
Operating Systems Lecture 02 page

History of Operating Systems

Why review the history of OSs?
Seeing how OSs developed shows the link between the

capabilities of hardware and the design of OSs.
It explains why OSs are as they are now.

History seems to repeat.

This figure and some others in the slides are from an earlier version
of the prescribed text Operating Systems Concepts (8th edition) by
Silberschatz, Galvin and Gagne.

1 Operating Systems Lecture 02 page

1950s

2

UNIVAC 1

Operating Systems Lecture 02 page

Total Control

Circa 1950s

Computers were very expensive.

Users (they were all programmers) booked the
whole machine. They had to:
• prepare their program and data cards
• do all the setup and loading required
• control the computer through console switches
• debug using console lights and switches

This required a large amount of knowledge
about the computer and peripherals.

Inefficient use of the machine.

Computers could execute 10s of thousands of
instructions per second.  
But they were idle almost all the time.

3 Operating Systems Lecture 02 page

COMPSCI 101 1950’s style

• clear computer storage
• ready the compiler paper tape
• ready the tape for the compiled output
• put the source code cards in the card reader
• set the switches to load the compiler
• start the compiler
• if errors - work out what they are and try again
• clear computer storage
• ready the compiled object tape (still needs linking)
• ready the i/o subroutines tape and linker
• ready the tape for the output runnable program
• load and run the linker
• ready the printer or output tape
• clear computer storage
• ready the runnable program tape
• put the data cards in the card reader
• load and run the program
• if errors – work out what they are and try again

4

Operating Systems Lecture 02 page

What did the OS look like?

Most of the OS at this stage was comprised of
the decisions and actions of the user.

There were rudimentary components such as
standard IO routines which were the
forerunner of device drivers and system
calls.

• No memory management – every address was
reachable.

• No file system – the user loads the correct tapes.
• Security – the door could be locked.
• IO was polled for - no need for anything faster
• Some standard IO routines – useful code to read and

write to tape and printers.
• Only one program at a time.
• No problems with synchronization.
• Programs communicate through paper tapes.
• User interface was almost the bare machine.
• Accounting maintained independently of the system.

5 Operating Systems Lecture 02 page

Computer Operators & Off-lining

Several speed-ups
• experience
• multiple operators (early multiprogramming?)
• batching similar jobs together (sometimes called phasing)
• keeping the programmer away from the computer

Changes
No real changes from the hardware or OS perspective.
But procedures were more formal.
The first UIs were instruction sheets to the operators.
The next step was to automate some of these procedures.

Off-lining
The arrival of magnetic tape substantially improved IO.
Small cheap computers did the slow IO from paper tape to mag tape.
And from mag tape to the printer.
The big expensive computer used the mag tapes for IO.
Several programs submitted to the BEC on one tape.
The first parallelism in computer systems.

6

Operating Systems Lecture 02 page

Resident monitors

The computer operators had formal
procedures.

Get the computer to help.

What it needs
A program always in memory (hence the “resident”).
A control language - commands had to be given to the resident

monitor.
The starting point of OSs.

Resident monitor could
clear memory used by the last program (but not itself ☺)
load the next program
find the data for the program
jump to the start address of the new program, returning to the

resident monitor when finished
it also maintained the standard IO routines in memory

What was missing?

7 Operating Systems Lecture 02 page

Control programs

The resident monitor needed instructions.

Special cards that tell the resident monitor
which programs to run

$JOB
$FTN
$RUN
$DATA
$END

Special characters distinguish control cards
from data or program cards:

$ in column 1
// in column 1 and 2
709 in column 1

The first Job Control Languages (JCLs).

8

Operating Systems Lecture 02 page

What had changed?

• No memory management – every address was still
reachable.

• Still no real file system, but there is a distinction
between data and programs.

• Security – maintained by the operators.
• IO still polled for.
• Programmers now basically forced to use the standard

IO routines.
• Only one program at a time. But two programs in

memory.
• Still no problems with synchronization.
• Problems with bad programs – system needed

resetting when something bad happened.
• Depending on the types of devices the output of one

program could automatically become the input of
another.

• User interface was the JCL.
• Accounting still maintained independently of the

system.

9 Operating Systems Lecture 02 page

Change in the hardware

10

Disk drives
Disks provided substantially faster access to large amounts of

storage.

Interruptible processors
Devices raising interrupts and processors responding to them

substantially changed the way IO was performed.
Development from single location return addresses to the use

of a stack.

I/O devices and the CPU can execute
concurrently.

I/O is from the device to local buffer of
controller.

CPU moves data to main memory from local
buffer of controller.

Device controller informs CPU that it has
finished its operation by causing an
interrupt.

Operating Systems Lecture 02 page

SPOOLing

Simultaneous Peripheral Operation On-Line
Time waiting for IO can be used.
No longer need the small cheap computers for IO.

Memory now holds
• a running program
• interrupt driven card reader control program
• interrupt driven printer control program
• disk control software
• buffers for data being transferred between the

computer and devices
• a program loader
• a JCL interpreter
• a rudimentary file system – some data stays

“permanently” on the disk

11 Operating Systems Lecture 02 page

Multiprogramming

We are doing things simultaneously.
processing a program
reading cards for another program
printing data for another program

The next step is obvious.
Have several programs in memory at once.

What do we need?
a lot more memory
a scheduler
a way of keeping track of which program is where in memory
and where its data is, on card, disk etc
better ways of handling errors
a way to preserve the memory of each program

12

Operating Systems Lecture 02 page

Memory protection

Can be provided by software.
What is an example?
A system that keeps programmers completely away from

direct access to memory addresses.
Alternatively, a check of every address by an instruction filter.

But far more efficiently and safely done by
hardware.

Two requirements
Operating modes and privileged instructions
Limited address range

Provide hardware support to differentiate
between at least two modes of operation.

1. User mode – execution done on behalf of a user.
2. Kernel mode (also monitor mode, supervisor mode,

privileged mode or system mode) – execution done on
behalf of the operating system.

13 Operating Systems Lecture 02 page

Why do we need both?

If we had modes and privileged instructions
but full memory access

Obviously no memory protection
but also no protection of the privileged instructions
- put any code you want in the system areas of memory

If we could limit memory accesses but there
were no modes and privileged instructions

Instructions are used to set up the memory management
registers.

If these are not privileged a user can change the area of
memory available.

14

Operating Systems Lecture 02 page

Processor modes

Mode bit
Added to the hardware processor status register (or similar) to

indicate which mode the processor is operating in.
Interrupts, faults, system calls cause the processor to change

mode and …
jump to a particular location.
Privileged instructions cannot be executed in user mode.

kernel user

Interrupt/fault/system call

set user mode

15 Operating Systems Lecture 02 page

Memory protection

Each process gets allocated an area of memory
which it can access.
All accesses outside that memory cause an
exception (or fault).

!fixed size partitions
processes were designed to load in a particular
partition

!base-limit registers
!memory pages

Devices can be protected using
memory protection
or privileged instructions

16

Operating Systems Lecture 02 page

Batch systems

With memory protection and processor modes
we can safely have multiple programs in
memory.

from

to

17 Operating Systems Lecture 02 page

Batch system innovations

Each job had its own protected memory.

Disks with file systems.
Files were associated with owners.

Scheduling was automated.
The aim was to effectively utilise all of the expensive

hardware.
Computer operators now too slow.
Individual jobs could be suspended or killed, allowing other

jobs to progress.

Computer operators had consoles.
Maybe even VDUs.

Accounting could now be done automatically.

But from the programmer’s point of view
nothing much had changed.

18

Operating Systems Lecture 02 page

Before the next lecture

Read textbook sections

1.3 Computer-System Architecture
1.11 Computing Environments
2.7.5 Hybrid Systems

19

