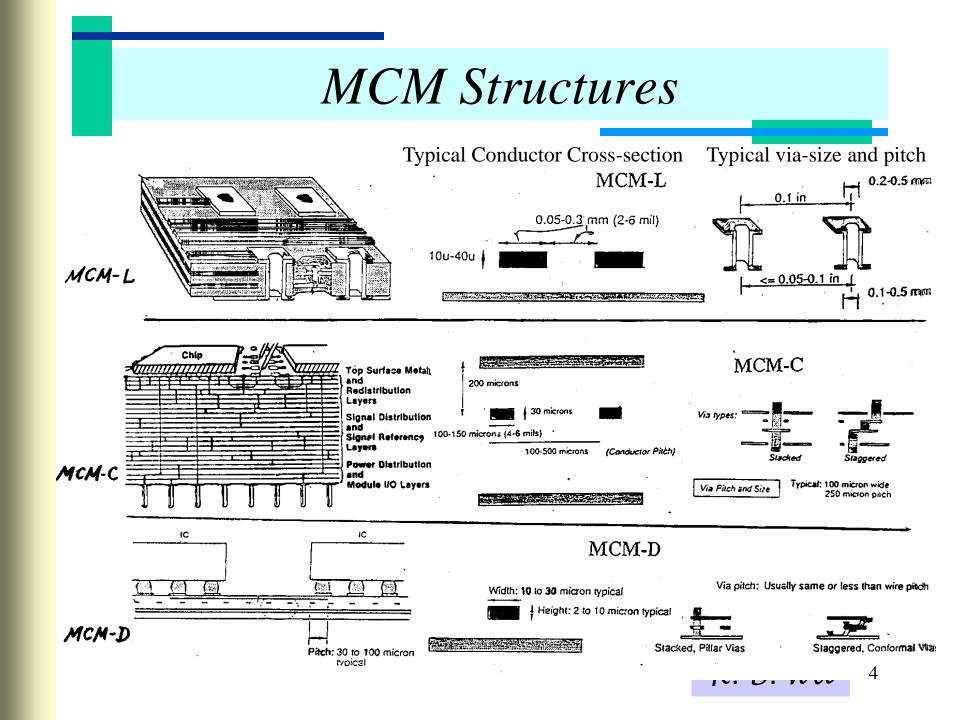
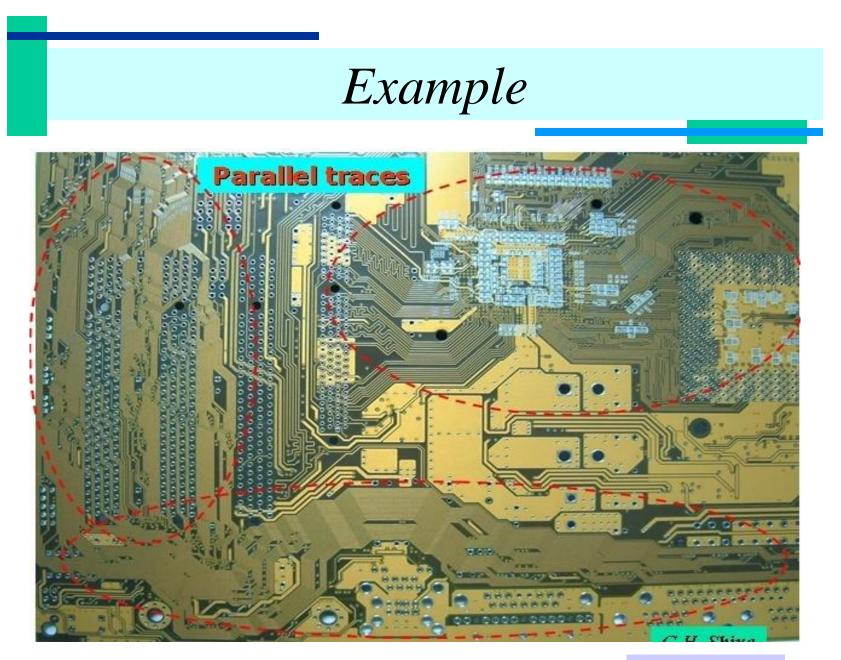
Crosstalk

吳瑞北

Rm. 340, Department of Electrical Engineering E-mail: rbwu@ew.ee.ntu.edu.tw url: cc.ee.ntu.edu.tw/~rbwu

1

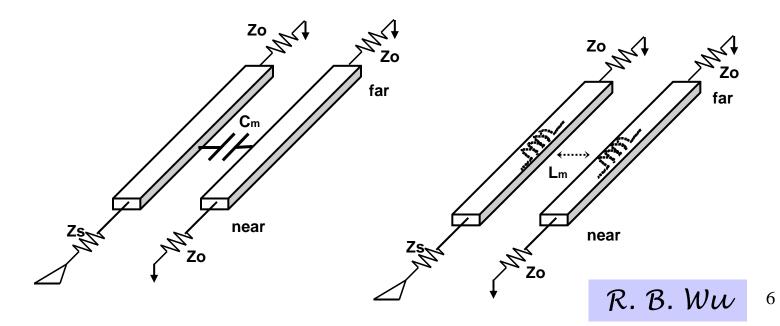

S. H. Hall et al., *High-Speed Digital Design*, Chap.4 N. N. Rao, *Elements of Engineering Electromagnetics*, Sec. 6.7.


What will you learn

- **Physical** insight to inductive & capacitive coupling
- **Definition** of L and C matrices of multi-coupled tx-lines
- Electrical parameter extraction for coupled tx-lines
- Phenomenological description of crosstalk noise by weakly coupling analysis
- Analytic derivation for crosstalk noise by **model analysis**
- Construction of equivalent SPICE circuit for transient **simulation** of ideal coupled tx-lines
- Novel **designs** for minimization of crosstalk noise: matched termination, guard trace, spiral delay line.

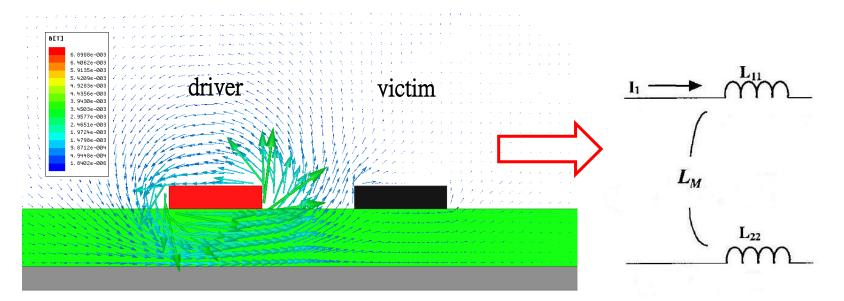
Contents

- Two mechanisms that Cause Crosstalk
- Crosstalk-induced Noise
- Even/Odd Mode Decomposition
- Modal Analysis
- Simulation in SPICE
- Design Issues


R. B. Wu 5

Mutual Inductance and Capacitance

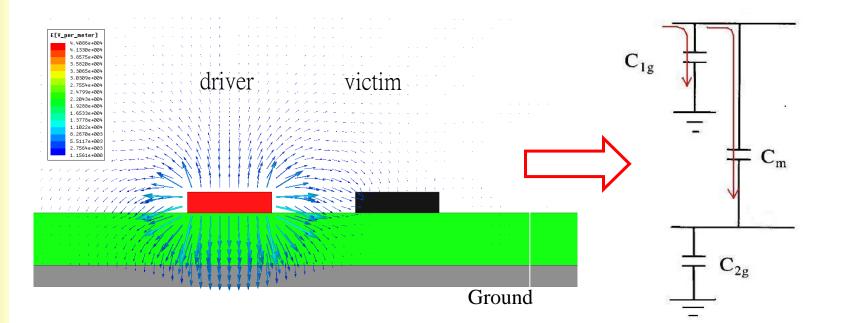
- Crosstalk is caused by energy coupling from one line to another via:
 - Mutual capacitance (electric field)
 - Mutual inductance (magnetic field)


Mutual Capacitance, Cm

Mutual Inductance, Lm

Mutual Inductance

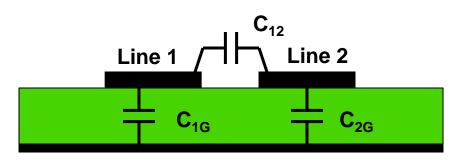
Mutual L induces current from a driven line onto a quiet line by magnetic field \circ

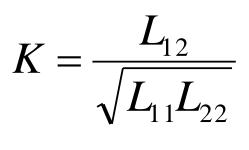

Ground

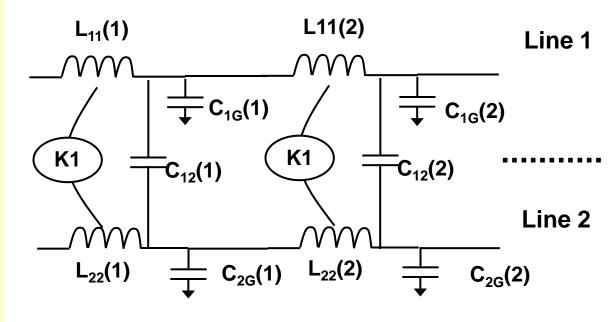
 $V_{noise} = L_m -$ <u>driver</u>

Mutual Capacitance

Mutual C is coupling of two conductors via electric field




$$I_{noise} = C_m \frac{dV_{driver}}{dt}$$



Crosstalk Model by "Equivalent Circuit"

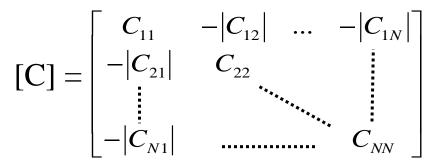
Circuit is distributed into N segments

Inductance Matrix

Inductance matrix:

- \rightarrow L_{NN} = self inductance of line N per unit length
- \rightarrow L_{MN} = mutual inductance between lines M and N

$$[L] = \begin{bmatrix} L_{11} & L_{12} & \dots & L_{1N} \\ L_{21} & L_{22} & & & \\ \vdots & & \ddots & \ddots & \\ L_{N1} & \dots & L_{NN} \end{bmatrix}$$


Capacitance Matrix

Capacitance matrix:

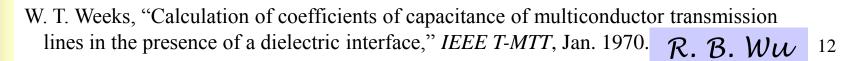
+ C_{NN} = self capacitance of line N per unit length where:

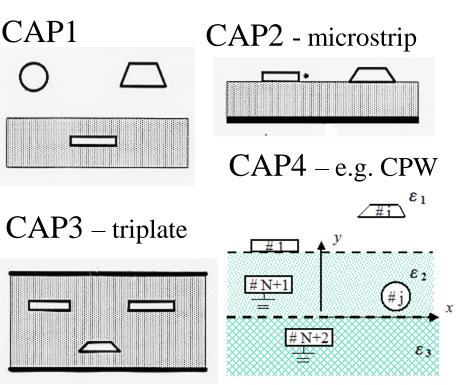
$$C_{NN} = C_{NG} + \sum |C|_{mutuals}$$

- + C_{NG} = Capacitance between line N and ground
- + C_{MN} = Mutual capacitance between lines M and N

For example, for 2 line circuit:

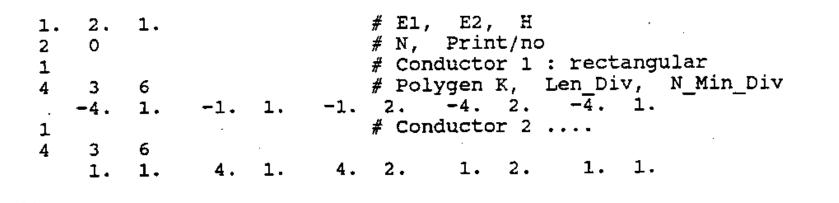
$$C_{11} = C_{1G} + \left| C_{12} \right|$$


R. B. Wu¹¹


Numerical Techniques

Geometry of lines: width, separation, thickness, height, substrate, etc.

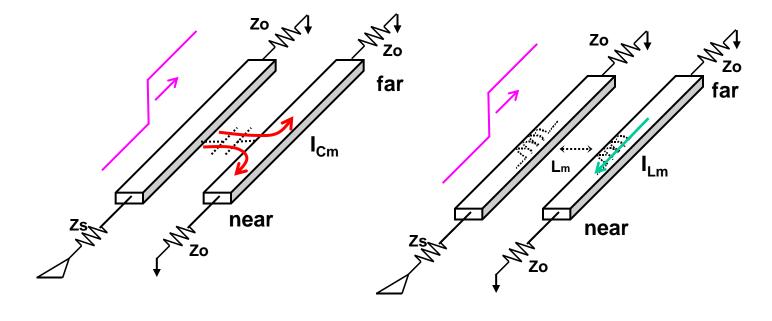
C2D Electrical parameters: capacitance matrix [C] Inductance matrix [L]


- Based on IE formulation and MoM
- Exact integration formulae
- Four versions are available

CAP2 Example

輸入檔案CAP2.DAT

Crosstalk Induced Noise

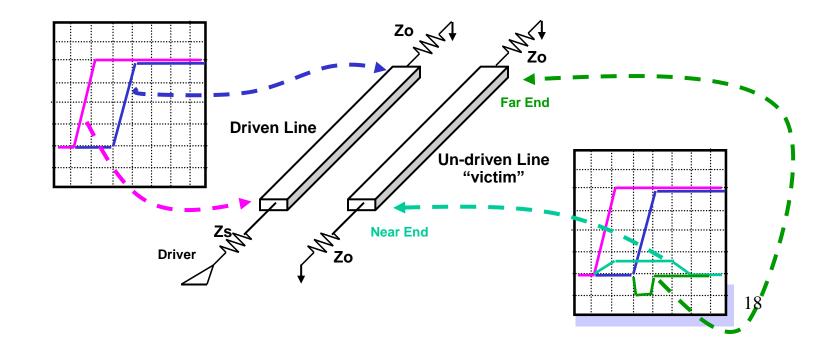

Circuit element representing transfer of energy

$$V_{Lm} = L_m \frac{dI}{dt} \qquad I_{Cm} = C_m \frac{dV}{dt}$$

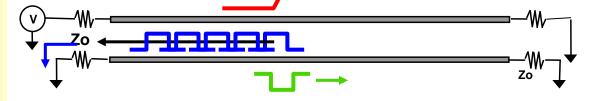
- Mutual inductance induces current on victim line opposite of driving current (Lenz's Law)
- Mutual capacitance passes current through mutual capacitance that flows in both directions on the victim line

Coupled Currents

Coupled currents on victim line sum to produce near and far end crosstalk noise

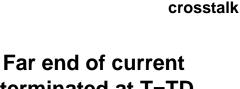

 $I_{near} = I_{Cm} + I_{Lm} \qquad I_{far} = I_{Cm} - I_{Lm}$

R. B. WW 17


Voltage Profile of Coupled Noise

Near end crosstalk is always positive

- Currents from Lm and Cm always add & flow into the node.
- For PCB's, far end crosstalk is "usually" negative
 - Current due to Lm larger than current due to Cm
 - Note that far and crosstalk can be positive or nullified.



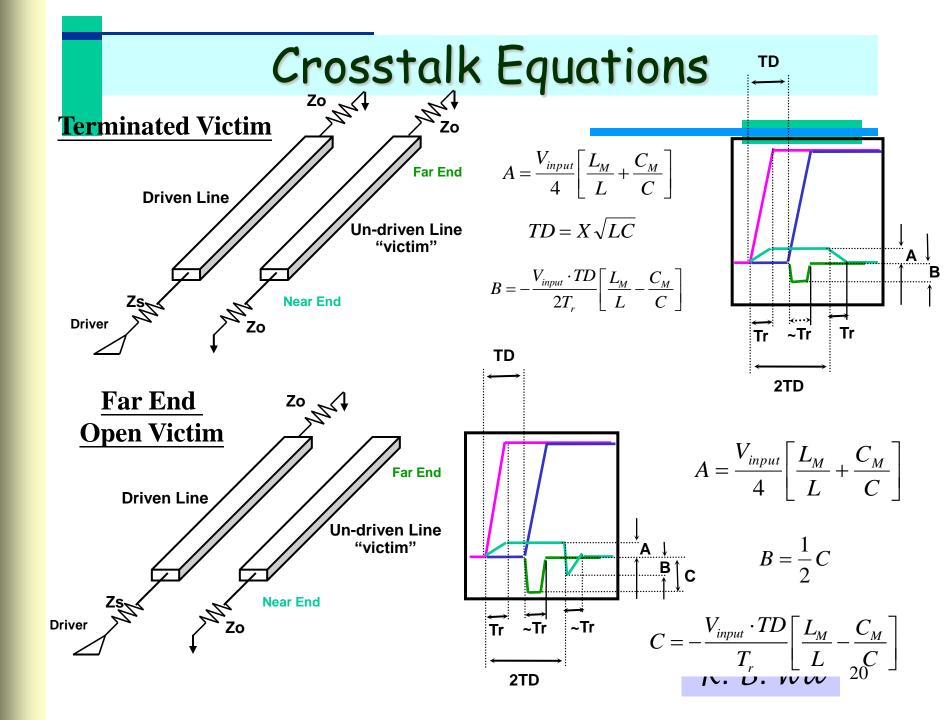
Graphical Explanation Time = 0 Near end crosstalk pulse at T=0 (I_{near}) ~Tr Zo Near end crosstalk Far end crosstalk pulse at T=0 (I_{far}) TD Time= 1/2 TD

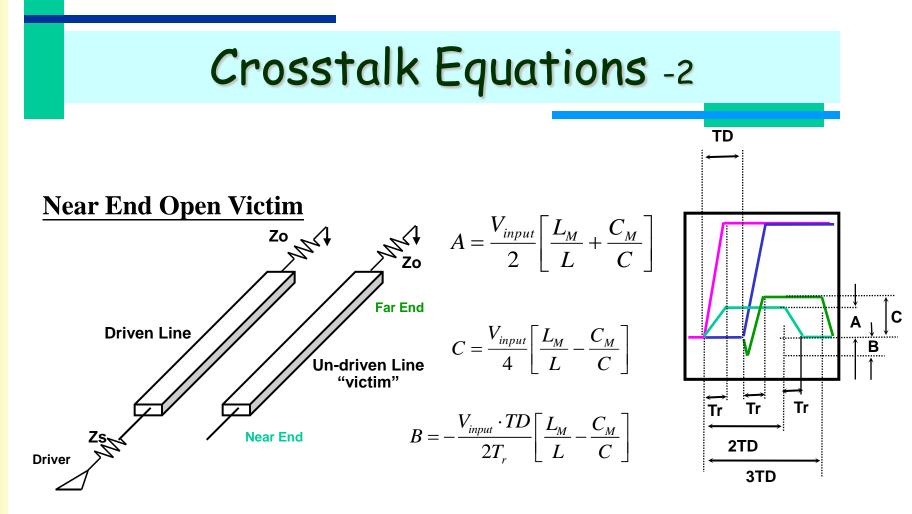
Time= TD

۰W

2TD

١ ١


far end


terminated at T=TD

Zo

~Tr

The Crosstalk noise characteristics are dependent on the termination of the victim line

Example

Calculate near and far end crosstalk-induced noise magnitudes and sketch the waveforms of circuit:

Vsource=2V, Trise = 100ps.

Length of line is 2 inches. Assume all terminations are 70 Ohms. Assume the following capacitance and inductance matrix:

$$\mathbf{L} = \begin{bmatrix} 9.869 & 2.103 \\ 2.103 & 9.869 \end{bmatrix} \mathbf{nH / inch} \qquad \mathbf{C} = \begin{bmatrix} 2.051 & -0.239 \\ -0.239 & 2.051 \end{bmatrix} \mathbf{pF / inch}$$

Characteristic impedance is:

$$Z_{O} = \sqrt{\frac{L_{11}}{C_{11}}} = \sqrt{\frac{9.869nH}{2.051pF}} = 69.4\Omega$$

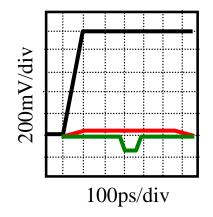
Therefore the system has matched termination. (Vinput = 1.0V), crosstalk noise magnitudes can be calculated as follows:

$$R. B. Ww^{22}$$

Example (cont.)

Near end crosstalk voltage amplitude:

$$V_{near} = \frac{V_{input}}{4} \left[\frac{L_{12}}{L_{11}} + \frac{|C_{12}|}{C_{11}} \right] = \frac{1V}{4} \left[\frac{2.103}{9.869} + \frac{0.239}{2.051} \right] = 0.082V$$


Propagation delay of the 2 inch line is:

$$TD = X\sqrt{LC} = 2inch * \sqrt{(9.869nH * 2.051pF)} = 0.28ns = 280ps$$

Far end crosstalk voltage amplitude:

$$V_{far} = \frac{V_{input}}{2} \cdot \frac{\text{TD}}{T_{rise}} \left(\frac{L_{12}}{L_{11}} - \frac{|C_{12}|}{C_{11}} \right) = \frac{1V * 280 \,\text{ps}}{2 * 100 \,\text{ps}} \left(\frac{2.103}{9.869} - \frac{0.239}{2.051} \right) = -0.137 V_{12} + 100 \,\text{ps}$$

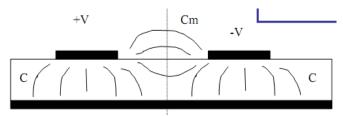
Thus,

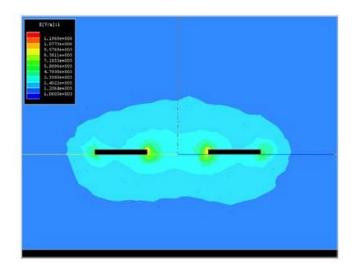
R. B. Ww²³

Even/Odd Mode Decomposition

Coupling Effects on Tx-line Parameters

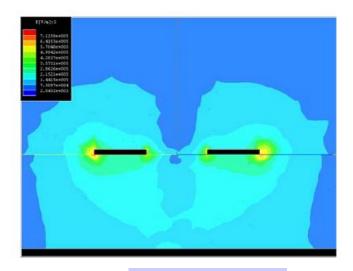
Key Topics:

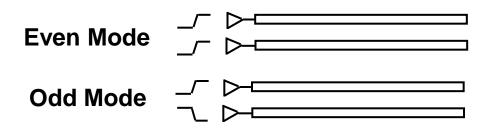

- ✓ Odd and Even Mode Characteristics
- ✓ Microstrip vs. Stripline
- ✓ Modal Termination Techniques
- ✓ Modal Impedance's for more than 2 lines
- ✓ Effect of Switching Patterns
- ✓ Single Line Equivalent Model (SLEM)


$$R. B. Ww$$
²⁵

Field Distribution

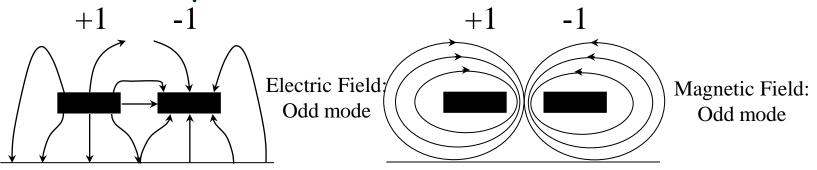
• Differential and common mode signals have different field distribution, impedance and propagation velocity.


Differential mode

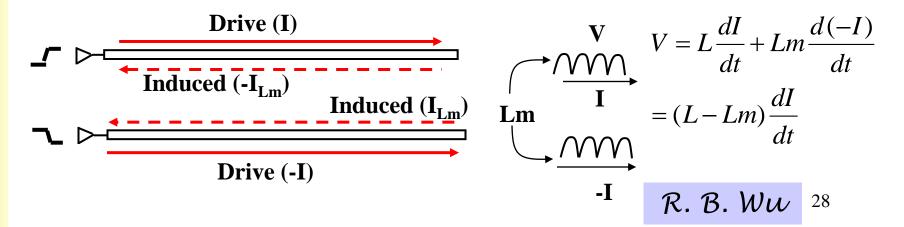

common mode

Odd/Even Transmission Modes

- EM Fields btw two coupled lines interacts with each other. These interactions affect the impedance and delay of tx-line
- A 2-conductor system has 2 propagation modes
 - Even Mode (Both lines driven in phase)
 - Odd Mode (Lines driven 180° out of phase)



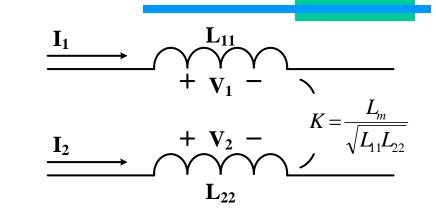
 Field interaction causes the system electrical characteristics to be dependent on the patterns.


R. B. Wu 27

Odd Mode Transmission

 Potential difference btw conductors lead to *increase* of effective C equal to Cm

 Because currents flow in opposite directions, total L is reduced by Lm



Derivation of Odd Mode Inductance

Mutual Inductance: Consider the circuit:

 $V_1 = L_0 \frac{dI_1}{dt} + L_m \frac{dI_2}{dt}$

 $V_2 = L_O \frac{dI_2}{dt} + L_m \frac{dI_1}{dt}$

Since the signals for odd-mode switching are always opposite, $I_1 = -I_2$ and $V_1 = -V_2$, so that:

$$V_{1} = L_{o} \frac{dI_{1}}{dt} + L_{m} \frac{d(-I_{1})}{dt} = (L_{o} - L_{m}) \frac{dI_{1}}{dt}$$
$$V_{2} = L_{o} \frac{dI_{2}}{dt} + L_{m} \frac{d(-I_{2})}{dt} = (L_{o} - L_{m}) \frac{dI_{2}}{dt}$$

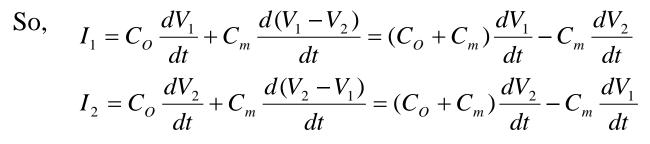
Thus, since $L_0 = L_{11} = L_{22}$,

$$L_{odd} = L_{11} - L_m = L_{11} - L_{12}$$

equivalent inductance seen in an odd-mode environment is reduced by mutual inductance.

R. B. Wu²⁹

Derivation of Odd Mode Capacitance


 V_2

 $C_{1g} + C_m$

Mutual Capacitance:

Consider the circuit:

$$C_{1g} = C_{2g} = C_0 = C_{11} - /C_{12} / C_{2g} + V_2$$

And again, $I_1 = -I_2$ and $V_1 = -V_2$, so that:

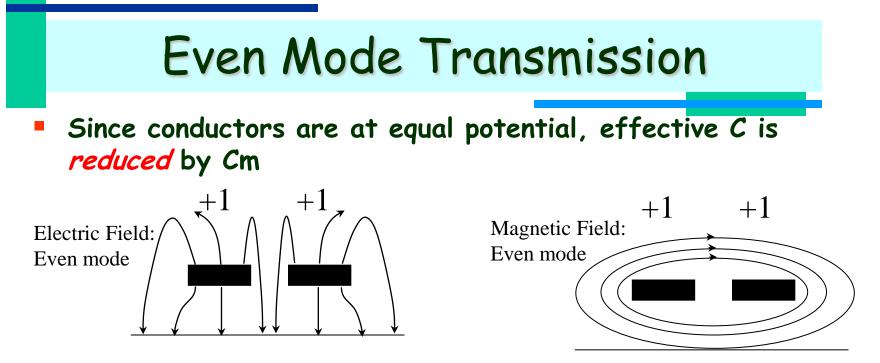
$$I_{1} = C_{o} \frac{dV_{1}}{dt} + C_{m} \frac{d(V_{1} - (-V_{1}))}{dt} = (C_{1g} + 2C_{m}) \frac{dV_{1}}{dt}$$
$$I_{2} = C_{o} \frac{dV_{2}}{dt} + C_{m} \frac{d(V_{2} - (-V_{2}))}{dt} = (C_{o} + 2C_{m}) \frac{dV_{2}}{dt}$$
Thus,
$$C_{odd} = C_{1g} + 2C_{m} = C_{11} + C_{m}$$

eq. capacitance for odd mode switching increases.

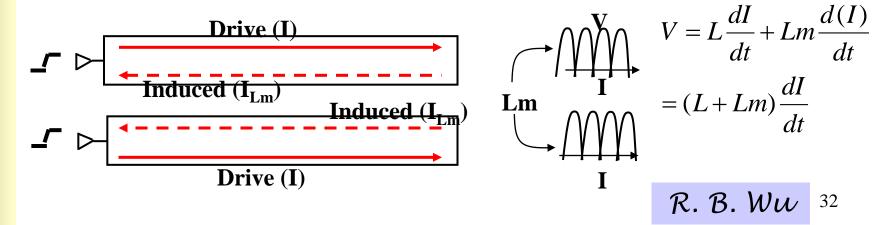
R. B. Ww ³⁰

Odd Mode Transmission Characteristics

Impedance:


$$Z_{odd} = \sqrt{\frac{L_{odd}}{C_{odd}}} = \sqrt{\frac{L_{11} - L_{12}}{C_{11} + |C_{12}|}}$$

Note:
$$Z_{differential} = 2Z_{odd}$$
 Explain why.


Propagation Delay:

$$TD_{odd} = \sqrt{L_{odd}C_{odd}} = \sqrt{(L_{11} - L_{12})(C_{11} + |C_{12}|)}$$

R. B. Ww 31

 Because currents flow in same direction, total L is increased by Lm

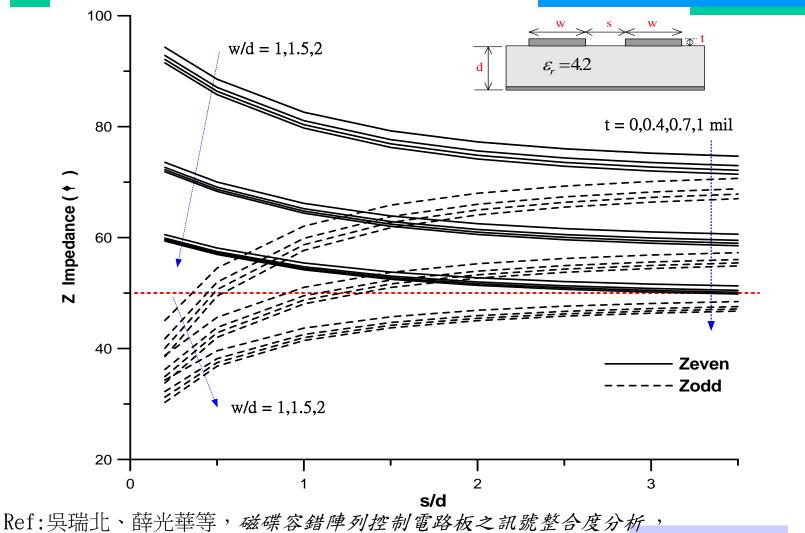
Even Mode Transmission Characteristics

Impedance:

$$Z_{even} = \sqrt{\frac{L_{even}}{C_{even}}} = \sqrt{\frac{L_{11} + L_{12}}{C_{11} - |C_{12}|}}$$

Note: $Z_{even} > Z_{odd}$

Propagation Delay:

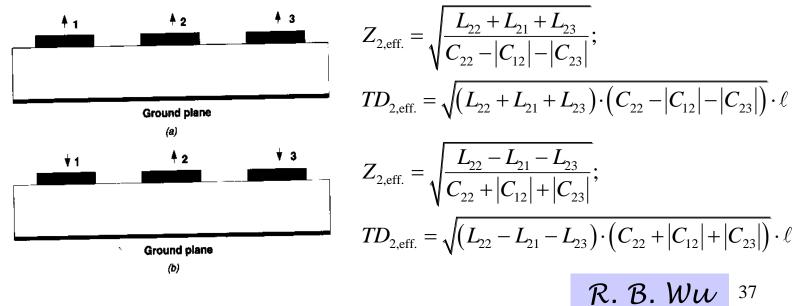

$$TD_{even} = \sqrt{L_{even}C_{even}} = \sqrt{(L_{11} + L_{12})(C_{11} - |C_{12}|)}$$

Note:

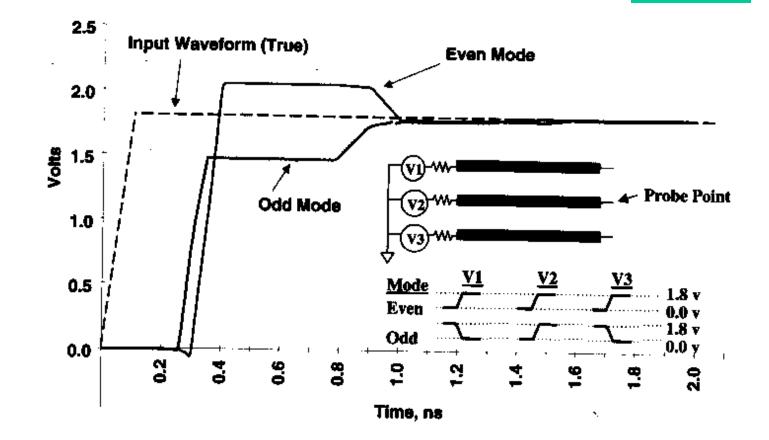
 $TD_{even} > TD_{odd}$ for microstrip lines $TD_{even} = TD_{odd}$ for strip lines

R. B. Ww 35

Variations in Impedance - microstip



普安案研究計畫報告,民92年2月,第2章。


R. B. WW 36

Single-Line Eq. Model (SLEM)

- Goal:
 - Determine effective crosstalk-induced impedance & delay variation for a multi-conductor system.
 - Eestimate worst-case crosstalk effects during a bus design prior to actual layout
- SLEM

Effects on SI & Velocity – on microstrip

Rem: No velocity variations due to crosstalk in striplines.

R. B. Wu 38

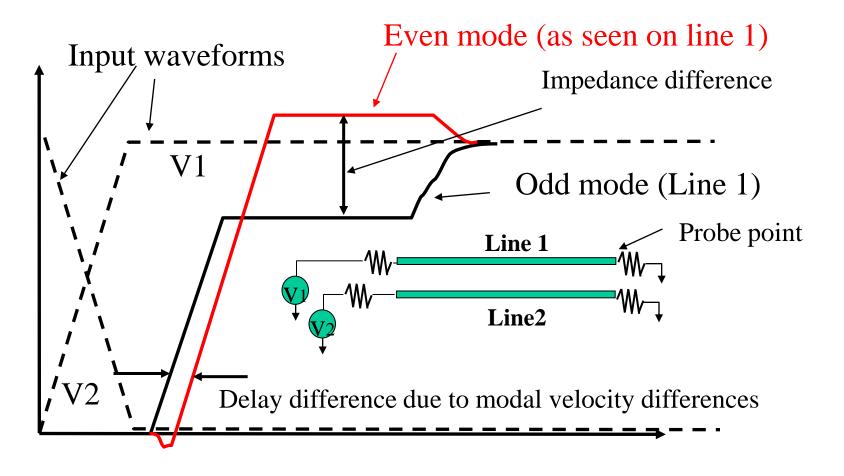
Modal Analysis

Model Decomposition Theory

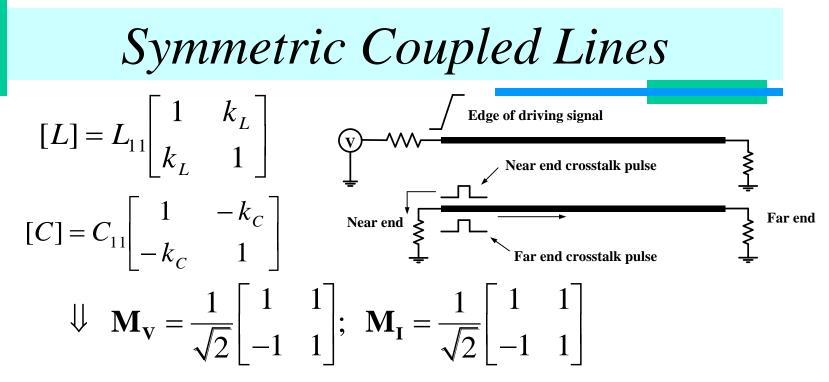
• For coupled lines, $\frac{\partial}{\partial z} \mathbf{v} = -\mathbf{L} \frac{\partial}{\partial t} \mathbf{i}; \quad \frac{\partial}{\partial z} \mathbf{i} = -\mathbf{C} \frac{\partial}{\partial t} \mathbf{v}$

Transformation: $v=M_vv_m$, $i=M_Ii_m$;

$$\frac{\partial}{\partial z} \mathbf{M}_{\mathbf{V}} \mathbf{v}_{\mathbf{m}} = -\mathbf{L} \frac{\partial}{\partial t} \mathbf{M}_{\mathbf{I}} \mathbf{i}_{\mathbf{m}} \Rightarrow \frac{\partial}{\partial z} \mathbf{v}_{\mathbf{m}} = -\mathbf{L}_{\mathbf{m}} \frac{\partial}{\partial t} \mathbf{i}_{\mathbf{m}}; \ \mathbf{L}_{\mathbf{m}} = \mathbf{M}_{\mathbf{V}}^{-1} \mathbf{L} \mathbf{M}_{\mathbf{I}}$$
$$\frac{\partial}{\partial z} \mathbf{M}_{\mathbf{I}} \mathbf{i}_{\mathbf{m}} = -\mathbf{C} \frac{\partial}{\partial t} \mathbf{M}_{\mathbf{V}} \mathbf{v}_{\mathbf{m}} \Rightarrow \frac{\partial}{\partial z} \mathbf{i}_{\mathbf{m}} = -\mathbf{C}_{\mathbf{m}} \frac{\partial}{\partial t} \mathbf{v}_{\mathbf{m}}; \ \mathbf{C}_{\mathbf{m}} = \mathbf{M}_{\mathbf{I}}^{-1} \mathbf{C} \mathbf{M}_{\mathbf{V}}$$
$$\mathbf{L}_{\mathbf{m}}, \ \mathbf{C}_{\mathbf{m}} \text{ both diagonal};$$
$$\therefore \mathbf{L}_{\mathbf{m}} \mathbf{C}_{\mathbf{m}} = \mathbf{M}_{\mathbf{V}}^{-1} (\mathbf{L} \mathbf{C}) \mathbf{M}_{\mathbf{V}} \Rightarrow \mathbf{M}_{\mathbf{V}} \text{ is eigenmatrix of } \mathbf{L} \mathbf{C}$$
modal impedance $Z_{m,i} = \sqrt{L_{m,ii}/C_{m,ii}};$ velocity $\upsilon_{pm,i} = 1/\sqrt{L_{m,ii} \cdot C_{m,ii}}$


R. B. WW

40


Modal Analysis Procedure

- Find M_V , eigenvectors of LC (fairs if LC is diagonal)
- Find $\mathbf{M}_{\mathbf{I}}$, eigenvectors of CL, - usually take $\mathbf{M}_{\mathbf{I}} = \left(\mathbf{M}_{\mathbf{V}}^{-1}\right)^{T}$ s.t. $\mathbf{v}^{T}\mathbf{i} = \mathbf{v}_{\mathbf{m}}^{T}\mathbf{M}_{\mathbf{V}}^{T}\mathbf{M}_{\mathbf{I}}\mathbf{i}_{\mathbf{m}} = \mathbf{v}_{\mathbf{m}}^{T}\mathbf{i}_{\mathbf{m}}$
- Use M_V and M_I to calculate modal inductance, capacitance, voltages, and currents
- Calculate modal impedances and velocities
- Carry out traditional tx-line analysis for each mode
- Convert modal quantities back into line quantities.

Odd/Even Mode Comparison for Coupled Microstrips

R. B. Ww 42

$$\mathbf{L}_{\mathbf{m}} = \mathbf{M}_{\mathbf{V}}^{-1} \mathbf{L} \mathbf{M}_{\mathbf{I}}$$
$$= L_{11} \begin{bmatrix} 1 - k_L & 0 \\ 0 & 1 + k_L \end{bmatrix};$$
$$\mathbf{C}_{\mathbf{m}} = \mathbf{M}_{\mathbf{I}}^{-1} \mathbf{C} \mathbf{M}_{\mathbf{V}}$$
$$= C_{11} \begin{bmatrix} 1 + k_C & 0 \\ 0 & 1 - k_C \end{bmatrix}$$

modal characteristics: (1: odd; 2: even) $Z_{m,1} = Z_0 \sqrt{\frac{1-k_L}{1+k_C}}; \quad \upsilon_{m,1} = \upsilon_0 / \sqrt{(1-k_L)(1+k_C)}$ $Z_{m,2} = Z_0 \sqrt{\frac{1+k_L}{1-k_C}}; \quad \upsilon_{m,2} = \upsilon_0 / \sqrt{(1+k_L)(1-k_C)};$ where $Z_0 = \sqrt{\frac{L_{11}}{C_{11}}}; \quad \upsilon_0 = 1 / \sqrt{L_{11}C_{11}}$

note:
$$Z_{m,1} < Z_0 < Z_{m,2} \mathcal{R}. \mathcal{B}. \mathcal{W} \mathcal{W}$$
 43

Equivalent Tx-Lines for Modes

• Modal decomposition

$$\mathbf{v}_{s} = \begin{bmatrix} 2\\0 \end{bmatrix} u(t) = \left(\begin{bmatrix} 1\\-1 \end{bmatrix} + \begin{bmatrix} 1\\1 \end{bmatrix} \right) u(t) \Leftrightarrow \mathbf{v}_{\mathbf{m},s} = \mathbf{M}_{\mathbf{V}}^{-1} \mathbf{v}_{s} = \left(\begin{bmatrix} \sqrt{2}\\0 \end{bmatrix} + \begin{bmatrix} 0\\\sqrt{2} \end{bmatrix} \right) u(t)$$

• Equivalent tx-line

$$\Gamma_{L,i} = \frac{Z_L - Z_{m,i}}{Z_L + Z_{m,i}}; \quad \Gamma_{s,i} = \frac{Z_s - Z_{m,i}}{Z_s + Z_{m,i}}$$

• Modal voltages at both ends:

near end:
$$v_{m,i}(0,t) = \frac{Z_{m,i}}{Z_{m,i} + Z_s} \cdot \left[v_{m,in}(t) + \Gamma_{L,i} \cdot \left(1 + \Gamma_{s,i}\right) v_{m,in}(t - \frac{2\ell}{\nu_{m,i}}) \right];$$

far end:
$$v_{m,i}(\ell,t) = \frac{Z_{m,i}}{Z_{m,i} + Z_s} \cdot \left(1 + \Gamma_{L,i}\right) \cdot v_{m,in}(t - \frac{\ell}{\nu_{m,i}});$$

R. B. Ww 44

Line Voltages at Both Ends

• Line voltages at both ends

$$\mathbf{v} = \mathbf{M}_{\mathbf{V}} \mathbf{v}_{\mathbf{m}} \underset{\text{at } z=0 \text{ or } \ell}{\Rightarrow} \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} (t) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} v_{m,1}(t) \\ v_{m,2}(t) \end{bmatrix}$$

Near end crosstalk •

$$v_{2}(0,t) = \left(\frac{Z_{m,2}}{Z_{m,2} + Z_{s}} - \frac{Z_{m,1}}{Z_{m,1} + Z_{s}}\right)u(t) \text{ for } 0 < t < 2T$$
$$+ \frac{Z_{m,2}\Gamma_{L,2}\left(1 + \Gamma_{s,2}\right)}{Z_{m,2} + Z_{s}} \cdot u(t - \frac{2\ell}{\upsilon_{m,2}}) - \frac{Z_{m,1}\Gamma_{L,1}\left(1 + \Gamma_{s,1}\right)}{Z_{m,1} + Z_{s}} \cdot u(t - \frac{2\ell}{\upsilon_{m,i}})$$

Far end crosstalk ullet

$$v_{2}(\ell,t) = \frac{2Z_{L}Z_{m,2} \cdot u(t - \frac{\ell}{v_{m,2}})}{\left(Z_{m,2} + Z_{s}\right)\left(Z_{m,2} + Z_{L}\right)} - \frac{2Z_{L}Z_{m,1} \cdot u(t - \frac{\ell}{v_{m,1}})}{\left(Z_{m,1} + Z_{s}\right)\left(Z_{m,1} + Z_{L}\right)} \quad \text{for } T < t < 3T$$

 κ . D. ww

Exact Crosstalk at Matched Load

• Zero far end noise ==>

(i)
$$\upsilon_{m,1} = \upsilon_{m,2} \Leftrightarrow k_C = k_L$$

(ii) $Z_{m,1}Z_{m,2} = Z_s Z_L \Rightarrow \text{ choose } Z_s = Z_L = Z_{eq}$

$$Z_{eq} = \sqrt{Z_{m,1} Z_{m,2}} \cong Z_0$$

• Crosstalk noise (with matched load)

$$v_{2}(\ell,t) = \frac{2Z_{eq}}{\left(\sqrt{Z_{m,2}} + \sqrt{Z_{m,1}}\right)^{2}} \cdot \left[u(t - \frac{\ell}{v_{m,2}}) - u(t - \frac{\ell}{v_{m,1}})\right]$$
$$\approx \frac{1}{2} \left[u(t - \frac{\ell}{v_{m,2}}) - u(t - \frac{\ell}{v_{m,1}})\right]$$

$$v_{2}(0,t) = \frac{\sqrt{Z_{m,2}} - \sqrt{Z_{m,1}}}{\sqrt{Z_{m,2}} + \sqrt{Z_{m,1}}} \cdot \left[u(t) - \frac{2Z_{eq}}{\left(\sqrt{Z_{m,2}} + \sqrt{Z_{m,1}}\right)^{2}} \cdot \left\{ u(t - \frac{2\ell}{\upsilon_{m,2}}) + u(t - \frac{2\ell}{\upsilon_{m,1}}) \right\} \right]$$

$$\approx \frac{k_{L} + k_{C}}{4} \cdot \left[u(t) - u(t - \frac{2\ell}{\upsilon_{0}}) \right]$$

$$\mathcal{R} \mathcal{B} \mathcal{M} u_{\ell} \mathcal{A}$$

Far End Crosstalk Noise – Short Line

$$v_2(\ell,t) \approx \frac{1}{2} \left[u(t - \frac{\ell}{v_{m,2}}) - u(t - \frac{\ell}{v_{m,1}}) \right]$$

$$\Delta \tau \equiv \tau_{\text{even}} - \tau_{\text{odd}} = \frac{\ell}{\nu_{m,2}} - \frac{\ell}{\nu_{m,1}}$$
$$= \frac{\ell}{\nu_0} \left(\sqrt{(1+k_L)(1-k_C)} - \sqrt{(1-k_L)(1+k_C)} \right)$$
$$\cong \frac{\ell}{\nu_0} \cdot (k_L - k_C)$$

• Case 1: $|\Delta \tau| \ll t_r$;

$$v_{2}(\ell,t) \approx \frac{1}{2}u'(t-\frac{\ell}{v_{0}})\left[(t-\frac{\ell}{v_{m,2}})-(t-\frac{\ell}{v_{m,1}})\right]$$

$$\approx -\frac{\Delta\tau}{2}u'(t-\frac{\ell}{v_{0}}) = -\frac{\ell(k_{L}-k_{C})}{2v_{0}}u'(t-\frac{\ell}{v_{0}})$$

a pulse of value $-\frac{k_{L}-k_{C}}{2}\cdot\frac{T}{t_{r}}\cdot u_{s}$, width t_{r}
 $\mathcal{R}.\mathcal{B}.\mathcal{W}u$
47

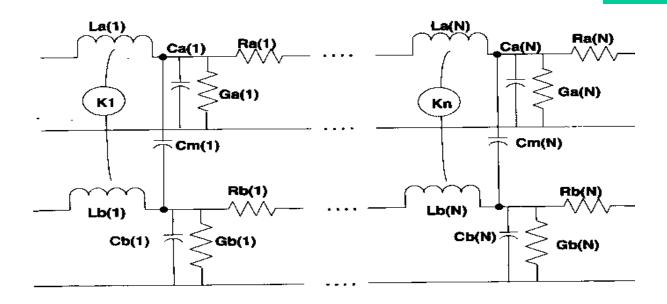
Far End Crosstalk Noise – Long Line

$$v_2(\ell, t) \approx \frac{1}{2} \left[u(t - \frac{\ell}{v_{m,2}}) - u(t - \frac{\ell}{v_{m,1}}) \right]$$
$$\Delta \tau \equiv \tau_{\text{even}} - \tau_{\text{odd}} = \frac{\ell}{v_{m,2}} - \frac{\ell}{v_{m,1}} \approx \frac{\ell}{v_0} \cdot (k_L - k_C)$$

• Case 2:
$$|\Delta \tau| > t_r$$

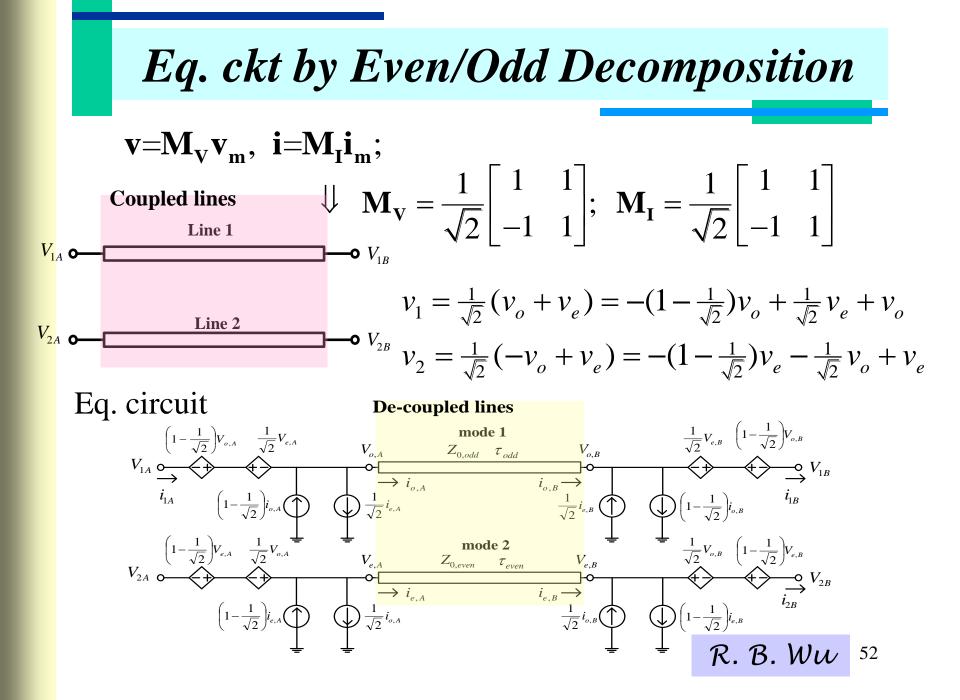
(long line or short risetime)

 $v_2(\ell, t)$: a pulse of value $\pm \frac{1}{2}u_s$ and width $|\Delta \tau|$

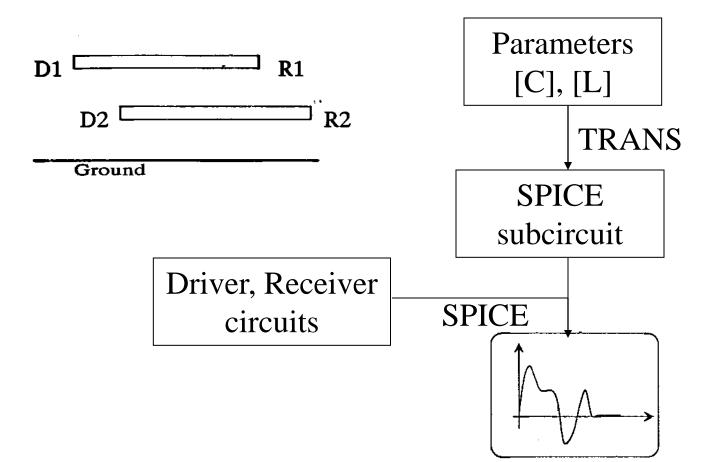


Remarks

- NEN occurs because odd (even) mode has smaller (larger) launched voltage and positive (negative) reflected wave.
- FEN occurs because even and odd modes arrives at a different time.
- Under matched load, modal analysis yields same results with weakly coupling analysis at near end.
- At far end, weakly coupling analysis fails for long line or shorter risetime, while modal analysis is still applicable and yield correct results.
- Modal analysis can apply to more complicated cases, i.e., asymmetric, multiple, lossy coupled lines, etc.


Simulation in SPICE

Eq-ckt Model in SPICE (1)

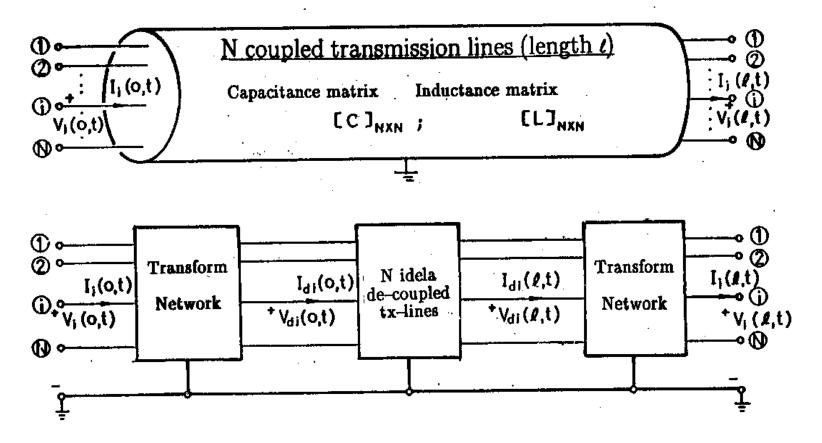


Ex. : length = 5in, $t_r = 100$ ps

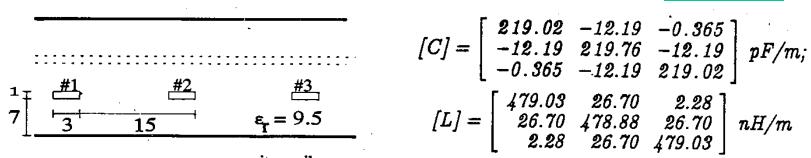
$$C = \begin{bmatrix} 2.1 & -0.1 \\ -0.1 & 2.1 \end{bmatrix} (pF/in); L = \begin{bmatrix} 9 & 0.7 \\ 0.7 & 9 \end{bmatrix} (nH/in)$$

$$TD = \sqrt{L_{11}C_{11}} = 134 ps/in \rightarrow 670 ps$$

segments $\geq 10 \left(\frac{TD}{t_r}\right) = 67 \rightarrow \#$ SPICE elements $\geq 67 * 2*"3"$
R. B. Ww 51

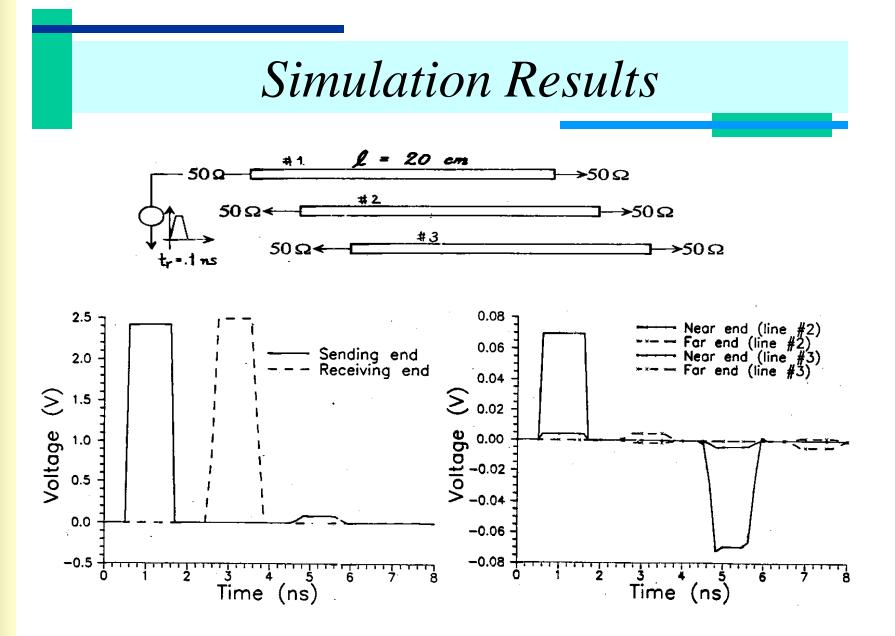


Crosstalk Simulation in SPICE

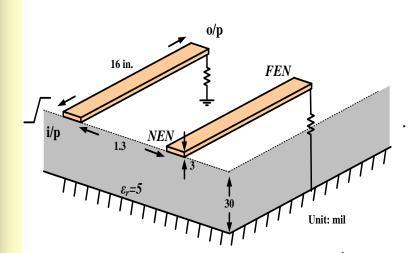

R. B. Wu 53

Equivalent SPICE Subcircuit (2)

F. Romeo and M. Santomauro, "Time-domain simulation of n coupled transmission lines," *IEEE Trans. Microwave Theory Tech.*, vol. 35, pp. 131-136, Feb. 1987. *R. B. Ww* 54


TRANS Example

unit = mil


A 1.	.SUBC	KT X33 SF1 SB1 SF2 SB2 SF3 SB3 PARAMS: LENGTH=100	
de-coupled	/ ()	ee ideal de-coupled transmission lines for normal mode	S
) # # #	F1 0 TB1 0 Z0=46.62 TD= $\{10.277NS*LENGTH\}$ F2 0 TB2 0 Z0=49.01 TD= $\{10.277NS*LENGTH\}$ F3 0 TB3 0 Z0=44.88 TD= $\{10.277NS*LENGTH\}$	
CX - 1496	1 12 1	$T_2 = 0$ TB2 0 $Z_0 = 49.01$ TD= {10.2/7NS*LENGTH}	
	• 13 1 • + + h v	$15 0 155 0 20=44.88 TD={10.2//NS*LENGTH}$	
	/ FF1 0	ee voltage controlled voltage source at sending end	• · · _ · ·
voltage-	TED O	F1 MF1 POLY(3) TF1 0 TF2 0 TF3 0 0.0 -0.2929 -0.6727 -	J.1736
Controled	A PP2 C	F2 MF2 POLY(3) TF1 0 TF2 0 TF3 0 0.0 0.0000 -1.3082	0.9694
	+ + hy	F3 MF3 POLY(3) TF1 0 TF2 0 TF3 0 0.0 -0.7071 -0.6727 -	1.1736
voltage	TRD1 C	se voltage controlled voltage source at receiving end	-
Seurce	FD2 C	B1 MB1 POLY(3) TB1 0 TB2 0 TB3 0 0.0 -0.2929 -0.6727 -	J.1736
	1 202 3	D2 MD2 FVDI(J) TD1 V TD2 V TD3 V V.O 0.0000 -1.3082 (0.9694
	± + hr	B3 MB3 POLY(3) TB1 0 TB2 0 TB3 0 0.0 -0.7071 -0.6727 -	L.1736
	A PP3 M	ee current controlled current source at sending end	
	FF2 M	F1 0 POLY(3) VF1 VF2 VF3 0.0 -0.2929 -0.6869 -0.2184 F2 0 POLY(3) VF1 VF2 VF3 0.0 0.0000 -1.2460 0.9534	
CWITCH[-	FF3 M	F3 0 POLY(3) VF1 VF2 VF3 0.0 -0.7071 -0.6869 -1.2184	
Controlat	VF1 N	F1 TF1 0	
		F2 TF2 0	
<i>current</i>		F3 TF3 0	
Source	* thr	se current controlled current source at receiving end	
	I ERT M	BI 0 POLY(3) VBI VB2 VB3 0.0 -0.2929 -0.6869 -0.2184	
	FB2 N	B2 0 POLY(3) VB1 VB2 VB3 0.0 0.0000 -1.2460 0.9534	
	FB3 N	B3 0 POLY(3) VB1 VB2 VB3 0.0 -0.7071 -0.6869 -1.2184	
	VB1 M	B1 TB1 0	4
	VB2 M	B2 TB2 0	
	VB3 M	B3 TB3 0	B. WW
	. ENDS		\mathcal{O} . \mathcal{O}

55

R. B. WW 56

Measurement and Simulation

 $\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} 62.1 & -16.3 \\ -16.3 & 62.1 \end{bmatrix} pF / m$

 $\begin{bmatrix} L \end{bmatrix} = \begin{bmatrix} 593 & 217 \\ 217 & 593 \end{bmatrix} nH / m$

R. B. Wu 57

Further Reading -1

- A. Feller, et al., "Crosstalk and reflections in high-speed digital systems," *1965 Fall Jt. AFIPS*, pp. 511-525.
- A. J. Gruodis and C. S. Chang, "Coupled lossy transmission line characterization and simulation," *IBM J. R&D*, pp. 25-41, Jan. 1981.
- F. Romeo et al., "Time-domain simulation of n coupled transmission lines," *IEEE T-MTT*, vol. 35, pp. 131-136, Feb. 1987.
- <u>R. B. Wu</u> & F. L. Chao, "Laddering wave in serpentine delay line," *IEEE T-AdvP*, vol. 18, pp. 644-650, Nov. 1995.
- <u>R. B. Wu</u> & F. L. Chao, "Flat spiral delay line design with minimum crosstalk penalty," *IEEE T-AdvP*, vol. 19, pp. 397-402, May 1996.
- Y.-S. Cheng & <u>R. B. Wu</u>, "Enhanced microstrip guard trace for ringing noise suppression using a dielectric superstrate," *IEEE T-AdvP*, vol. 33, pp. 961-968, Nov. 2010.
- G.-H. Shiue, et al., "Ground bounce noise induced by crosstalk noise for two parallel ground planes with a narrow open-stub line and adjacent signal traces in multilayer package structure," *IEEE T-CPMT*, vol. 4, pp. 870-881, May 2014.
 R. B. Ww 58

Further Reading -2

- J. Bernal, et al., "Crosstalk in coupled microstrip lines with a top cover," *IEEE T-EMC*, vol. 56, pp. 375-384, Apr. 2014.
- G.-H. Shiue, et al., "Ground bounce noise induced by crosstalk noise for two parallel ground planes with a narrow open-stub line and adjacent signal traces in multilayer package structure," *IEEE T-CPMT*, vol. 4, pp. 870-881, May 2014.
- M. S. Halligan and D. G. Beetner, "Maximum crosstalk estimation in weakly coupled transmission lines", *IEEE T-EMC*, vol. 56, pp. 736-744, Jun. 2014.
- M. S. Halligan and D. G. Beetner, "Maximum crosstalk estimation in lossless and homogeneous transmission lines," *IEEE T-MTT*, vol. 62, pp. 1953-1961, Sept. 2014.
- F. Grassi, et al., "On mode conversion in geometrically unbalanced differential lines and its analogy with crosstalk," *IEEE T-CPMT*, vol. 57, pp. 283-291, April 2015.

R. B. Wu

59

Further Reading -3

- G. Li, et al., "Measurement-based modeling and worst-case estimation of crosstalk inside an aircraft cable connector," *IEEE T-EMC*, vol.57, pp.827-835, Aug. 2015.
- R. Araneo, et al., "Modal propagation and crosstalk analysis in coupled graphene nano-ribbons," *IEEE T-EMC*, vol. 57, pp. 726-733, Aug. 2015.
- A. Chada, et al., "Crosstalk impact of periodic coupled routing on eye opening of high speed links in PCBs," *IEEE T-EMC*, vol. 57, pp. 1676-1689, Oct. 2015.
- V. Ramesh Kumar, et al., "An unconditionally stable FDTD model for crosstalk analysis of VLSI interconnects," *IEEE T-CPMT*, vol. 5, pp. 1810-1817, Dec. 2015.
- B. R. Huang, et al., "Far-end crosstalk noise reduction using decoupling capacitor," *IEEE T-EMC*, vol. 58, pp. 836-848, June 2016.
- F. Grassi, et al., "Crosstalk and mode conversion in adjacent differential lines," *IEEE T-EMC*, vol. 58, pp. 877-886, June 2016.

R. B. Ww ⁶⁰