
x

HIGH SPEED NONHOLONOMIC
MOBILE ROBOT ONLINE

TRAJECTORY OPTIMATIZATION

by

Ying Xu

A thesis submitted to Johns Hopkins University in conformity with the

requirements for the degree of Master of Science in Mechanical Engineering

Baltimore, Maryland

October 2014

Abstract

Autonomous Mobile robot navigation has become a popular topic in robotics due to

its emerging applications in self-driving vehicles and autonomous air-drones. This essay

explores the two main components of navigation namely perception and control. Simul-

taneous localization and mapping (SLAM) has been one of the most widely adopted

collection of methods for self localization of robots in unknown environments. Here we

put our focus on gMapping [1] [2]for offline map building and Adaptive Monte Carlo

Localization (AMCL) [3] for realtime localization. On the control side, Forward Back-

ward Sweep Method is used to generate locally optimal trajectories and the correspond-

ing feedback control law. Our experiments show that using the above methods and a

properly integrated system autonomous navigation can be achieved with up to 1 m/s

navigation speed.

ii

Acknowledgements

I would like to express my gratitude to my advisor Professor Marin Kobilarov for his

guidance and support on this project. I would also like to thank my fellow labmates

Gowtham Sandilya and Subhransu Mishra for their generous help.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vi

1 Introduction 1

1.1 System Set-up . 1

1.2 Mobile Base Hardware Set-up . 2

1.2.1 Sensor Calibration . 4

1.3 Software Set-up . 5

1.4 Control and Safety Feature . 6

2 Vehicle Odometry 8

3 Localization And Mapping 15

3.1 Map Building . 15

3.2 AMCL . 19

4 Trajectory Planning And Tracking 23

4.1 Dynamic Feedback Linearization . 23

4.1.1 Feedback Linearization for Simple Car Model 23

4.2 Forward-Backward Sweep Method . 25

5 Results And Discussion 28

5.1 Experiment Description and Results . 28

5.2 Future Work . 29

6 Conclusion 31

A Experiment procedure 32

B System Frames 33

iv

Contents

C Forward Backward Sweep Method 35

Bibliography 37

Biographical Statement 38

v

List of Figures

1.1 RC car test platform . 2

1.2 System Flowchart . 3

1.3 Input calibration . 4

1.4 Motion Capture Distance . 4

1.5 Steering Calibration . 5

1.6 User Interface . 7

2.1 simple car model . 9

2.2 Odometry Calibration Result Without Gyro (X) 10

2.3 Odometry Calibration Result Without Gyro (Y) 10

2.4 Odometry Calibration Result Without Gyro (θ) 11

2.5 Odometry Calibration Result With Gyro (X) 11

2.6 Odometry Calibration Result With Gyro (Y) 12

2.7 Odometry Calibration Result With Gyro (θ) 12

2.8 Odometry Calibration Result With Curve Length 13

2.9 Odometry Calibration Result With With Curve Length (Y) 14

2.10 Odometry Calibration Result With With Curve Length(θ) 14

3.1 Kinect Framework . 18

3.2 Generate Occupancy Grid Map of Experimental Hallway 19

3.3 AMCL In Motion . 20

3.4 AMCL Localization . 21

3.5 Actual Robot location . 21

3.6 AMCL Odometry . 22

4.1 Feedback Linearization controller simulation result 25

4.2 Feedback Linearization controller simulation result 27

5.1 Computed vs. Actual Trajectory in Controller Testing 28

5.2 Video Screenshot . 29

5.3 issue with trajectory . 30

B.1 Position of The Vehicle Relative to The World 33

B.2 Vehicle Body Frames . 34

B.3 system frames . 34

vi

Chapter 1

Introduction

With the rapid development of sensor technologies and onboard computing power, au-

tonomous navigation has become an active area of research. From Google’s self-driving

car to the iRobot home cleaning assistants, emerging applications utilizing technologies

from this field are coming into people’s everyday lives. Being two main consisting parts

of autonomous navigation, environmental perception and automatic control has been

studied extensively over the past few years and have resulted in some highly applicable

methods. The goal of this essay is to describe our efforts in integration of a mobile

platform in hardware and software that utilizes carefully chosen and implemented per-

ception and control techniques to achieve fully autonomous navigation at a relatively

high speed and low cost. The remainder of this chapter introduces in detail of our high

level system setup.

1.1 System Set-up

The first step is to set up an experimental platform that allows for algorithm testing.

Two major test environment are evaluated here with the first that uses motion capture

for localization in an indoor environment and the second in the hallway that uses SLAM

(Simultaneous Localization and Mapping) for localization.

The purchased RC car (named Rustler shown in figure 1 above) contains mechanical

frames and built-in motors and controller box, which is much easier to work with than

a custom designed mobile system, but the built-in controller box has limited speed

control accessibility. This mobile car is a non-holonomic system that makes it possible

to test rear-wheel drived vehicle control algorithms on a much affordable platform. With

suspension on Rustler, this system has the ability to run in outdoor terrains which

extends this platform to testing of control and optimization methods from 2D to 3D.

1

Chapter1. Introduction

Figure 1.1: RC car test platform

The following sections describes this experimental platform in terms of hardware and

software set-up.

1.2 Mobile Base Hardware Set-up

The experimental mobile platform contains a Traxxas Nitro Rustler car base with brush-

less back driving motor, and front servo motor for steering.The system runs on APC2

computer with Intel R© AtomTM Processor Z550 (512K Cache, 2.00 GHz, 533 MHz FSB-)

and DEll Vostro laptop with Intel(R) Core(TM) i7-3612QM CPU @ 2.10GHz.

Onboard sensors and actuators include:

• URG-04LX scanning laser range finder with 240 deg measuring area and 60 to

10000mm measurement range.

• ASUS Xtion PRO live is the vision sensor that used for slam or video stream.

• ATM203 Encoder is high accuracy axial modular encoder, which has a build in

SPI communication board. The encoder is mounted on the back wheel records the

absolute movement of the back wheel.

• 5GHz Wifi adaptor is used to seperate wifi signal. Communication between on

board computer and laptop is based on wifi connection. Currently, most wifi

signal is 2.4GHz,so this system used 5GHz wifi that can avoid interference from

most of the wif signals.

2

Chapter1. Introduction

Figure 1.2: System Flowchart

Car/Micro-controller

Optimization Node

Gyro Encoder

Wheel position

&orientation

Control
 command

Joy Stick

Laser

Kinect

Control Listener

Hokuyo Laser
 Node

Gmaping

Odometry Laser scan

User Interface

Control
Command

state

PWM

Graphic

parameter

On-board Computer

Laptop

• Li-lon Polymer 7.4V 3 cell battery for computer power supply.

• 3900mAh 3 cell 11.1V G8 Pro battery for electronics power supply.

• Pololu 5V Stepdown Volt Reg converts the voltage output from battery to 5V

input voltage to micro-controller.

• Y-PWR, Hot Swap, Load Sharing Controller is ideal diode that two power sources

can be used together. This allows user to switch the power source without shutting

down the system.

• Arduino USB to Serial converter is used to connect micro-controller to onboard

controller. But power pin wasn’t connect to computer.Electronics and computer’s

power supply were separated to prevent restart of micro controller while the ROS

node start on computer or unstable random signal from power pin that leads to

restart of the micro controller board.

3

Chapter1. Introduction

• BeStar Acoustic Component (F-B-P3009EPB-01 LF) is sound actuator that beeps

when the battery runs low either on computer or electronics.

• Futaba R617FS 7-Channel 2.4GHz FASST Receiver receives control command

from Joystick.

• FUtaba T7C Joystick allows user manual remote control.

1.2.1 Sensor Calibration

In order for subsequent algorithm testings to accurately reflect their performance, careful

calibration of the onboard sensors is key. One of the first steps is to find a conversion

between the controller PWM signal to car speed and Steering angle. Motion capture

can measure the mobile robot position (x, y, θ) at 125 hz and is used here as the ground

truth. PWM signals from 1500 to 1800 with increments of 10 are fed as input commands

to the driving motor, while the steering servo motor remains neutral. Rustler will drive

at constant speed for around 1.5 m. Then,for each PWM input signal driving distance

can be estimated from motion captureD = (x2 + y2)
1
2 , and the corresponding driving

speed can be estimated from the slope.

Figure 1.3: Input calibration
Figure 1.4: Motion Capture Dis-

tance

Estimation data at vehicle startup are ignored given that it takes time for the motor

to accelerate to certain speed. As can be seen from 1.3 and 1.4, each input PWM is

correlated to one spike. The conversion factor can be obtain from curve fitting the

measured position data. Steering angle calibration utilizes very similar method (see

figure 1.5 for a simplified model of the vehicle). Commands are sent to the steering

motor with constant driving speed. The car will then drive in a circle and motion

capture will again log its position information. With know rear distance L, and driving

circle radius (δ), steering is calculated as equation 1.1. Due to the fact that both steering

wheels are controlled by the same servo, δ is consider same for both wheel.

4

Chapter1. Introduction

Figure 1.5: Steering Calibration

R =
√
a2

2 + l2 cot δ2 cot δ =
cot δi + cot δo

2
(1.1)

Lastly, the wheel encoders are calibrated by comparing encoder reading with motion

capture pose. Command motor with constant PWM signal for driving, and neutral

signal for steering. The vehicle is then expected to drive at constant speed. It is then

trivial to establish a correspondence between the encoder readings and measured vehicle

velocity.

1.3 Software Set-up

Arduino Autopilot is a micro controller that reads in the sensor data and sent PWM

signal to actuators. The Rosserial library is used for Arduino-ROS communication.

Rosserial arduino sets up a rosnode on the Arduino board that can publish and subscribe

msg to/from rostopic. The computation on Arduino is kept at a minimum in order to

ensure the operational speed of the entire system.

Three nodes run on the onboard computer: CarControlListener, hokuyo node,and AMCL.

The CarControlListener node takes in sensor readings from the micro-controller and in-

terpret the readings to meaningful data such as odometry, while at the same time takes

controller command and publish it to the hardware space such as motor PWM com-

mand. The Hokuyo node takes in readings from the Hokuyo laser sensor and publishes

/scan msg. AMCL (Adaptive Monte Carlo Localization) is a ROS based localization

5

Chapter1. Introduction

package that takes in odometry data and laser scan and outputs estimated robot loca-

tion related to map.

Three nodes run on on-board computer: Gcop, Setwaypoint and Rviz. Gcop uses Gen-

eral Linear-Quadratic Regulator to compute local optimal path (discussed more in later

chapters). Setwaypoint takes in pre-designed global path and publish way points based

on robot current location. Rviz takes in whole frames and generate 3D graphic display

including the global map, robot frames and local optimal path.

1.4 Control and Safety Feature

Since the vehicle is a high powered test platform that runs at relatively high speed,

making sure that the system can shut-down appropriately is a essential before starting

any automatic navigation testing.

1. The first part is joystick control. Normally, the Futaba T7C joystick is used for

AR.Drone control since it has a stable long range of round 50 meters. Stan-

dard APM RC APM2 library is used here for radio signal receiving. The micro-

controller will only activate the motor and servo when it receives radio signal from

the joystick. Radio has 7 channels, 2 switch has to be turned on together to toggle

the vehicle to automatic driving mode,the rest of the channels are used for manual

joystick driving. The Microcontroller will sent continuous neutral PWM signals

(1500) to motor when the radio is turned on but not giving control signals to make

sure the motor won’t run under random signal.

2. NCURSES terminal UI (figure 1.6) is a simple user interface that displays the

current states (x, yθ) of the vehicle. All ROS nodes will be shut-down and the

motor will detached from the micro controller upon termination (currently set to

key ”Q”). ”D” is for command desired trajectory and ”I” for user input continuous

PWM signals.

3. Battery switch is connected directly from battery to electronics. Since previous

controls is either based on radio or wifi communication, a hard stop is designed

here to shut down the system power in case any communication issues occurs.This

switch will only shutdown the power supply to the electronics and micro-controller,

thus the onboard computer will remain running. However, no power line were

connect between the host computer and onboard computer, thus restarting the

electronics won’t affect ROS nodes on the host computer.

6

Chapter1. Introduction

Figure 1.6: User Interface

7

Chapter 2

Vehicle Odometry

Odometry is the use of motion sensor information for estimation of position over time.On

our mobile platform, odometry is obtained from a combination of encoder and gyro

sensor data. Here the position of the back wheels can be obtained from encoders and

vehicle’s orientation can obtained by processing gyro data. Although odometry will

diverge due to sensor drift, this divergence can be compensated by a measurement

update (details in the next chapter). But getting an accurate odometry estimate is an

essential first step for localization.

The vehicle’s states are usually presented as

x

y

θ

v

ω

(2.1)

where x and y are vehicle’s planar location and θ is the heading all in world coordinate.

vandω represents linear and rotational velocity. The pair of control inputs is the driving

velocity and steering angle

(
u

φ

)
(2.2)

8

Chapter 3. Vehicle Odometry

Figure 2.1: simple car model

The simple car model (illustrated in figure 2.1) can be written as
ẋ = u ∗ cos(θ)
ẏ = u ∗ sin(θ)

θ̇ = u
L tan(φ)

 (2.3)

Assuming that sampling can be done at a fast rate, the position of the vehicle can be

reasonably estimated by

x = x+ ẋδt

y = y + ẏδt

θ = θ + θ̇ ∗ δt

 (2.4)

φ in equation 2.3 is the vehicle steering angle which can be obtain from the gyro. Dis

are the discrete encoder readings. In our first attempt to acquire accurate odometry

data, wheel speed u is obtained by finite differencing encoder readings, while front servo

PWM signals give turning angle φ. The dynamics update equations are given below

u = (D′ −D)/δt

θ′ = θ +
u

L
tanφδt

x′ = x+ u cos(θ)δt

y′ = y + u sin(θ)δt

(2.5)

where [x′, y′, θ′] represents the states at the next time step. A few issues arise from this

treatment.This model doesn’t take into account the fact that the steering angle command

9

Chapter 3. Vehicle Odometry

Figure 2.2: Odometry Calibration Result Without Gyro (X)

Figure 2.3: Odometry Calibration Result Without Gyro (Y)

signals does not transfer flawlessly to the actual steering angle due to a number of factor

including ground and mechanism friction, signal noise as well as inertial effects. Figures

2.2, 2.3, 2.4 below illustrates the odometry data obtained using the above formulation

compared to the ground truth obtained from motion capture. We can see that although

the data trend is correct most of the time (less so for X), there exists large error.

Our next attempt integrates the gyro readings into the system and θ is obtained directly

by numerically integrating the gyro measurement ω. Results are plotted in figures 2.5,

2.6, 2.7 which shows a much more promising tracking performance.

10

Chapter 3. Vehicle Odometry

Figure 2.4: Odometry Calibration Result Without Gyro (θ)

Figure 2.5: Odometry Calibration Result With Gyro (X)

In the last attempt, we aimed for a smoother interpolation between gyro and encoder

readings. Therefore 10 integration steps are used between successive sensor readings.

Assume that for the small time interval t0 to t1 the gyro measurement stayed constant

at ω. It is desirable to find an expression that can estimate the vehicle location at time

t ∈ [t0, t1]. Looking at the expression for x we have

11

Chapter 3. Vehicle Odometry

Figure 2.6: Odometry Calibration Result With Gyro (Y)

Figure 2.7: Odometry Calibration Result With Gyro (θ)

12

Chapter 3. Vehicle Odometry

Figure 2.8: Odometry Calibration Result With Curve Length

x(t) = x(t0) +

∫ t1

t0

u cos(θ(t))dτ

= x(t0) +

∫ t1

t0

u cos(θ(t0) + ω(τ − t0))dτ

= x(t0) +
u

ω
(sin(θ(t0) + ω(t− t0)− sin(θ(t0))

(2.6)

the same can be done for y by

y(t0) = y(t0) +
u

ω
(− cos(θ(t0) + ω(t− t0) + cos(θ(t0)) (2.7)

Given such, as long as the sensor inputs stays constant, position estimates can be ob-

tained for any time and can therefore be used to smooth out the trajectory between

sensor measurements. A problem for this method is gyro drifting. After 10 mins run-

ning, gyro error become significant. One feature is implemented as a temporary solution

where the user can use the provided UI or joystick to stop the vehicle for 5 sec, read in

sensor reading and reinitialize all the state.

13

Chapter 3. Vehicle Odometry

Figure 2.9: Odometry Calibration Result With With Curve Length (Y)

Figure 2.10: Odometry Calibration Result With With Curve Length(θ)

14

Chapter 3

Localization And Mapping

Mapping building is the first step of any fully autonomous driving operations. The

vehicle needs to understand the environment to be able to navigate. Simultaneous

Localization and Mapping also known as SLAM is widely used for such map building

applications.

3.1 Map Building

In this project, the ROS package slam gmapping is used to create an occupancy grid map.

The algorithm utilizes an improved version of the Rao-Blackwellized Particle Filter for

learning grid maps that results in the reduction of sampling size, thus effectively reducing

computation time.

For the general problem of mapping with particle filters, the goal is to estimate the joint

posteriro p(x1:t,m|z1:t, u1:t−1) for the map m and trajectory x1:t. The Rao-Blackwellized

particle filter simplifies the problem by making the factorization

p(x1:t,m | z1:t, u1:t−1) = p(m | x1:t, z1:t) · p(x1:t | z1:t, u1:t−1) (3.1)

This factorization allows us to decouple the process of estimating the robot’s trajectory

and the map which greatly simplifys the problem. Given the above, the SLAM prob-

lem can be categorized into a four-step process of sampling - importance weighting -

resampling - map estimation. Because the length of trajectory increases over time, the

importance weighting step given by

15

Chapter3. Localization And Mapping

w
(i)
t =

p(x
(i)
1:t | z1:t, u1:t−1)

π(x
(i)
1:t | z1:t, y1:t−1)

(3.2)

can be very inefficient (π is the proposal distribution and p is the target distribution).

However if the proposal distribution can be restricted to fulfill

π(x1:t | z1:t, u1:t−1) = π(xt | x1:t−1, z1−t, u1:t−1 · π(x1:t−1 | z1:t−1, u1:t−2) (3.3)

then the weighting process can be massaged to a recursive form given by

wit =
ηp(zt | xi1:t, z1:t−1)p(xit | xit−1, ut−1)

π(xit | xi1:t−1, z1:t, u1:t−1)
·
p(xi1:t−1 | z:t−1, y1:t−2)

π(xi1:t−1 | z1:t−1, u1:t−2)

∝
p(zt | mi

t−1, x
i
t)p(x

i
t | xit−1, ut−1)

π(xt | xi1:t−1, z1:t, u1:t−1)
· wit−1

(3.4)

The contribution of gmaaping over conventional sampling based SLAM techniques with

grid maps is twofold. First, the proposal distribution is modified to consider the most

recent sensor measurement (if accurate) and sample only around that range. Second is

the introduction of an adaptive resampling technique based on the effective sample size

(Neff) measure to maintain a reasonable variety of samples. The proposal of the first

idea (modified proposal distribution) is motivated by the fact that if the measurement

model is highly concentrated (very precise) whereas the the proposal distribution is

highly distributed, it would take an enormous number of particles to produce a set

of weights that can accurately capture the target distribution. Assuming the target

distribution is unimodal, define an interval Li by

Li = {x | p(zt |it−1, x) > ε} (3.5)

and locally approximate the proposal distribution p(xt|mi
t−1, x

i
t−1, zt, ut−1) around the

maximum of the likelihood function as a Gaussian. Then for each particle, a scan-

matching algorithm can be used to provide the pose of maximum likelihood given the

map mi
t−1 and an initial guess, and in an interval (given by equation 3.5) around that

point a set of sampling points can be selected and their mean and covariance can be

calculated by

16

Chapter3. Localization And Mapping

uit =
1

ηi
=

K∑
j=1

xj · p(zt | mi
t−1, xj) · p(xj | xit−1, yt−1) (3.6)

Σi
t =

1

ηi
·
K∑
j=i

p(zt | mi
t−1, xl) · p(xj | xit−1, ut−1)

·(xj − µit)(xj − µit)T
(3.7)

where

ηi =
K∑
j=1

p(zt | mi
t−1, xj) · p(xj | xit−1, ut − 1) (3.8)

and the new pose of particle i can be drawn from this improved proposal distribution

(which also proves to be the optimal proposal distribution). And using newly generated

particles the weights can be computed as

wit = wit−1 · p(zt | mi
t−1, x

i
t−1, u

i
t−1)

= wit−1 ·
∫
p(zt | mi

t−1, x
′) · p(x′ | xit−1, ut−1)dx

' wit−1 ·
K∑
j=1

p(zt | mi
t−1, xj) · p(xj | xit−1, ut−1) = wit−1 · ηi

(3.9)

For the adaptive resampling process, the effective sample size given by

Neff =
1∑N

i=1(w̃i)2
(3.10)

is used to evaluate the performance of the current sample set in terms of representing

the target posterior. Neff can be viewed as a measure of dispersion of the weights

(similar to covariance), if Neff is too large, that means the estimated target distribution

is overly concentrated (or over-confident) which will result in the newly sampled particles

to lose diversity and ther efore could lead to localization failures. Therefore resampling

is only executed with Neff is below a threshold thereby not only preserving the variety

of particles but also reduces computational cost.

However,even with gmapping, the speed of realtime map generation is limited (map

update speed is 1 hz). Therefore, for the purpose of testing our control algorithm, a map

of the experimental environment is built in advance using the slam gmapping package

17

Chapter3. Localization And Mapping

Figure 3.1: Kinect Framework

view_frames Result

/optitrak

/map

Broadcaster: /link2_broadcaster
Average rate: 50.031 Hz

Most recent transform: -0.017 sec old
Buffer length: 4.897 sec

/odom

Broadcaster: /slam_gmapping
Average rate: 20.206 Hz

Most recent transform: 0.032 sec old
Buffer length: 4.850 sec

/base_link

Broadcaster: /car_control_output
Average rate: 99.867 Hz

Most recent transform: -0.664 sec old
Buffer length: 4.997 sec

/camera_rgb_frame

/camera_rgb_optical_frame

Broadcaster: /camera_base_link3
Average rate: 10.173 Hz

Most recent transform: -0.851 sec old
Buffer length: 4.817 sec

/camera_link

Broadcaster: /camera_base_link1
Average rate: 10.164 Hz

Most recent transform: -0.884 sec old
Buffer length: 4.821 sec

/camera_depth_frame

Broadcaster: /camera_base_link
Average rate: 10.174 Hz

Most recent transform: -0.673 sec old
Buffer length: 4.620 sec

/camera_depth_optical_frame

Broadcaster: /camera_base_link2
Average rate: 20.120 Hz

Most recent transform: -0.881 sec old
Buffer length: 4.821 sec

Recorded at time: 1394135888.891

and the AMCL(Adaptive MCL) package is then used for perception and provide the

vehicle’s position state estimates to the controller.

Two sensor are tested here for localization. The first is Kinect which is a low cost motion

sensor very popular for localization and mapping operations. The OpenNi ROS node

is well developed for the Kinect sensor with built-in sensor driver and image streaming

tools (package contained ROS nodes shown in figure 3.1). Here the Kinect point cloud

depth information is used to simulate laser information which makes implementation

of 2D SLAM methods possible. In addition, Kinect also has stereo vision and color

camera, that gives it the potential to obtain 3D map using RGDBSlam. Low sensor

detection range processing speed (10 fps) and resolution poses great limitation on the

usage of this sensor. Due to the above, a map(shown in figure 3.2) is generated by

using the slam gmapping package offline with the odometry and scan data logged from

teleoperating the vehicle.

The second is a Hokuyo laser range finder that gives a deg 240 detection angle range

and 10 hz of measurement frequency. This performance is well suited for the online

localization task that serves as the perception aspect of the controller

18

Chapter3. Localization And Mapping

Figure 3.2: Generate Occupancy Grid Map of Experimental Hallway

3.2 AMCL

The Adaptive Monte Carlo Localization (AMCL) is a localization package that imple-

ments the KLD-Sampling MCL Method for position tracking in 2D. The key to this

approach is to use a particle filter to adaptively vary the size of the sample set. The

result is a small sample size if the target distribution is tightly focused around a small

region and a larger sample size if it is distributed over a larger area (higher uncer-

tainty), and therefore bound the approximation error. Such an error is measured by the

Kullback-Leibler distance that measures the difference between two probability distri-

butions p and q given by

K(p, q) =
∑
x

p(x)log
p(x)

q(x)
(3.11)

and hence the name KLD. Although the KL-distance is not a metric, it is widely adopted

as a standard measure for evaluating such differences. Refer to [4] for more details on the

approach. In addition, the AMCL package utilizes assistive algorithms from [3] such as

sample motion model odometry, beam range finder model, likelihood field range finder model,

Augmented MCL, and KLD Sampling MCL. The open source implementation of AMCL

is published as a ROS package that takes in the laser scan message, necessary trans-

forms, an initial position and an occupancy grid map, and the outputs will be the

estimated robot pose, the estimated pose information of a set of particles maintained by

the algorithm as well as the tranforms necessary to map the results.

Error model is key to insure localization. Here, error model were obtained experimen-

tally by compare the Odomety result with motion capture.Base on sensor rate 10 hz,error

model is compute as below:

19

Chapter3. Localization And Mapping

Figure 3.3: AMCL In Motion

alpha1: Specifies the expected noise in odometry’s rotation estimate from the rotational

component of the robot’s motion.
∆θOdom−∆θmotionCapture

∆θmotionCapture
= 0.08

alpha2: Specifies the expected noise in odometry’s rotation estimate from translational

component of the robot’s motion.
∆θOdom−∆θmotionCapture

∆dismotionCapture
= 0.2

alpha3: Specifies the expected noise in odometry’s translation estimate from the trans-

lational component of the robot’s motion.
∆disOdom−∆dismotionCapture

∆dismotionCapture
=0.8

alpha4: Specifies the expected noise in odometry’s translation estimate from the rota-

tional component of the robot’s motion.
∆disOdom−∆dismotionCapture

∆dismotionCapture
=0.4

Because the experiment takes place in the hallway where no motion capture or other

method can provide exact location information. Figure 3.3 provides a screenshot of

the system in operation. The vehicle in the back represents the current position (as

estimated by amcl) while the vehicle in front is the goal position. The white lines are

laser readings of the environment. And the green arrows are the particles performing

the localization task. The particles eventually converge to a small region. Figure below

shows the location and orientation result from AMCL method and compares it with a

picture of the physical surroundings. In figure 3.4, the red frame is the world frame,

blue is the vehicle frame, white areas represent unoccupied space whereas black and grey

areas are occupied by obstacles. Comparing it with figure 3.5 we can observe that the

the generated map can reasonably represent the physical world.

——————————————————————–

Although various localization algorithms are available, due to the system requirements

20

Chapter3. Localization And Mapping

Figure 3.4: AMCL Localization Figure 3.5: Actual Robot location

and limitations, we found AMCL to be the most applicable package for this application.

Vehicle will mostly navigate in a planar region, thus a 2D map will be able to handle the

localization task. However, since AMCL doesn’t update the map, it is assumed for now

that navigation is done in a static environment. An implementation of the RGDB SLAM

is tested using Kinect but the image acquisition speed is limited to 2 hz which is not

enough for high speed online trajectory optimization, whereas the AMCL update speed

is based on laser data that is able to reach a 10 hz acquisition speed. Therefore based

o feasibility and system performance we have decided to use AMCL as our localization

method.

The major speed limitation is due to localization issue with high speed.Base on the

experiment data, Odometry accuracy doesn’t related to vehicle speed. However, the

error model might be the cause of inaccurate localization. Experiment were tested to

validate this assumption. In amcl, error model were setted as 500%,3.6 that the actual

error is larger than the experimental obtained error model.

21

Chapter3. Localization And Mapping

Figure 3.6: AMCL Odometry

22

Chapter 4

Trajectory Planning And

Tracking

This chapter serves as the theoretical core of this essay. In subsequent sections the under-

lying methods for optimal trajectory planning and tracking of the generated trajectory

are introduced along with a simulation of the optimal solver.

4.1 Dynamic Feedback Linearization

Dynamic Feedback linearization is a trajectory tracking approach that algebraically

transforms non-linear systems into linear systems, which proceeds by differentiating

the output y = h(x) enough time that the input appears linear and non-singular to

the output. By then the transformed linear system can be controlled using classical

methods. This is a easy-to-implement trajectory tracking scheme is used for various

validation tests at early stages of system integration.

4.1.1 Feedback Linearization for Simple Car Model

As a recap, the dynamics model for a simple car is given by

ẋ = u ∗ cos(θ)
ẏ = u ∗ sin(θ)

θ̇ = u
L tan(φ)

 (4.1)

23

Chapter 4. Trajectory Planning And Tracking

where the two inputs are [u, φ] that represents the driving speed and steering angle. It is

obvious from the above model that input and output are related in a nonlinear fashion.

Differentiating the first two equations in 4.1 twice results in

(
ẍ = u̇s cos(θ)− u2

s θ̇sin(θ)

ÿ = u̇ssin(θ) + u2
s θ̇cos(θ)

)
(4.2)

Define the virtual inputs as (
ẍ = v1

ÿ = v2

)
(4.3)

and the dynamic compensators as

ξ = u1 (4.4)

Also let

u2 = tan(uφ) (4.5)

The resultant differentiated dynamics can be factorized as

[
ẍ

ÿ

]
=

[
ξ̇cos(θ)− 1

Lξu
2
ssinθ

ξ̇sin(θ) + 1
Lξu

2
scosθ

]
=

[
cos(θ) − 1

Lξussin(θ)

sin(θ) 1
Lξuscos(θ)

][
ξ̇

u2

]
(4.6)

solving the above system of two equations simultaneously for [ξ̇, u2] gives

ξ̇ = v1 cos θ + v2 sin θ

u2 = ((v2 cos θ − v1 sin θ)/ξ2
(4.7)

let ~v = [v1, v2]T and ~y = [x, y]T , since ~v = ~̈y, a stable control law is given by

~v = ~̈yd − kp(~y − ~yd)− kd(~̇y − ~̇yd) (4.8)

To see that the above control is stable, equation 4.8 can be rewritten in a state space

form as

24

Chapter 4. Trajectory Planning And Tracking

Figure 4.1: Feedback Linearization controller simulation result

[
~̇y − ~̇yd
~̈y − ~̈yd

]
=

[
0 I

−kp −kd

][
~y − ~yd
~̇y − ~̇yd

]
(4.9)

for positive definite kp and kd, system 4.9 is globally asymptotically stable. And resulting

virtual inputs can be mapped to physical inputs using equation 4.7

With above control, a simulation is conducted in Matlab using the simple car model.

From start point X0 = [0, 5, 0] to goal point Xf = [5, 2.5, 0], the start and final velocity

are zero. The desired trajectory is generated by fitting a quintic (fifth order) polynomial

between the start and end points. Figure 4.1 below shows the simulation result.

4.2 Forward-Backward Sweep Method

Because what we are aimed at solving for is the local optimal trajectory and control,

it can be reasonably assumed that for small time intervals no path constraint is to be

imposed on the planner. Therefore the Forward-Backward Sweep Method (FBSM) [] []

can be a relatively easy to implement and effective way for solving such an optimization

problem. Assume that the discrete nonlinear system dynamics is given by

xi+1 = fi(xi, ui), (4.10)

25

Chapter 4. Trajectory Planning And Tracking

and here we use a linear quadratic cost function of the form

J0 = LN (xN) +

N−1∑
i=0

Li(xi, ui)

=
1

2
xT (N)Pfx(N) +

N−1∑
i=0

1

2
(xTi Qxi + uTi Rui)

(4.11)

and define the cost-to-go to be the above cost from current to the end (Ji = LN (xN) +
N−1∑
i
Li(xi, ui)). The goal is to locally optimize the Hamiltonian-Jacobi-Bellman (HJB)

value function at each step defined by

Vi(x) = min
ui:N−1

Ji(x, ui:N−1) (4.12)

and the above value at time i is written in a recursive form by

Vi(x) = min
u
Qi(x, u) = min

u
{Li(x, u) + Vi+1(fi(x, u))} (4.13)

where Q is the unoptimized value function. To minimize Q at step i, the perturbation

around i is defined as

∆Qi(δxi, δui) = Li(xi+δxi, ui+δui)−Li(xi, ui)+Vi+1(f(xi+δxi, ui+δui))−Vi+1(xi, ui)

(4.14)

Expanding the above equation to second order results in

∆Qi ≈
1

2

1

δxi

δui

T

0 ∇xQTi ∇uQTi
∇xQi ∇2

xQi ∇xuQi
∇uQi ∇uxQi ∇2

uQi

1

δxi

δui

 (4.15)

Given the principle of optimality, the choice of δui should minimize ∆Q, in other words

∂∆Q

∂δui
= 0 (4.16)

which gives the optimal δu as

δu?i = Ki · δxi + αiki (4.17)

26

Chapter 4. Trajectory Planning And Tracking

Figure 4.2: Feedback Linearization controller simulation result

where

Ki = −∇2
uQ
−1
i ∇uxQi (4.18)

ki = −∇2
uQ
−1
i ∇uQi (4.19)

and α is the step size chosen such that the controls result in a sufficient decrease in the

value function.

With the above conclusions, a forward-backward process can be implemented to calculate

the controls that yield locally optimal trajectory according to the designed cost function.

The algorithm first steps backwards in time and recursively find Ki and ki as defined

in equations 4.18 and 4.19. Incorporating these values with the system dynamics, the

controls are then updated forward in time. This forward backward process is repeated

until convergence of the cost function. Details on the step-through of the algorithm is

provided in Appendix C. This method is simulated in ROS with visualization results

shown in figure 4.2. The vehicle in the back and front illustrates current and goal

position respectively, and the blueline denotes the computed optimal trajectory.

27

Chapter 5

Results And Discussion

5.1 Experiment Description and Results

This chapter shows some of experimental results along with discussions of their signifi-

cance. Given the floor map shown in Chapter 3, the vehicle is to autonomously navigate

itself through the area while avoiding obstacles.

The path that the vehicle takes should also be locally optimal according to the calculation

in the previous chapter. The relationship between the vehicle and world frame as well

as the definition of frames within the vehicle is illustrated in Appendix B. It is necessary

to not that since the brushless motor that drives the vehicle has a large minimal speed,

while the AMCL method cannot provide an accurate estimate if robot runs at high speed

Figure 5.1: Computed vs. Actual Trajectory in Controller Testing

28

Chapter 5. Results and Discussion

Figure 5.2: Video Screenshot

(state update is not able to catch up with actual position change). Therefore parameter

optimization is limited on control of velocity input signal by setting very small R in

the cost function given by 4.11. Figure 5.1 shows the FBSM computed optimal/desire

trajectory compared to the actual executed trajectory record by motion capture in an

in-lab calibration test. We can see that the overall trend is correct and the discrepency

is within a relatively small range (max around 20cm). The short distance traveled is

due to limited lab space.

Global trajectory is pre-selected as the red dots showing in the figure 5.2. The goal

speed was assumed constant. Blue line in the same figure shows local optimal trajectory

computed using the Direct Sweep Method. The algorithm uses the vehicle’s current

location as the initial position and last step speed as initial speed. Final position is the

5th closet point in global trajectory in the direction of the current heading. The result

demonstrates that mobile robot was able to track the trajectory for 10 loops at 1 m/s.

The video compares real world vehicle view (recorded using the onboard Kinect) with the

Rviz visual environment (with the graphics generated by sensor and command messages).

The Video in the attachment shows the entire process of loop trajectory optimization

and tracking. Note that the vehicle is manual stopped on the end off the hallway due

the internet connection lose.

5.2 Future Work

Although odometry is not suppose to give perfectly accurate localization. But improving

odometry result over time will certainly result in a better localization performance. With

a better odometry model, the number of particles used for localization can be reduced

which gives a faster computational time and a higher rate of state update.

The magnetometer is there to provide a constant reference (magnetic north) which

compensates for the drift of the gyroscope. Therefore fusing the gyro and magnetometer

29

Chapter 5. Results and Discussion

information can greatly enhance the accuracy of odometry. There is an IMU(Inertial

measurement unit) built into the Arduino Auto pilot board, which in addition to the gyro

contains a magnetometer as well as an accelerometer. But with the current hardware set

up, several magnets are used for the battery case cap which affects the magnetometer

measurement dramatically. Therefore future design can include removing sources of

magnetic interference and incorporating additional sensors for noise removal and higher

accuracy orientation estimation.

Figure 5.3: issue with trajectory

The orientation of the vehicle ranges for

from −π to π and the solver computes

trajectory only in this range. The result-

ing issue that arises is shown in the fig-

ure below. With a starting heading of

θ0 = −3rad and a goal of θf = 3.1rad, the

solver will calculate optimal control input

as turning in the direction that crosses

zero (since mathematically there’s only

one direction to go from -3 to 3.1 on the

real line). But simply by adding a 2π wrap-around doesn’t completely solve the prob-

lem. This issue renders the optimizer to give suboptimal trajectories in situations like

this and is worth the effort to look at in the future.

30

Chapter 6

Conclusion

This essay aims at introducing a complete system integration process for high speed/low

cost autonomous navigation testbeds from hardware to software and finally choice of

perception and control schemes. Limitations on both the hardware processing power

and software computational time restricts how high a speed the vehicle can accurately

and reliably navigate itself. The proposed system uses a collection of standard off-the-

shelf mechanical and electrical components. At the time of experimentation, the onboard

computer used is not powerful enough to handle the localization and control algorithms,

so this part is done on a host laptop and onboard computer handles only collection of

sensor data and execution of command given by the host computer. Communication is

established via the Wifi network and a large restriction on the overall performance is

imposed by communication speed and reliability (drop of packets, lost connection, etc).

Therefore it is worthwhile to try and migrate all compution onto the vehicle which makes

the system more closely meet the standard of full autonomy. The choice of gmapping

as our SLAM method due to its ability to draw particles in a more accurate way and

thus dramatically reduces the required number of samples and unncecessary resampling

actions. For our online localization algorithm, AMCL is chosen for its simplicity in

terms of implementation as well as adequate perform for our purposes. The Forward-

Backward Sweep Method is used as our locally trajectory planning and tracking scheme

given its effectiveness in generating locally optimal trajectories while also providing a

feedback control law. Overall the proposed system has achieved stable and continuous

autonomous navigation circumventing the close loop hallway as described in chapter 3

with an average speed of 1 m/s. Much room exists for discussion and improvement,

but this essay serves as a detailed guidance in implementing related systems as well as

considerations necessary in the choice of navigation schemes.

31

Appendix A

Experiment procedure

1. Set-up system hardware and joystick control

2. Feedback linearization control using motion capture to localize

3. sweep method and dynamic programming control using motion capture localize

4. Kinetic visual slam using motion capture fake odometry

5. Slam using laser sensor and fake odometry

6. slam gmapping with kinematic model odometry

7. Integration of Slam and differential dynamic programming

32

Appendix B

System Frames

The following are detailed diagrams showing the correlation of different frames used by

the system, the node that publishes them (broadcaster) as well as their rate of broadcast.

This information is important in terms of verification that the system is software-wise

integrated properly and is very useful for debugging purposes.

Figure B.1: Position of The Vehicle Relative to The World

33

Appendix A. List of Project step

Figure B.2: Vehicle Body Frames

Figure B.3: system frames

34

Appendix C

Forward Backward Sweep

Method

As mentioned in Chapter 4, the backwards sweep finds the coefficients Ki and ki as

defined in equations 4.18 and 4.19. Detailed steps are given by (according to [5])

Vx = ∇LN (C.1)

Vxx = ∇2
xLN (C.2)

k = N − 1→ 0 (C.3)

Qx = ∇xLi +ATi (Vxx)Ai (C.4)

Qu = ∇uL+BTVx (C.5)

Qxx = ∇2
xLi +ATi (Vxx)Ai (C.6)

Quu = ∇2
uLi +BT

i (Vxx)Bi (C.7)

35

Appendix C. List of Project step

Qux = ∇u∇xLi +BT
i (Vxx)Ai (C.8)

ki = −Q−1
uuQu (C.9)

Ki = −Q−1
uuQux (C.10)

Vx = Qx +KT
t Qu (C.11)

Vxx = Qxx +DTQux (C.12)

While the forward sweep updates the controls by

δx0 = 0, (C.13)

V0
′ = 0 (C.14)

k = 0→ N − 1 (C.15)

u′i = ui + αki +Kiδxi (C.16)

x′i+1 = fi(x
′
i, u
′
i) (C.17)

δxi+1 = x′i+1 − xi+1 (C.18)

V ′o = V ′o + Li(X
′
i, u
′
i) (C.19)

V ′o = V ′0 + LN (x′N) (C.20)

36

Bibliography

[1] G. Grisetti, C. Stachniss, and W.Burgard. Improved Techniques for Grid Mapping

With Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics, 2007.

[2] G. Grisetti, C.Stachniss, and W.Burgard. Improving Grid-based SLAM with Rao-

Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling. In

ICRA Robots and Automation, 2005.

[3] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT Press, 2006.

[4] Dieter. Fox. Adapting the Sample Size in Particle Filters Through KLD-Sampling.

Internation Journal of Robotics Research, 22, 2003.

[5] M. Kobilarov. EN530.603 Applied Optimal Control EN530.603 Applied Optimal

Control. Lecture 9: Numerical Methods for Deterministic Optimal Control, October

2013.

37

Biographical Statement

Ying Xu was born July 5th,1989 in Wuhan, China. She completed her undergraduate

studies at Iowa State University in Mechanical Engineering. After that she started her

graduate work at Johns Hopkins University, Baltimore obtained he MSE in Mechanical

Engineering under the Robotics Track in 2014.

38

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 System Set-up
	1.2 Mobile Base Hardware Set-up
	1.2.1 Sensor Calibration

	1.3 Software Set-up
	1.4 Control and Safety Feature

	2 Vehicle Odometry
	3 Localization And Mapping
	3.1 Map Building
	3.2 AMCL

	4 Trajectory Planning And Tracking
	4.1 Dynamic Feedback Linearization
	4.1.1 Feedback Linearization for Simple Car Model

	4.2 Forward-Backward Sweep Method

	5 Results And Discussion
	5.1 Experiment Description and Results
	5.2 Future Work

	6 Conclusion
	A Experiment procedure
	B System Frames
	C Forward Backward Sweep Method
	Bibliography
	Biographical Statement

