

High throughput, in-line coating metrology development for SOFC manufacturing (DE-FE0031178) – 24 month program

Sean Bishop (PI), Tom Langdo, and Bryan Blackburn Redox Power Systems, LLC, College Park, MD

> Project Partner: Mike Ulsh and Peter Rupnowski NREL, Golden, CO

> > 11/30/2017



#### • Sean Bishop (PI), Sr. Materials Engineer

- Expertise in materials characterization, processing, design and defect modeling
- Expertise in thin film coatings and characterization
- Project management experience for large R&D groups at MIT and Kyushu University (Japan) focused on SOFC and related materials characterization and development
- Bryan Blackburn, CTO
  - Expertise in SOFC materials /stack / reformer development, design/test of electrical and mechanical systems, and manufacturing
  - Currently PI on 3 large Dept. of Energy SOFC projects (NETL, ARPA-E)
  - Project management experience leading teams of dozens of engineers working on materials, subsystems, and systems development
- Thomas Langdo, VP of R&D
  - Expertise in the design, fabrication, and manufacturing of advanced materials, solid state devices, and microelectronics
  - Expertise in SOFC materials scale-up, techno-economic analyses, and stack development



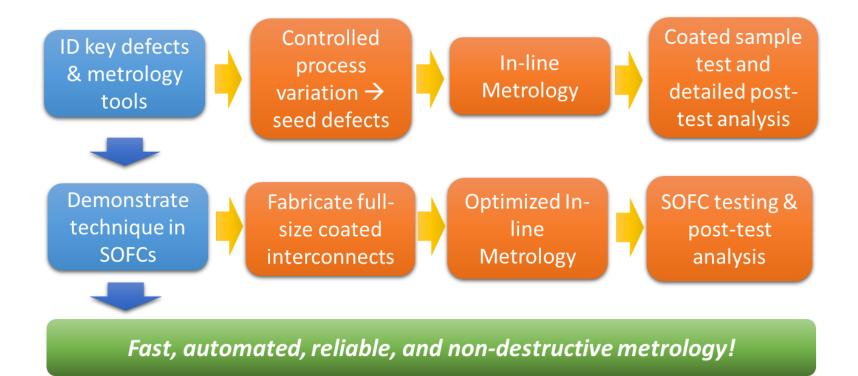
### Introduction to Partner

#### National Renewable Energy Laboratory (NREL)

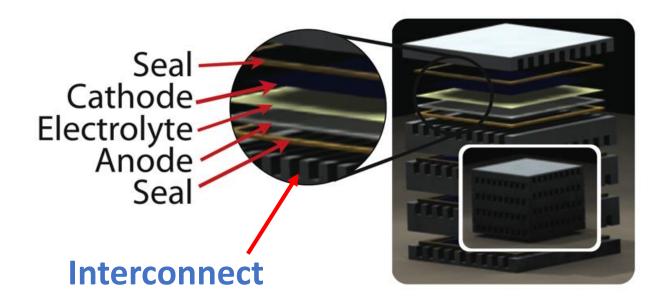
- Mike Ulsh, Sr. Engineer and Fuel Cell Manufacturing Project Lead
  - Expertise in evaluating and developing diagnostics for in-line quality control for manufacturing of fuel cell component materials
  - Expertise in studying impact of manufacturing defects on durability and performance of components
  - Interacts with industry on understanding and addressing barriers to highvolume production of fuel cell materials and systems
- Peter Rupnowski, Materials Scientist
  - Expertise in manufacturing level metrology techniques for SOFCs, polymer electrolyte fuel cells, and solar cells



### Relevance: Project Objectives


• **Purpose:** Lower cost and increase lifetime of SOFC stacks using high throughput, in-line, early defect detection techniques on protective interconnect coatings.

#### • Objectives:


- Identify key interconnect coating and substrate defects that lead to coating failure through the use of detailed characterization methods (e.g., microscopy, XRD, EDS, electrochemistry);
- Assess capabilities of in-line metrology techniques, e.g., optical profilometry (Redox) and thermography (NREL), to probe these defects, or evidence thereof;
- Demonstrate long-term performance of short stacks (1 to 3 cells) using coated interconnect having a low defect count, as identified by in-line metrology.

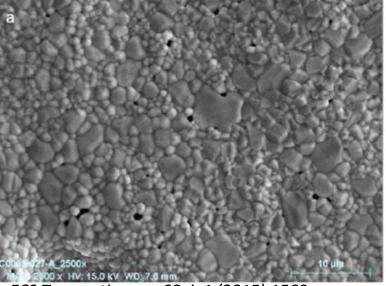


### (REDOX) Schematic of Objectives








- Transfers current from cathode to anode
- Dense gas barrier between anode and cathode compartments
- May serve as a gas distribution layer
- High temperature stability typically requires use of Cr containing alloys (e.g., stainless steel and Crofer)



### **(REDOX)** Role of the Interconnect Coating



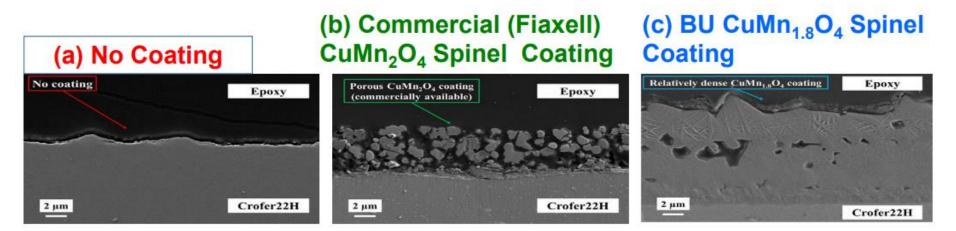
**Coating surface** 



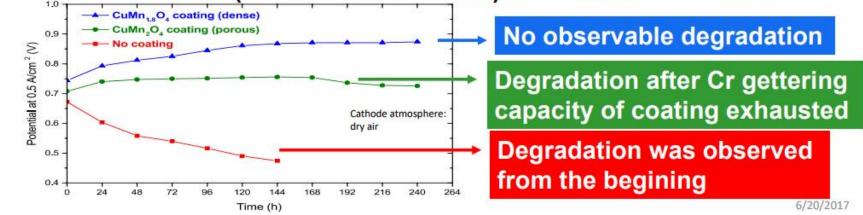
PNNL report ID: PNNL- 17568, May 2008

ECS Transactions, v. 68, i. 1 (2015) 1569

Protective coating applied to the interconnect surface:


- Barrier to Cr transport from the interconnect to the electrode (prevent cathode poisoning)
- Barrier of inward oxygen migration to the interconnect (block resistive oxide film growth)

 $(Mn,Co)O_{A}$  (MCO) is a commonly used barrier coating layer


### Defects in coating (e.g., porosity, cracks) inhibit coating and **SOFC** performance



Cell Performance Degradation depends on Interconnect Coating Quality



Cell Performance (Potential at 0.5 A/cm<sup>2</sup>) as a Function of Time:



S. Gopalan, 18th Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting, June 2017, Pittsburgh, PA



### **(REDOX)** Key Coating Defects

| Defect                                                | Impact on SOFC                                                                                                  | Severity       |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------|
| Through thickness<br>crack                            | Cr induced degradation                                                                                          | High           |
| Delamination                                          | Increased coating resistance                                                                                    | High           |
| Spallation                                            | Increased coating resistance and Cr induced degradation                                                         | High           |
| Coating porosity                                      | Increased coating resistance,<br>decreased coating mech.<br>integrity                                           | Low-<br>Medium |
| Coating-substrate<br>interface porosity               | Increased coating resistance, increased delamination risk                                                       | Medium         |
| Inhomogeneous or<br>out-of-spec. coating<br>thickness | Non-uniform current distribution<br>(hot spots), high coating<br>resistance, and/or non-uniform<br>layer stress |                |
| Inhomogenousorincorrectcoatingcomposition             | Incorrect electrical, mechanical,<br>and materials compatibility<br>properties                                  | Medium         |

Many defects exist

- Level of their impact on cell performance not well documented •
- High throughput defect detection techniques not characterized or well-٠ developed



Most common

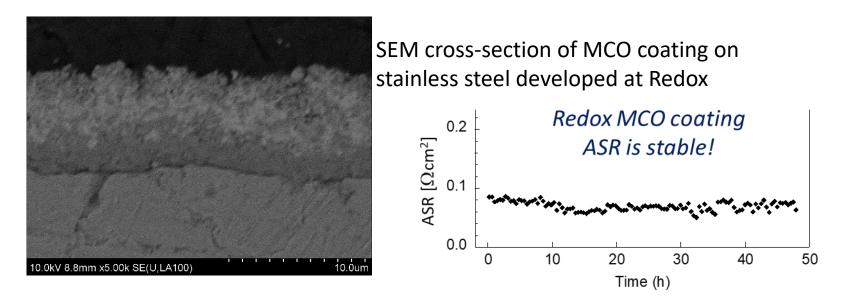
### Coating Qualification State of the Art

| Technique          | Measured parameter                                                    | Automation for<br>interconnect    | Speed for<br>large area<br>scan | Non-<br>destructive |
|--------------------|-----------------------------------------------------------------------|-----------------------------------|---------------------------------|---------------------|
| Tape peel test     | Film adhesion                                                         | Yes                               | Fast                            | Yes                 |
| Mass               | Film thickness                                                        | Yes                               | Fast                            | Yes                 |
| Scratch test       | Film adhesion                                                         | Yes                               | Slow                            | No                  |
| SEM/EDS/TEM        | Cracks, pores, film<br>uniformity, subsurface<br>defects /composition | No                                | Slow                            | No                  |
| XRF                | Composition                                                           | Yes                               | Slow-<br>Medium                 | Yes                 |
| Indentation        | Mechanical properties                                                 | Yes                               | Slow                            | Possibly            |
| Ellipsometry       | Film thickness                                                        | No, requires<br>uniform substrate | Fast                            | Yes                 |
| X-ray tomography   | tomography Microstructure                                             |                                   | Slow                            | Yes                 |
| X-ray diffraction  | X-ray diffraction Composition                                         |                                   | Slow                            | Yes                 |
| Raman Spectroscopy | Local atomic arrangement                                              | Yes                               | Slow                            | Yes                 |

- Fast techniques yield only limited information (only rough estimate of coating thickness and adhesion)
- Other common measurements are labor intensive, destructive, and typically only evaluate a small part of the specimen
- Less common measurements are too slow for rapid evaluation or only for featureless substrates Redox Power Systems LLC – 11/30/2017



### (REDOX) Redox Approach


| Technique                   | Measured parameter                                       | Automation for<br>interconnect | Speed for<br>large area<br>scan |     |
|-----------------------------|----------------------------------------------------------|--------------------------------|---------------------------------|-----|
| <b>Optical Profilometry</b> | Cracks, pores, film<br>uniformity                        | Yes                            | Fast                            | Yes |
| <b>Optical Reflectance</b>  | Cracks, pores, film<br>uniformity                        | Yes                            | Fast                            | Yes |
| Thermography                | Cracks, pores, film<br>uniformity, subsurface<br>defects | Yes                            | Fast                            | Yes |

High-throughput, in-line techniques for manufacturing-scale defect identification



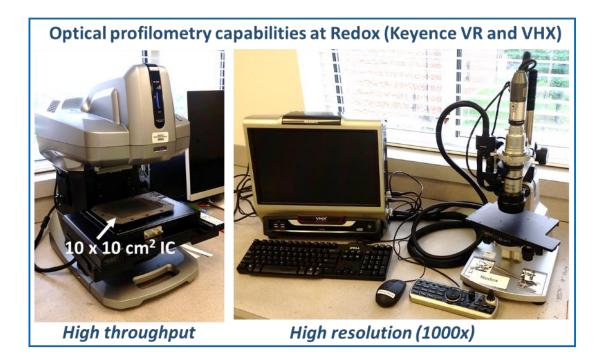
### Coating Fabrication at Redox

• Sprayed MCO coatings followed by standard annealing methods (reducing atmosphere followed by oxidation to achieve, dense oxide coating)



• Obtain commercial coatings for comparison (e.g., Fiaxell)




- Identify key interconnect coating and substrate defects that lead to coating failure through the use of detailed characterization methods (e.g., microscopy, XRD, EDS, electrochemistry);
- 2. Assess capabilities of in-line metrology techniques, e.g., optical profilometry (Redox) and thermography (NREL), to probe these defects, or evidence thereof;
- 3. Demonstrate long-term performance of short stacks (1 to 3 cells) using coated interconnect having a low defect count, as identified by in-line metrology.

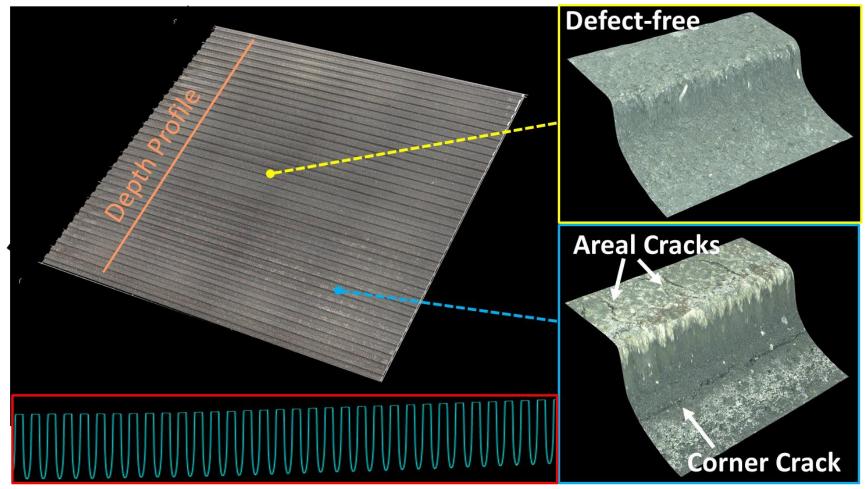


- Deposition of coatings on interconnect test coupons and full-size (~10 cm x 10 cm) interconnects.
- Procurement of commercially coated substrates for tests and benchmarking of Redox coatings.
- ASR Testing of coupons in SOFC-like environments (e.g., annealing in air at 650 °C)
- Detailed post-test characterization of coatings, including morphology and compositional characterization with SEM and EDS of cross-sections and phase purity with XRD
- Intentional introduction of defects (e.g., cracks, porosity) in coatings by control of processing parameters (e.g., deposition rate, particle fraction, temperature of thermal treatment).
- Identification of key coating-related defects that lead to degradation of SOFC performance (e.g., increase in coating resistance, Cr contamination of cathode).



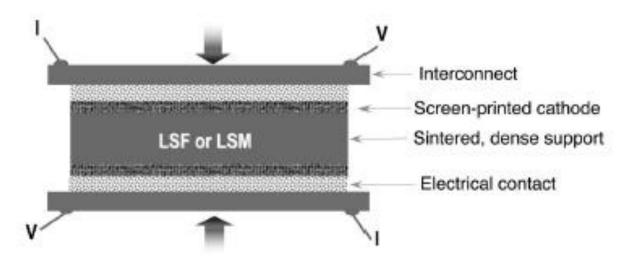
### **(REDOX)** 1. Coating Evaluation at Redox




- Optical profilometry at Redox
- SEM, EDS, and XRD available to Redox through UMD



### 1. Optical Profile of Coated Interconnect


#### High throughput macroscope

#### High resolution microscope



Develop methods to rapidly identify defective coatings

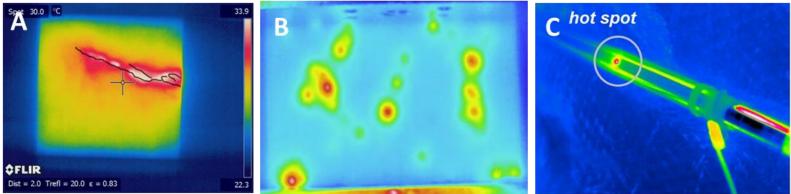
## **(REDOX)** 1. Coating Electrical Evaluation



International Journal of Hydrogen Energy, v. 32 (2007) 3648

Setup at Redox to evaluate area-specific-resistance (ASR)




### 2. Assess Capabilities of In-Line Metrology Techniques

- Evaluation of high throughput optical profilometry techniques at Redox, and optical and thermography techniques at NREL to identify inhomogeneities (i.e., defects) in interconnect test coupons before and after coating.
- Optimization of in-line metrology (e.g., down-select available techniques, improve data analysis methods, optimize metrology hardware parameters) to demonstrate that key coating-related defects or evidence of their existence can be identified.
- Screening MCO coated full-sized interconnects for key defects with in-line metrology techniques to identify defect-free and defective components.



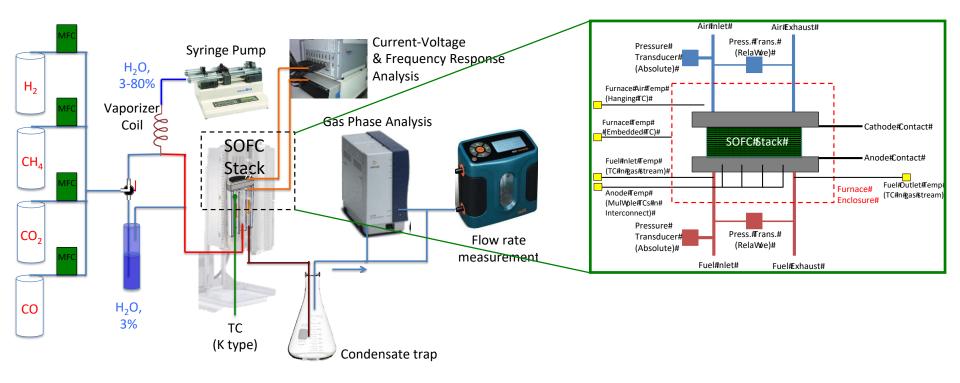
### **(REDOX)** 2. In-Line Metrology at NREL

#### Thermography at NREL



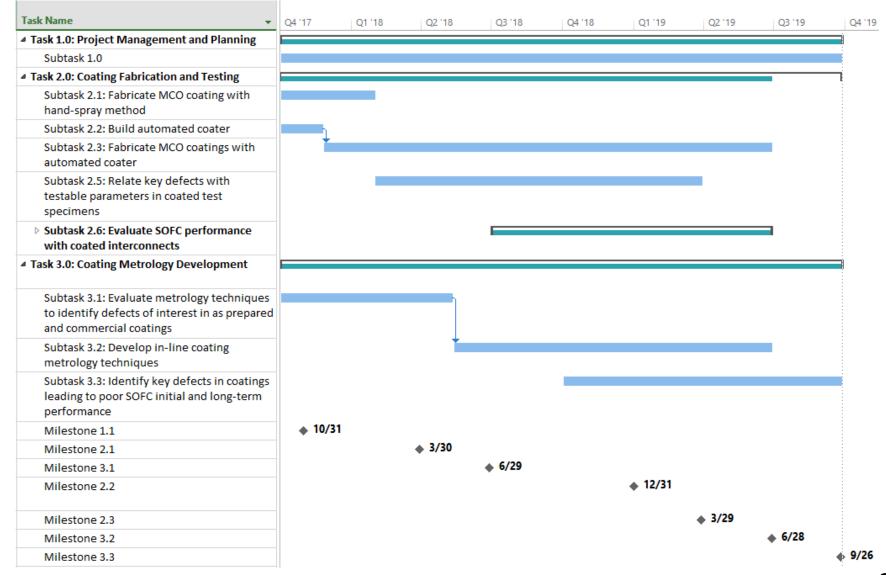
(a) in-plane measurement of a crack on the surface of a GDL, (b) through-plane measurement of shorts in a PEM cell caused by GDL fibers penetrating the membrane during hot-pressing, (c) electrical short identified as hot spot in a tubular SOFC.

# B Manual In. 18. 18


#### **Optical Diagnostic Platform at NREL**

(a) electrolyte-layer scratch in a fired planar SOFC subassembly, (b) electrolyte-layer flaws in a tube SOFC cell.

And macroscope at Redox




Demonstration that optimized in-line metrology methodology can successfully detect coating-related defects in full-size interconnects and extend operational lifetime of SOFC stacks.





### (REDOX) Project Schedule





| Milestone | Project Accomplishment                                                                                                             | Due           | Success Criteria                                                                                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1       | Hold a kick-off meeting with NREL and Redox                                                                                        | Q1<br>(12/17) | Review overall project plan and scope.<br>Formulate more detailed near term plan.                                                                                             |
| 2.1       | Demonstrate uniform coatings achievable with automated coater                                                                      | Q2<br>(3/18)  | Fabricatedautomatedcoatersystem,demonstration of uniform coatings with SEM.                                                                                                   |
| 2.2       | Demonstrate high stability and low ASR with<br>low defect (determined by in-line metrology)<br>interconnect samples                |               | Demonstrate ASR of < 0.05 ohm-cm <sup>2</sup> at 650 °C for 1,000 hours                                                                                                       |
| 2.3       | Demonstrate that low defect coatings on<br>interconnects (screened using in-line<br>metrology) have low volatilization of chromium |               | Demonstrate Cr volatization at 650 °C for 1,000<br>hours as detected using Cr-getter material is < 5<br>at% increase above baseline.                                          |
| 3.1       | Use in-line metrology to identify initial key defects of interest                                                                  | Q3<br>(6/18)  | Demonstrate capability to identify initial key defects of interest with in-line metrology                                                                                     |
| 3.2       | Demonstrate capability to identify as determined in this program key defects of interest with in-line metrology                    |               | Down-selection of initial key defects of interest<br>to defects demonstrated to increase ASR or Cr<br>volatility. Identification of these defects with in-<br>line metrology. |
| 3.3       | Demonstrate low cell power degradation per<br>1,000 hours of low-defect interconnects in<br>SOFCs                                  | Q8<br>(9/19)  | Demonstrate < 0.4% cell power degradation per<br>1,000 hours of low-defect interconnects used in<br>SOFC short stack (1 to 3 cells) test at a single<br>fixed load at 650 °C  |



| Description of Risk                                      | Probabilit<br>y (L,M,H) | Impact<br>(L,M,H) | Overall<br>Degree of<br>Risk<br>(L,M,H) | Risk Management Mitigation and Response<br>Strategies                                                                                                                                                 |
|----------------------------------------------------------|-------------------------|-------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technical Risks:                                         |                         |                   |                                         |                                                                                                                                                                                                       |
| Cannot detect defects with in-line metrology             | Medium                  | High              | Medium                                  | Multiple in-line metrology studies are being<br>evaluated<br>Experts in metrology are subcontracted in the<br>program                                                                                 |
| Automated coater<br>does not provide<br>uniform coatings | Medium                  | High              | Medium                                  | Redox has previously demonstrated ability to achieve<br>uniform, dense coatings<br>A range of processing conditions will be utilized to<br>optimize coating process, but will extend time for<br>task |
| ASR and Cr volatility may be excessive                   | Medium                  | Medium            | Medium                                  | Excessive Cr volatility and ASR may be corrected<br>through coating optimization<br>Despite issue, does not take away from key outcome<br>of project: identification of defects                       |
| SOFC cell and stack may degrade too fast                 | Medium                  | Medium            | Medium                                  | Degradation related to Cr will be alleviated as<br>performed in above risk.<br>Despite issue, does not take away from key outcome<br>of project: identification of defects                            |