, with its predictions, to capture the geographical patterns of the fields fairly well. 

In terms of the geographical distribution of errors, they are, as discussed, clustered around 

the areas of the fields with the highest and the lowest observed soil moisture values. 

 

Figure 9. Geographic distribution of reference soil moisture data(left), predictions (middle) and 

errors(right). Labels on left figure are sampling point IDs. 
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Cumulative distribution of errors 

The cumulative distribution of errors, that can be observed in figure 10, clearly show that 

the model overall has less errors than the calculated baseline errors. The function shows 

that around 80 % of the prediction errors are below 4, 40 % are under 2, and only 20 % are 

under 1. Furthermore, around 85 % of the prediction errors are significantly lower than the 

baseline errors, while the top 15 %, the prediction and baseline are more similar. This could 

potentially mean that if the records with the top 20% errors in predictions could be 

identified and improved upon or excluded, the model could see significant improvements.  

 

Figure 10. Empirical cumulative distribution function of all baseline and prediction root squared 

errors. 

 

In figure 11 the cumulative error distribution of each of the folds (data from all runs) can be 

observed. Interestingly one fold, November 13th, sticks out in the top 10% of the 

distribution.   

 

Figure 11. Empirical cumulative distribution function for the four folds’ prediction errors (all 28 

permutations). 
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When plotting the cummulative error distribution of the two fields seperatelly (see figure 

12 and 13), it is clear that the outlier pattern of the November 13th fold stems from the field 

A predictions where it has lower errors than average initially, until around the top 10% 

where it has very high errors of 8-14. 

   

Figure 12 and 13. Empirical cumulative distribution function for the four folds’ prediction errors, by 

field A (left) and field B (right) (all 28 permutations) (November 13th highlighted). 

In table 10, we can see that the standard deviation of the reference soil moisture data is 

higher than average on the November 13th, and especially at field a where it has a 

significantly higher variation than the rest. 

 

Dates 07.11 13.11 19.11 01.12 

Stdev field A 3.16 5.39 3.82 4.24 

Stdev field B 2.59 2.71 2.3 2.72 

Stdev all data 3.1 4.28 3.24 2.82 

Table 10. Overview of standard deviations of collected in-situ soil moisture data (November 13th 

highlighted). 

As can be observed in figure 14, the distribution of the November 13th fold in the first 10 

sampling points has a more seemingly more random extreme variation than the other folds. 
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Figure 14. Linegraphs of collected soil moisture variations highlighting November 13th. November 

7th excluded due to lack of matching temporal coverage. 

 

However, this can also be a due to inaccuracies in the reference data introduced in the 

sampling process. The outlier pattern of the November 13th fold is something to explore 

further as perhaps the presense of some extreme highs and lows in this particular fold 

could be the reason. Altough further exploration and experimentation is needed to make 

definate conclusions.  

5.Discussion and conclusion 

In this feasibility study I have presented a remotes sensing-based site-specific machine 

learning model to explore the potential of open access Sentinel-1 SAR data to estimate and 

monitor soil moisture on a high-resolution (down to 10 m). Overall, the model performs 

significantly better than the calculated baseline and manages to recreate a similar 

geographic distribution pattern to the observed soil moisture with the model’s predicted 

soil moisture. The model does perhaps not display a high enough accuracy to estimate 

single day soil moisture values at this scale, however, for the purposes of monitoring very 

rough changes over longer periods of time it might be sufficient.  

In terms of contributions to the research literature, the study has shown that there is a 

potential for monitoring soil moisture at this resolution, with a significant error involved. 
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This is just one of many steps needed to achieve reliable soil moisture estimates at a very 

high resolution. Thus, a key contribution achieved is the carving out some insights and 

better understanding of what combinations of data might work when building models, and 

the challenges and limitations involved in using SAR in combination with other data sources 

for monitoring soil moisture. 

Compared to other studies 

If compared to other similar studies trying to estimate soil moisture based on SAR satellite 

data, the results from this model seem equivalent or perhaps slightly worse. For example, 

Schönbrodt-Stitt et al. (2021), achieved an R² of 0.025, an RMSE of 2 (% VMC) and an MAPE 

of 89%. Other studies using in-situ surface roughness inputs to calibrate the model achieves 

similar results, for example Ma et al. (2020) with R² of 0.472 to 0.665 and RMSE from 7.8 to 

3.9 (% VMC). Other approaches such as Goa et al. (2017), using a timeseries of SAR images 

to extract a minimum and maximum wetness/soil moisture across an area based on SAR 

backscatter over a larger area (assuming a direct relationship on a larger scale), to estimate 

soil moisture at 100-meter resolution, achieved an approximate RMSE of 5.9. Although for 

example the RMSE result of this study is similar (3.51), these studies are not necessarily 

directly comparable due to a lack of baselines to contextualise the error results especially, 

as the ranges and distributions of soil moisture values, or target values for the models, are 

not the same. Therefore, evaluating the true performance of this study’s model through 

direct comparison with these other studies, has clear limitations.  

Applicability to practitioners 

Also, for this to be practically useful for a farmer both the fact that the model is not the 

most accurate and that it is bad at capturing extreme low and high values, will likely mean 

that the model is in practice not robust enough for the intended application.  

With this major caveat, the approach does show some degree of promise in terms of initial 

results. However, to further test the results one would need to collect substantially more 

reference data over more time and with more geographical diversity. One major challenge 

with the explored approach is that collecting the soil moisture reference samples requires a 

lot of time and planning, as well as expensive specialised measurement equipment. Unless 

done using research funding, for most intended beneficiaries this would be a great barrier 

to further develop satellite-based soil moisture retrieval models. 
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Potential points of improvement 

The key pattern discussed is that when it comes to the highest and the lowest soil moisture 

values the model is not working particularly well. This might be due to the simple fact that 

there are fewer records of very high and low values than the ones closer to average that 

provides less training data to the model containing these particular characteristics. The 

most extreme values might also be concentrated in one or two folds which could cause 

some of the permutations to be ran more or less void of these values in the training data. 

This could potentially speak against the approach of using each day as a separate fold as 

opposed to for example randomly splitting the folds each run, that might better distribute 

the extreme values between folds. 

Generally, a key issue with the use of SAR-based data at this scale is radiometric speckle 

effects, that must be offset by using smoothing filters. Unfortunately, the speckle still 

constitutes a major disturbance factor with or without this filtering, and it is clear that in 

this study high and low speckles in the SAR scenes used in the model greatly disturb the 

reliability of this data. Furthermore, as the speckle seemingly is random noise, and does not 

represent actual physical properties of surface objects, thus representing relevant 

information, the model is “poisoned” by these non-relevant variations which ultimately 

gives worst prediction results. This problem could however potentially be overcome by 

having more data in terms of Sentinel-1 scenes and in-situ measurement points. 

Presumably, with more data available the model would be able to disregard these random 

instabilities in the SAR data.  

Future research 

In terms of recommendations for future research, other machine learning algorithms 

should be tested with the same or similar datasets. Especially deep learning algorithms, 

perhaps with components of logistical regression to better capture non-linear relationships 

in the data. This is especially relevant in the context highlighted problem of higher 

prediction errors connected to extreme high and low soil moisture values. As discussed, 

although the model does not predict the extremes well, predictions are sensitive to the 

extremes in terms of predicting higher than average and lower than average values at these 

points, just not the extent that it matches the observed values. Taking this into 

consideration, the model might just have a scaling problem when it comes to the challenge 

of extreme values. Apart from focusing on improving the machine learning approach, most 
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of the time in machine learning improved or more data is often a more efficient way of 

improving prediction results. Thus, collecting more and more diverse data for the model to 

train with could be another possibility for future studies to focus on. In summary, the 

model developed in this study, although falling short of being useful for the intended 

application, has shown some promise that merits further exploration. 
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