

Hilti welcomes you to the world of innovative products and quality services

Agenda

Hilti Introduction

Post Installation of Rebar - Basics

Post Installation of Rebar - Design Concepts and Calculations

Post Installation of Rebar - Application

Open Session - Queries & Feedback

•Hilti is one of the World's leading companies specialized in the field of fastening and demolition systems in the construction industry

- Quality
- Innovation
- Extensive application knowhow resulting from close contact with customers

Principality of Liechtenstein

Hilti Group
More than
19000 employees
worldwide
About 1'600 in
Liechtenstein

Liechtenstein
 35'000 citizens
 162 square kilometres

Production Network

PRESENCE OF HILTI IN INDIA - 2010

A complete coordinated offering from Hilti

Nov 2011

Post-Installed Rebarring Technology

Rebar Grouting

What Is Rebarring

Adding reinforcement to an existing concrete structure such that the structure behaves as a cast in structure

How Is Rebarring Done

- Drill Hole in Concrete based on design
- Fill it with chemical
- Insert rebar and allow for chemical curing

Applications

A) Simply Supported Connections

- Adding beam between columns
- Casting slab in a cutout

B) Spliced Connections

- Extension of column
- •Extension of beam/ slab
- Casting slab in a cutout

C) Moment Connections

- Column from Raft/ Pile cap
- Cantilever beam from column
- Bracket on column

D) Shear Connectors

- •Thickening of slabs/ raft
- J bolting while jacketing

Need for post-installation of rebars

Post-installation is necessary when there is a rebar misplaced or completely missing due to error in construction

Corrections or additions to be made due to architectural changes or for additional strength

Extention of slabs, balconies & stairs

Extention of columns, beams & walls

Rebar Grouting

Outcome

- No damage to existing concrete (Cost saving on prepare & repair)
- Precise controlled application (Quality of work & Speed)
- Flexibility in designs

Role of Designer

- To Provide Safe Design
 - Right Embedment depth
 - Right Steel details
 - Right chemical

What is Different Now?

- Flow of forces in existing concrete?
- Modes of failure?
- Is it in alignment with the existing code?
- What is different from existing codes?

Simply Supported Connections

Challenge: For what force is embedment to be calculated?

{CI 6.5.1 (1), EC2:EN 1992-1-1:2004}

{CI 5.6.4, EC2:EN 1992-1-1:2004}

Simple Supported Joints

 $T = (V \cot \theta)/2$

 $T = total tension developed = V/2 X cot(\theta)$

V = applied shear load

 θ = Angle between Tension Cord of steel & Compression Strut (45° > θ > 21.8° as per Euro code 6.2.3)

$$T = 1.11 V$$

Calculation of Embedment Depth

Load on Rebar <= Resistance Offered by Rebar

Failures to be Checked

- Bond
- Splitting
- Steel

$$\begin{split} \ell_{b,rqd} &= (\phi/4) \cdot (\sigma_{sd} \, / \, f_{bd}) \\ \ell_{bd} &= \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_4 \cdot \alpha_5 \cdot \ell_{b,rqd} \geq \ell_{b,\text{min}} \\ l_{bd,spl} &= \frac{\phi}{4} \cdot \frac{\sigma_{sd}}{f_{bd}} \cdot \alpha_2 \quad \Longrightarrow \alpha_2 = 1 - 0.15 \cdot \frac{c_d - \phi}{\phi} \quad \text{When C/d <=3} \\ &\longrightarrow \alpha_2 \text{'} = \frac{1}{\frac{1}{0.7} + \delta \cdot \frac{c_d - 3 \cdot \phi}{\phi}} \quad \text{When C/d >3} \end{split}$$

Splitting

Figure 2b: Splitting

Figure 2c: Spalling

Failure mode of rebars depends on concrete cover

HIT-Rebar design method (Splitting design) considers the real adhesive bond strength

This makes ductile design possible for moment resisting connections with straight bars

Validation on basis of consolidated tests

Several pull-out tests have been conducted to check consistency in performance

Moment Connections

Finding Safe Embedment

- Find Basic Anchorage Length (I_b) due to Splitting/ Bond for Force T1
- Calculate $L_{inst} = c_u + Z_{1r} \tan(\theta) + I_b/2$

$$T_1 = M_1/z_{1R} + N1/2 + V/2 \text{ Cot } (\theta)$$
 $Z_{1R} = 0.9 \text{ d}$
 $30^\circ < \theta < 60^\circ$

Additional Checks

- 1. Concrete Capacity against Compressive Strut
- 2. Capacity of perpendicular rebars against additional forces
- 3. Tensile Capacity of Concrete Against Splitting Forces

Splice Connections

- Load Transfer Mechanism: 45° Compressive Struts
- Ideal Clear Spacing between bars < 4ΧΦ

Calculation Steps

1. Calculate Load T1

$$T_1 = M_1/Z + N_1/2 + V/2 Cot(\theta)$$

- 2. Find Embedment Required for Post-Installed Rebar
 - Use Hilti Method to Check for Bond/ Splitting
- 3. Find Embedment Required for Cast-In Rebar
 - Use Regular Country Codes (EC2, IS 456)
- 4. Required Splice Length = Max (Post Installed; Cast-In)
- 5. Multiply with Additional Factor $\alpha_6 = 1.5$

Summary

- HIT-Rebar design method overcomes code limitations and hence provides post-installed solutions otherwise not feasible
- Use HIT-Rebar design method to utilize the full bond strength of the Hilti adhesive by going beyond Eurocode 2

Beyond Design...

Chemical Selection may depend on parameters like:

- Temperature range (long/ short)
- Drilling method
- Effect of chemicals
- Creep Behaviour etc...

Special Care in Application with Deep Embedment

- Proper Cleaning
- Usage of Piston Plug
- Application Video..\..\Rebarring\Rebar campaign\Profikit video\HILTI-REBAR-MOVIE-V2.0EN.mpg

Nov 2011

Hilti Support to Designers

- Provide Calculation Reports as per EC2/ EOTA TR 023/ Hilti Rebar Method
- Provide tools for calculation Software Profis Rebar, Manuals etc.
- Provide Technical Approvals/ Certificates
- Testing at Site
- Training on Software

Hilti Services

Design (Free of Charge)

- Selection of Chemicals
- Design based on international codes
- Specifications
- Rebar Pull-out Testing at site

Application

- Training at site(Free of Charge)
- Trained applicator Network
- Repair facilities for all tools used in rebar grouting applications

Thank You Ashish Mittal (9811150266)