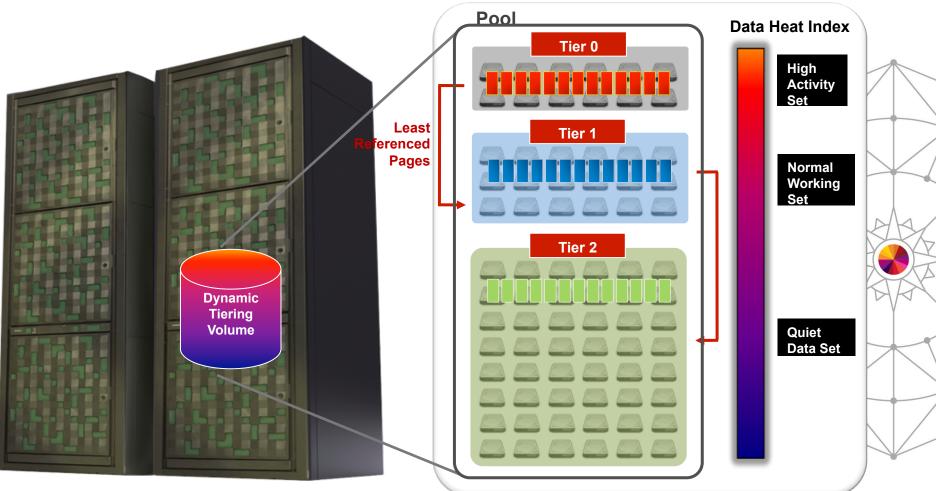


Hitachi Dynamic Tiering for mainframe *and* Hitachi Tiered Storage Manager for Mainframe

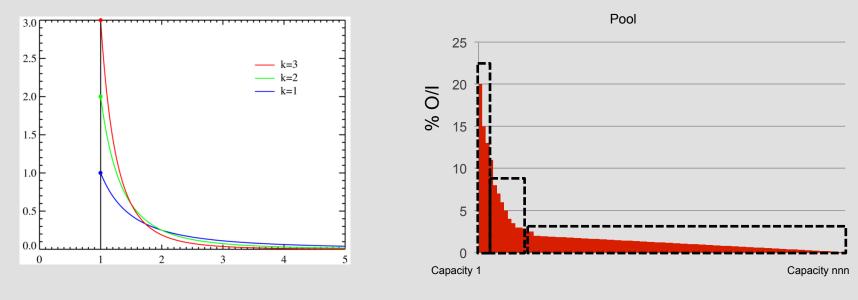
Ros Schulman HDS (ros.schulman@hds.com)

March 11th, 2014 Session Number (14811)



Copyright (c) 2014 by SHARE Inc. 💿 🚯 🕥 Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Hitachi Dynamic Tiering (HDT)



Improved Performance at Reduced Cost: Data Locality and Pareto Distributions

Classic Pareto Distributions (Also Known as the 80/20 Rule)

Actual Volume Workload

Location on Volume

Why does it work so well?

- Skew At any time, only a small address range is active
- Persistence When an address range is accessed it tends to remain so for a while

Hitachi Dynamic Tiering Automated Optimized Tiered Storage Management

Before: Tiered storage and provisioning

- Labor intensive
- Data classification before tiering
- Complicated management of multiple storage tiers
- Now: Dynamic tiering and provisioning
 - Controller-based automation
 - Single, self-managed, self-healing, efficient pool of data
 - All the benefits of tiered storage
 - All the benefits of dynamic provisioning
 - No need for data classification

 HDT Pool

 Firequent Accesses

 Frequent Accesses

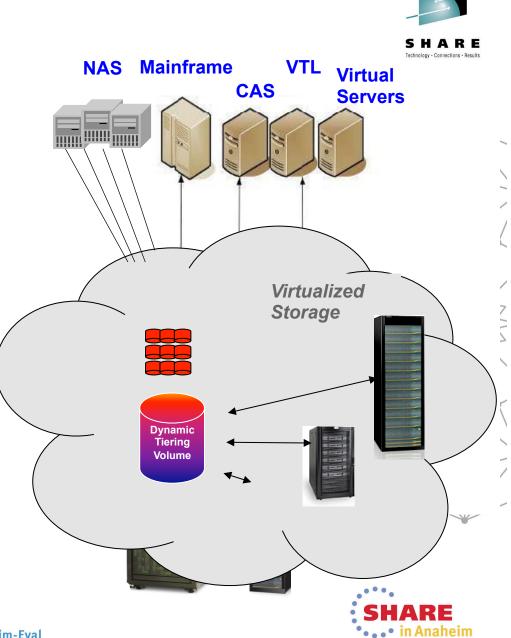
 Virtual

 Volume

 Infrequent References

 TIER 1

 Nearline


SHARE Technology · Connections · Results

Simplifies operations and data management
Reduces opex, capex, and TCO
Data Moves in 38MB Pages
Datasets can span multiple Tiers

Hitachi Dynamic Tiering Supports Virtualized Storage

- With HDT, Hitachi Virtual Storage Platform (VSP) provides automated tiered storage management and performance acceleration for multiple tiers of heterogeneous external storage
 - As an SSD accelerator
 - As a storage virtualization controller
 - Heterogeneous storage business continuity and disaster recovery solution
 - Leveraging the breadth of offerings on VSP

Relationship between number of tiers and Tiering policy

Configurable DP Volume Tiering Policies

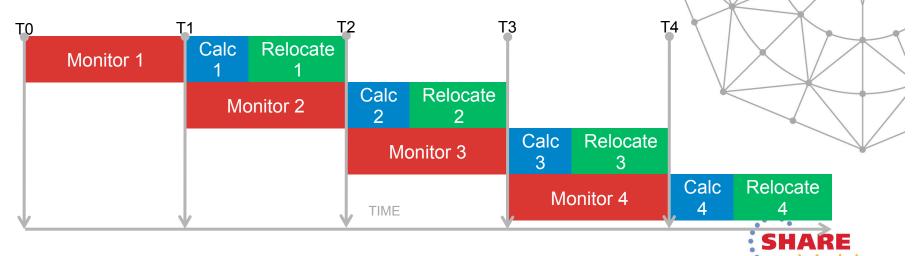
Tiering	Number of Tiers in Pool		Note	
Policy	2 Tier	3 Tiers		
All	All tiers	All tiers	Default value; data is stored in all tiers.	
Level 1	Tier 1	Tier 1	Data is always stored in the highest-speed tier	
Level 2	All tiers*	Tier 1 and Tier 2		
Level 3	All tiers*	Tier 2		
Level 4	All tiers*	Tier 2 and Tier 3		
Level 5	Tier 2	Tier 3	Data is always stored in the lowest-speed tier	

* Data is stored in all tiers as in the case of All specified in the tiering policy

New Page Assignment policy

CONTROL WHICH TIER NEW PAGES ARE ASSIGNED TO

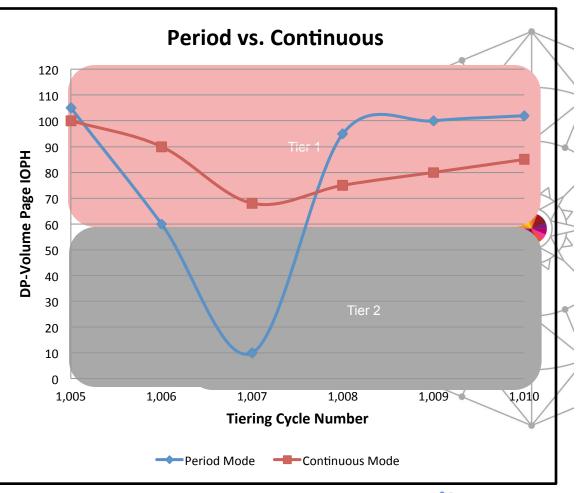
New page allocation tier level	Description	
High	The new page is assigned from the higher tier of tiers set in the tiering policy	X
Middle	The new page is assigned from the middle tier of tiers set in the tiering policy	X
Low	The new page is assigned from the lower tier of tiers set in the tiering policy	



HDT Cycles

HOW TIERING LEARNS YOUR WORKLOAD

- Cycle time set at the HDP pool level
- Manual mode
 - User can start and stop performance monitoring using any interval up to 7 days
 - Scripting can set complex schedules to custom fit to priority work periods
- Automatic mode
 - Customer defines strategy; it is then executed automatically
 - Continuous monitoring followed by relocation cycles
 - Monitor interval from 30 minutes to 1, 2, 4, 8 or 24 hours (default)



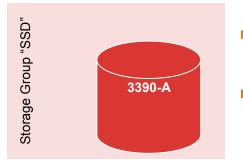
Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

HDT Monitoring Modes

CONTROL HOW TIERING LEARNS YOUR WORKLOAD

- Monitoring modes set at HDP/HDT pool level
- Period mode
 - The value used in the calculation cycle is the actual I/O load on DP volume page from previous monitoring cycle
- Continuous mode
 - The value used in the calculation cycle is the weighted average of multiple previous monitoring cycles for DP volume page
 - Reduces page trashing
 - May slow migration to upper tiers

Hitachi Dynamic Tiering for Mainframe


Hitachi Dynamic Tiering for Mainframe and DFSMS

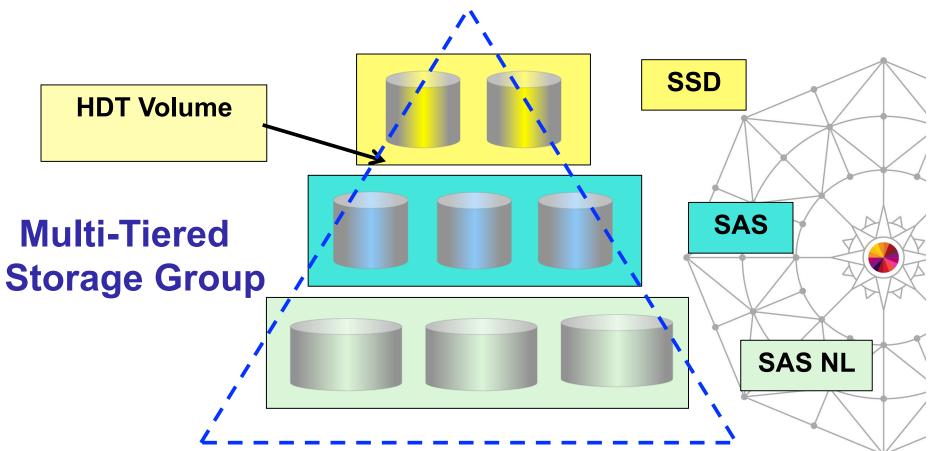
LIMITS OF SMS Storage Groups and ACS Routines

3390 volumes are "fixed" to a single tier

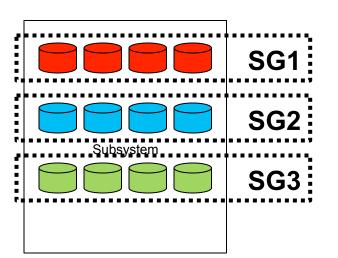
Storage Group "AS07"

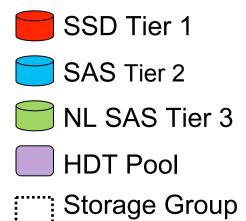
 To transition a volume's data to another tier requires ACS work, then migration and recall

- Performance problems need intervention to migrate to "higher" storage group
- Host-based volume movement has high overhead cost

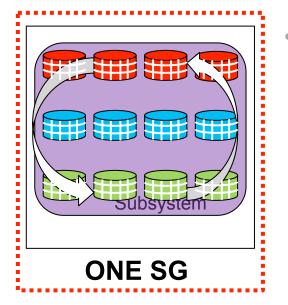

Stale datasets are treated the same as active ones until HSM migration

New! HDT Volume-provisioned storage group





DFSMS Storage Groups (SG) and HDT for Mainframe storage

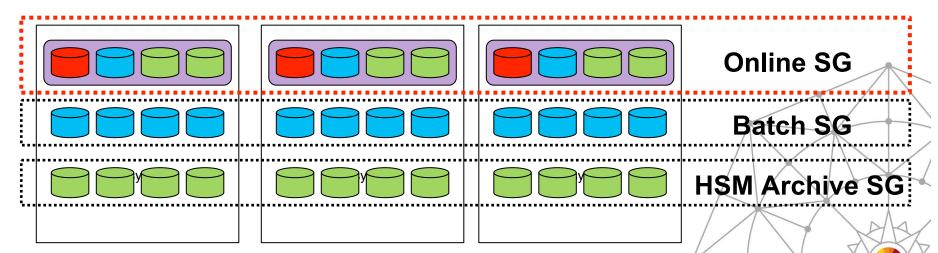


SHARE

- Now with HDT for Mainframe storage, all storage tiers may be combined into a single storage group
- HDT automatically moves data within a storage group to the correct tier based on Workload performance

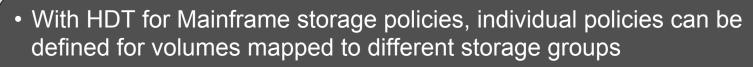
Ħ

HDT Volumes are optimally managed dynamically at the page level

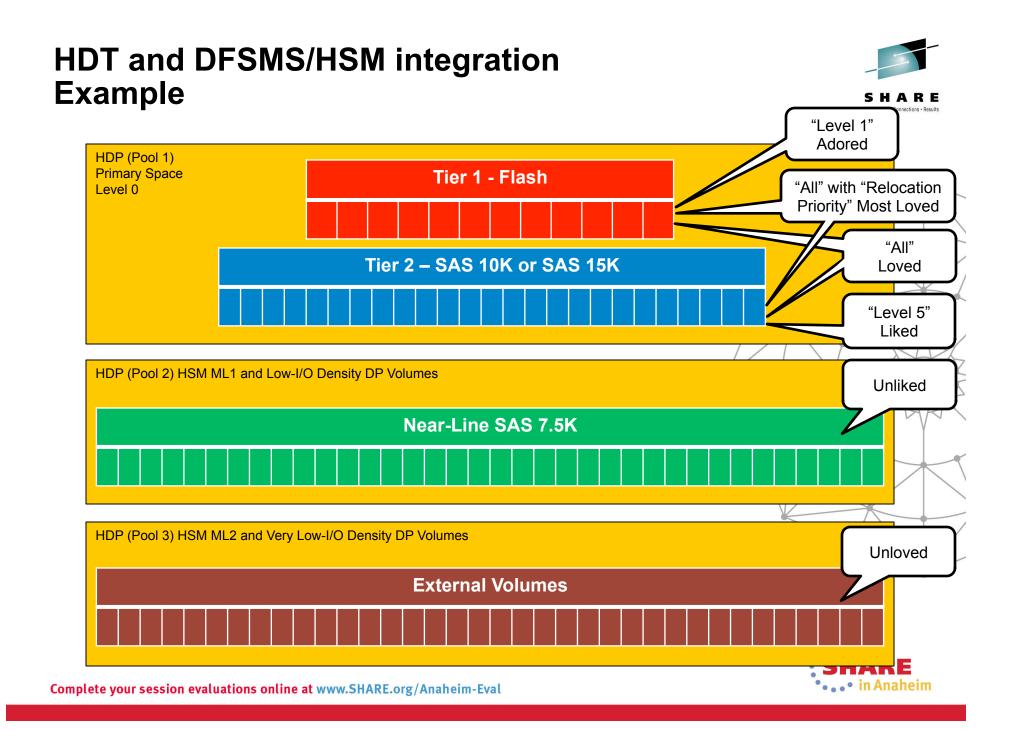

HDT Operational Impact

		SHARE
Working with Storage	Before HDT	With HDT
Add physical capacity	Add 3390-X volumes into storage groups	Add capacity into pool
Balance use over new capacity	Manually use HSM migration/recall	No actions are needed
Direct specific applications to specific storage resources	Code ACS routines, follow-up with HSM migrations and recalls	Set 3390-A to an HDT policy – use same ACS routines but no HSM needed
Address performance problems by moving datasets or volumes	Code ACS routines and use HSM migration/recall	HDT relocation has likely prevented the issue; otherwise use HDT policy
Maintain SMS storage groups and ACS routines	Manual effort to keep updated with rules describing exceptions	Fewer exceptions since HDT keeps tiers properly populated
Demote data to lower tiers	HSM moves <i>datasets</i> to an ML "tier" that hasn't been <i>opened</i> for a while	HDT automatically moves <i>pages</i> that haven't been <i>used</i>

DFSMS Storage Groups and HDT for Mainframe Storage



FLASH Tier 0
SAS Tier 1
NL SAS Tier 2
HDT Pool
Storage Group


- Simplifies integration
- HDT can be applied to selected Storage Groups only
- DFSMS Horizontal Storage Groups and Dynamic Page based Tiering volumes can be aligned

DFSMS Storage Groups and HDT for mainframe storage

• Policies are supported based on tier ranges, analysis/migration periods, initial tier page assignments and relocation priority

			SSD Tier 1 SAS Tier 2 NL Tier 3 Storage Group
Online SG	Batch SG	Archive SG	HDT Pool
HDT Custom Policy Defined for Online Data Across Top 2 Tiers	HDT Policy Restricted to Tier 2 Residency	HDT Policy Restricted to Tiers 2 and 3 Residency	SHARE in Anaheim

Hitachi Tiered Storage Manager for Mainframe

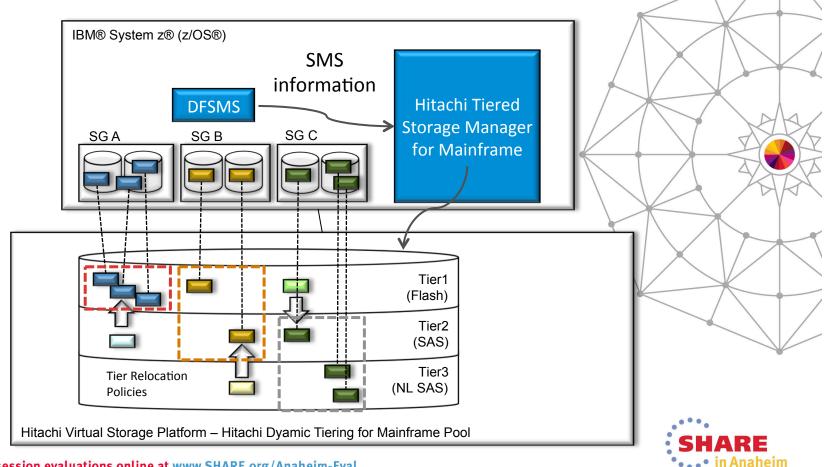
Hitachi Dynamic Tiering for Mainframe Management

Options for Managing Dynamic Tiering for Mainframe

- Setup and maintenance operations are done via VSP Service Processor (SVP) with Hitachi Storage Navigator
- Operational management can be done from either Storage Navigator or native from z/OS with Hitachi Tiered Storage Manager for Mainframe (HTSM)
- HTSM features
 - Storage SLA management via HDT policies
 - Native mainframe operations
 - Group operations make it easy to manage target volumes
 - Linkage/integration with DFSMS
 - Customization via REXX scripting
 - ISPF interface April 2014 NEW

Hitachi Tiered Storage Manager for Mainframe – Z/OS HDT management

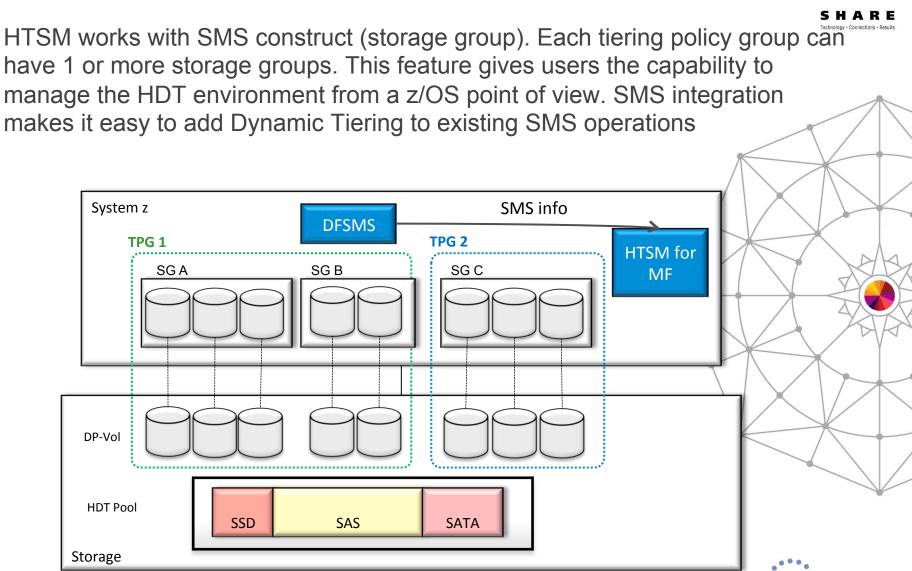
Host-based software that provides:


- Centralized and unified mainframe management of Hitachi Dynamic Tiering
 - Automation
 - Integration with DFSMS and storage groups
- Online storage service level controls
 - Increase application performance
 - Improves problem avoidance
- Single, consistent interface
 - Command based, script driven
- Auto-discovery eliminates errors
 - Accelerates deployment
- Enables reporting and automatic notifications

What is Tiered storage Manager for Mainframe?

- Hitachi Tiered Storage Manager for Mainframe
 - Manages operational aspects of HDT, including tiering policies
 - Integrates with z/OS SMS (storage groups)

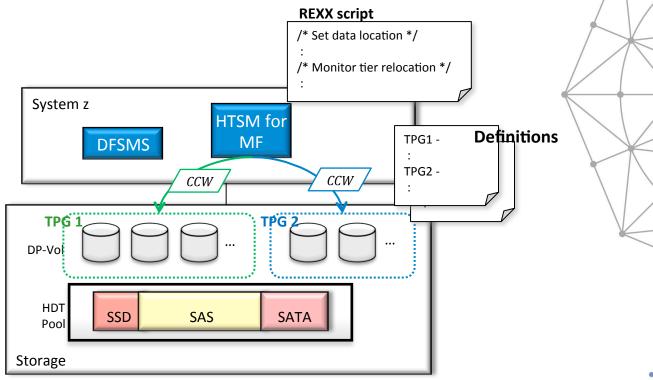
Why HTSM for mainframe?



HTSM provides important benefits

- Native management from z/OS
 - Control for data location from host's point of view, not storage system's point of view – improves control and simplifies operations
 - Ability to utilize HDT performance and relocation data with other data (such as SMF records)
 - Reduce dependency on open server-based operations
- Control of storage service levels using HDT policies
- Linkage with z/OS SMS (storage group) speeds integration and reduces opex
- Simplify management in large-scale environments with group operations
- Flexible command-line interface (CLI) (TSO/E REXX) enables users to get the most out of Dynamic Tiering

Linkage with z/OS SMS Feature



SHARE in Anaheim

Customization via REXX Scripting

- HTSM provides a CLI (TSO/E REXX) that enables users to manage their environments. The CLI also has the ability to cooperate with OS services (such as TSO/E service) and other products.
- For improved manageability HTSM for MF has separated operation procedures (REXX script) and configuration file-based objects (such as group definition)

HTSM Mainframe Reporting

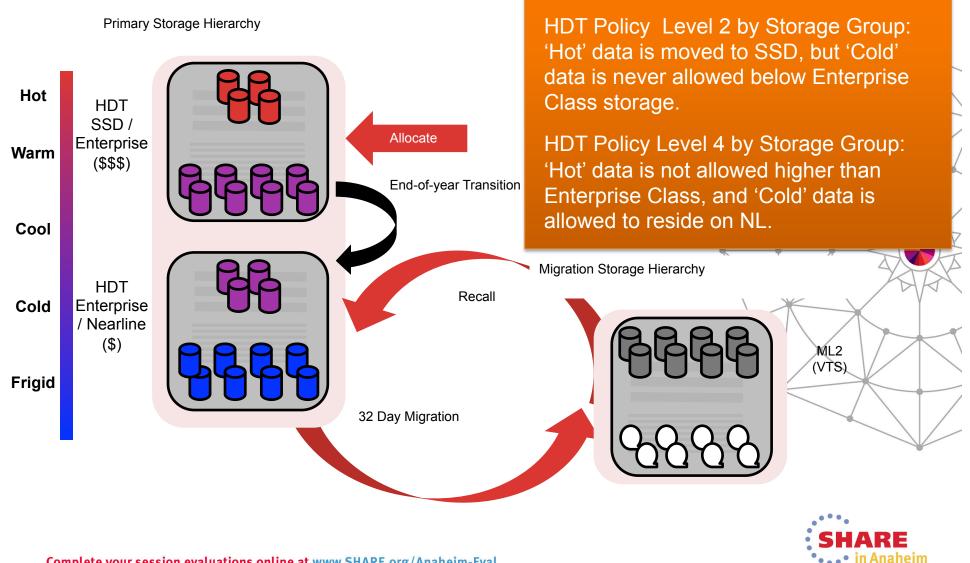
• **TPG_QUERY_STATISTICS** Sample Output

Tiering Pol	Date: 10	0D Jul 2013 :07:23			
****	*** Query	TPG Tier M	etrics ***	******	*****
TPG Total or SN:PoolID or *StorGrp* or Volser or Volser Prefix	Tier1 Used Pages / UsedGB / UsedZ	Tier2 Tier2 Used Pages / UsedGB / UsedZ	Tier3 Used Pages / UsedGB / UsedZ	Total Used Pages / UsedGB / UsedZ	\times
TPG Total	340 12,968 100%	0 0 G B 0 %	0 0 G B 0 %	340 12_96B 100%	
SN53004:81	340 12.968 100%	0 06B 0%	0 0 G B 0 %	340 12.96B 100%	
Used% of Pool Pool Pages Pool GB Tier% of Pool	25.4% 1340 50.968 34.2%	07 1240 47,168 31,67	0% 1340 50.968 34.2%	8_67% 3920 14968 100%	\times
ALPHA	340 12.96B 100%	0 0 G B 0 %	0 0 G B 0 %	340 12_96B 100%	
GSE*	340 12.968 100%	0 06B 0%	0 0 G B 0 %	340 12.96B 1007	
10 Jul 2013 00:0	7:23 *** A	ction TPG_	QUERY_TIER	S Successful	L

RE

In Anaheim

From SDSF using z/OS SYSREXX



Display Filter View Print Options Search Help SDSF SYSLOG 24996.101 GS03 GS03 06/11/2013 0W 93,450 COLUMNS 02- 81 COMMAND INPUT ===> / SCROLL ===> CSR N 4 D N C System Command Extension СТ \$H NCØ SC Type or complete typing a system command, then press Enter. TΡ х к ĸ ===> rexx htsmcmdc tpg_query_status tpg(alphatpg) prefix(varend.htsm ===> cmd) ĸ к к Place the cursor on a command and press Enter to retrieve it. ĸ More: ĸ D A,L = >TΡ к = >DS QD, SSID=ALL к = >rexx htsmcmdc tpg_query_relocation prefix(varend.htsmcmd) tpg(a к rexx htsmcmdc tpg activate tpg(alphatpg) prefix(varend.htsmcmd) = > к = >rexx htsmcmdc tpg_deactivate tpg(alphatpg) prefix(varend.htsmcm = >rexx htsmcmdc tpg_query_status tpg(alphatpg) prefix(varend.htsm к к = >rexx htsmcmdc tpg_query_status tpg(alphatpg) к ĸ Wait 1 second to display responses (specify with SET DELAY) к Do not save commands for the next SDSF session к TΡ ĸ F1=Help F5=FullScr F7=Backward F8=Forward F11=ClearLst F12=Cancel к KTC3111 21:46:37 KTORYTPG RC=0 KTC3101 21:46:41 KTLOAD STEM(KTSTEM.) MSG(KTMSG.) PREFIX(VAREND.HTSMCMD) TPG(A KTC3111 21:46:41 KTLOAD RC=0 KTC3101 21:46:41 KTQRYTPG STEM(KTSTEM.) MSG(KTMSG.) KTC3111 21:46:41 KTQRYTPG RC=0 KTC3101 21:46:41 KTLOAD STEM(KTSTEM.) MSG(KTMSG.) PREFIX(VAREND.HTSMCMD) TPG(A KTC3111 21:46:41 KTLOAD RC=0 KTC3101 21:46:41 KTDCTTPG STEM(KTSTEM.) MSG(KTMSG.) KTC3111 21:46:41 KTDCTTPG RC=0 KTC3101 21:46:41 KTORYTPG STEM(KTSTEM.) MSG(KTMSG.) KTC3111 21:46:41 KTQRYTPG RC=0 KTC3101 21:48:10 KTLOAD PREFIX(VAREND.HTSMCMD) STEM(tpg.TPG00001.) TPG(ALPHATP KTC3111 21:48:10 KTLOAD RC=0 KTC3101 21:48:10 KTQRYTPG STEM(tpg,TPG00001.) MSG(msg.) KTC3111 21:48:10 KTQRYTPG RC=0 TCP00019 4 A 1 Sess-1 172.17.51.30 10/12

Hitachi Dynamic Tiering and HTSM for MF with DFSMShsm 2.1

DFSMShsm 2.1 AND HTSM FOR MF

- Datasets may be eligible for class transitions when certain criteria are met specified by the management class
 - Time since Creation
 - Time since Last Use: Data set is eligible for a transition on or after this time
 - Periodic: Data set is eligible for a transition on a specific date.
- Data sets could be allocated to a storage group using HTSM for MF that uses Tier 1 and Tier 2 and then later transitioned to a storage group that uses less expensive class of storage for permanent retention
 - After a certain period of time, can be migrated directly to ML2

Hitachi Dynamic Tiering for Mainframe

Hitachi Dynamic Tiering for Mainframe Use Case Slides

VSP – USPV Performance Comparison

Study Objectives

- Establish baseline performance of VSP
- Determine performance level versus USPV environment
- Prove the capability of being able to use higher density drives
- Prove the feasibility of using HDT in mainframe environment

Are we maximizing the greatest number of IOs with the smallest amount of SSDs?

ENVIRONMENTAL COMPARISON

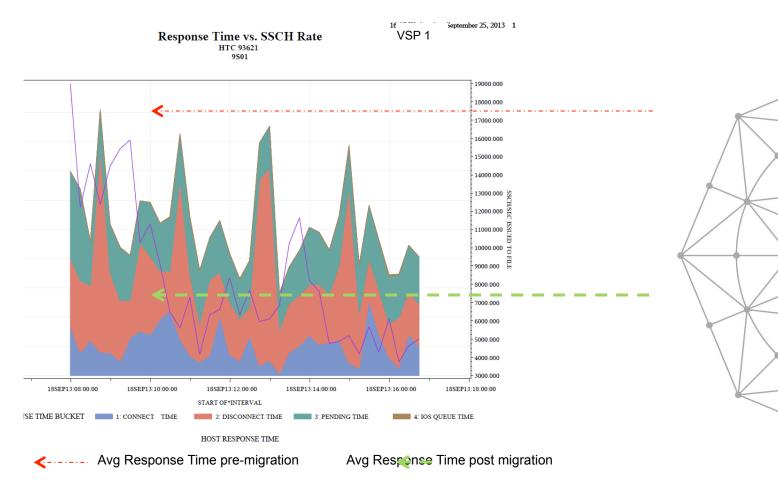
USPV – Total Cap 231TB

SN	(kg)	(lb)	(kW)	BTU/hr	kVA	SQ FT	Frames
	3,227	7,099	23.93	81,713	24.93	33.64	5
	3,267	7,187	23.39	79,899	24.36	33.64	5

VSP – Total Cap 682TB

(kg)	(lb)	(kW)	BTU/hr	kVA	SQ FT	Frames
2,893	6,371	17.80	60,666	18.70	35.63	5

SAVINGS

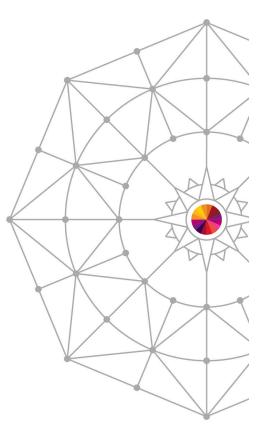

VSP	(kg)	(lb)	x ,				Frames
% Savings	55.45%	55.40%	62.38%	62.46%	62.06%	47.04%	50.00%

With 3X+ Capacity

Frontend Response – RMF Type 74

Close to 2X Faster Response Time over USP V Up to 50% more IO

Backend IO Distribution vs Physical Capacity



3.30% 33.32% 400GB SSD 63.38% 300GB HDD 3TB NL-SAS **IO Rate Distribution** 18.37% 51.02% 30.61% In Anaheim Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

Physical Capacity Distribution

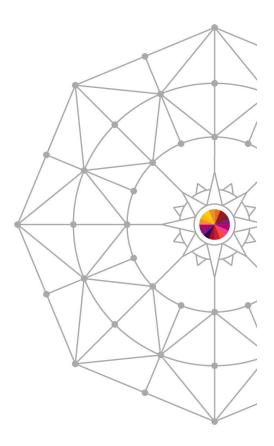
HDT and HTSM for MF

Summary

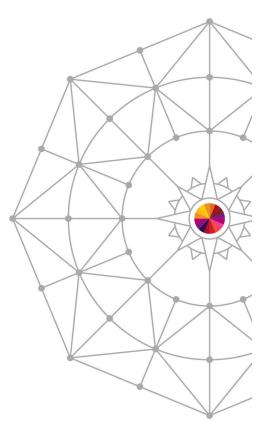
VSP HDT Benefit Summary

- Excellent performance benefit with a small amount of SSD
- Proven ability to take advantage of larger capacity drives
- 2X improved response time compared to USPV
- Increased workload of up to 55% more IO
- 50%+ Environmental Cost Savings
- Significant software savings through consolidation
- Ease of performance management

HDT for Mainframe and HTSM for Mainframe Storage Benefits


- Enables automation and more efficient use of storage
 - Data that is highly used is in high-performance storage
 - Lower priority jobs can be kept in lower-performing, lower-cost storage
- Improves ability to manage SLAs
 - High-priority jobs using more expensive, higher-performing storage can be given it and charged accordingly
 - Jobs with less-demanding SLAs can use lower-cost, lowerperformance storage
- Ability to manage via DFSMS storage groups
- Reduced overhead of migrations to ML1

@Hitachi Data Systems


Questions and discussion

@Hitachi Data Systems

Thank you