High Spectral Resolution X-Ray Optics based on Pyrolytic Graphite

H. Legall, H. Stiel (MBI), V. Arkadiev (IAP e.V.)
A. Antonov, I. Grigorieva (Optigraph GmbH)
A. Bjeoumikhov (IfG GmbH), A. Erko (BESSY GmbH)

supported by:

FEL Conference 2006, Berlin

Outlook

- Introduction to Pyrolytic Graphite (PG)
- Diffraction Properties of PG crystals
- Experimental results
- Conclusions

MBL Max-Born-Institut

FEL Conference 2006, Berlin

Crystal structure Highly Oriented PG

FEL Conference 2006, Berlin

Parallel beam reflection

FEL Conference 2006, Berlin

Parallel beam reflection

,,Highly Oriented Pyrolytic Graphite (HOPG)": 0.1°< γ <3°, high integral reflectivity (2 keV - several 10 keV)

MBL MAX-Born-Institut

FEL Conference 2006, Berlin

Thermal properties of Pyrolytic Graphite crystals

	Graphite (HOPG)	Diamond	Silicon
thermal conductivity* [W/cmK]	17 (parallel (002))	21	1.25
	8 (perpendicular)	21	1.25
thermal expansion* [K ⁻¹ x 10 ⁻⁶]	< 1 (parallel (002))	0.8	2.33
	20 (perpendicular)	0.8	2.33
Specific heat [J/g K]	0.71	0.52	0.75
Density [g/cm ³]	2.25 (C)	3.5 (C)	2.3 (Si)
Absorption coeff. [cm ⁻¹] (8keV)	10	16	148
Melting [°C]	3500	4300	1420

*at room temperature

FEL Conference 2006, Berlin

Energy resolution

What energy resolution can be obtained with Pyrolytic Graphite?

Up to now it was commonly assumed, that the energy resolution of Pyrolytic Graphite is low

Reported values of $E/\Delta E$ are well below 1000

FEL Conference 2006, Berlin

Focusing in dispersion plane

(,,mosaic focusing")

Defocusing perpendicular to dispersion plane

FEL Conference 2006, Berlin

FEL Conference 2006, Berlin

FEL Conference 2006, Berlin

FEL Conference 2006, Berlin

FEL Conference 2006, Berlin

FEL Conference 2006, Berlin

FEL Conference 2006, Berlin

FEL Conference 2006, Berlin

FEL Conference 2006, Berlin

Experimental setup for testing PG

FEL Conference 2006, Berlin

Specific features of Pyrolytic Graphite crystals

energy resolution of a 15 μm flat PG crystals at 8 keV (F = 260 mm): 2900 in (004)-reflection (with integral reflectivity comparable to Ge(111))

MBL Max-Born-Institut

FEL Conference 2006, Berlin

Comparison of HOPG and HAPG

FEL Conference 2006, Berlin

Rocking curve measurements

Rocking curve measurement in (002)-reflection

FEL Conference 2006, Berlin

Bending PG crystals

• thin foils, which can be bent easily => arbitrary geometry

Cylindrical PG

ellipsoidal PG

? Which spectral resolution can be obtained with bent PG's?

FEL Conference 2006, Berlin

Bent versus flat HAPG

FEL Conference 2006, Berlin

Properties of Pyrolytic Graphite

- Thermal properties are promising !
- High integral reflectivity (between 2 keV up several 10 keV)
- Broad band reflection
- High energy resolution can be obtained for thin PG films
- No decrease in energy resolution for bent single sheets of HAPG was found

FEL Conference 2006, Berlin

Conclusion

"High energy resolution" and <u>high integral reflectivity</u> with Highly Annealed Pyrolytic Graphite (HAPG) crystals even in bent geometry

Applications

"High energy resolution"

single shot spectroscopy

MBL Max-Born-Institut

FEL Conference 2006, Berlin

H. Legall, H. Stiel (MBI), V. Arkadiev (IAP e.V.)A. Antonov, I. Grigorieva (Optigraph GmbH)A. Bjeoumikhov (IfG GmbH), A. Erko (BESSY GmbH)

FEL Conference 2006, Berlin

Max-Born-Institu

Thank You

FEL Conference 2006, Berlin

Integral reflectivity

(B. Beckhoff et al, SPIE 1996)

(A. Freund et al, SPIE 1996)

FEL Conference 2006, Berlin

Sample preparation

FEL Conference 2006, Berlin

Energy resolution of thicker bent HAPG

FEL Conference 2006, Berlin

