For official marking scheme, please refer to HKEA publications.

1. HKDSE 2014 Q. 1

$$
\frac{\left(x y^{-2}\right)^{3}}{y^{4}}=\frac{x^{3} y^{-6}}{y^{4}}=\frac{x^{3}}{y^{10}}
$$

2. HKDSE 2014 Q. 2
(a) $a^{2}-2 a-3=(a-3)(a+1)$
(b) $a b^{2}+b^{2}+a^{2}-2 a-3=b^{2}(a+1)+(a-3)(a+1)$

$$
=(a+1)\left(a+b^{2}-3\right)
$$

3. HKDSE 2014 Q. 3

(a) 200
(b) 123
(c) 123.4

4. HKDSE 2014 Q. 4

Median $=1$
Mode = 2
Standard deviation ≈ 0.889

5. HKDSE 20140.5

(a) $2(3 m+n)=m+7$
$6 m+2 n=m+7$
$2 n=7-5 m$
$n=\frac{7-5 m}{2}$
(b) Change in $n=\frac{7-5(m+2)}{2}-\frac{7-5 m}{2}=-5$

The decrease in the value of n is 5 .

6. HKDSE 2014 Q. 6

(a) Selling price $=255 \times(1-40 \%)=\$ 153$
(b) Cost $=153 \div(1+2 \%)=\$ 150$

7. HKDSE 20140.7

(a) $f(2)=-33$
$4(2)^{3}-5(2)^{2}-18(2)+c=-33$
$c=-9$
$f(-1)=4(-1)^{3}-5(-1)^{2}-18(-1)-9=0$
$\therefore \quad x+1$ is a factor of $f(x)$
(b) $f(x)=0$
$(x+1)\left(4 x^{2}-9 x-9\right)=0$
$(x+1)(x-3)(4 x+3)=0$
$x=-1$ or $x=3$ or $x=-\frac{3}{4}$
All the roots are rational numbers.
Thus, the claim is agreed.

8. HKDSE 2014 Q. 8

(a) $\mathrm{P}^{\prime}=(5,3)$

$$
Q^{\prime}=(-19,-7)
$$

(b) Slope of $\mathrm{PQ}=\frac{5+7}{-3-2}=-\frac{12}{5}$

Slope of $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}=\frac{3+7}{5+19}=\frac{5}{12}$
Slope of $\mathrm{PQ} \times$ slope of $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}=-\frac{12}{5} \times \frac{5}{12}=-1$
Therefore, PQ is perpendicular to $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}$.

9. HKDSE 2014 Q. 9

(a) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDC}$,

$$
\begin{array}{rll}
& \angle \mathrm{ACB}=\angle \mathrm{BCD} & \text { (common } \angle \text {) } \\
& \angle \mathrm{BAC}=\angle \mathrm{DBC} & \text { (given) } \\
& \angle \mathrm{ABC}=\angle \mathrm{BDC} & (\angle \text { sum of } \Delta) \\
\therefore \quad & \triangle \mathrm{ABC} \sim \triangle \mathrm{BDC} & \text { (A.A.A.) }
\end{array}
$$

(b) $\frac{\mathrm{CD}}{\mathrm{BC}}=\frac{\mathrm{BC}}{\mathrm{AC}}$
$\frac{C D}{20}=\frac{20}{25}$
$C D=16 \mathrm{~cm}$
$\mathrm{BD}^{2}+\mathrm{CD}^{2}=12^{2}+16^{2}=400=20^{2}=\mathrm{BC}^{2}$
Thus, $\triangle \mathrm{BCD}$ is a right-angled triangle.

10. HKDSE 2014 Q. 10

(a) Let $d \mathrm{~km}$ be the required distance.
$\frac{d}{80}=\frac{0.75}{2}$
$d=30$
Thus, the required distance is 30 km .
(b) Speed of car $A=\frac{80}{2}=40 \mathrm{~km} / \mathrm{h}$

Time taken for car A to travel $44 \mathrm{~km}=\frac{44}{40}=1.1$ hours $=1$ hour 6 minutes
So, the two cars first meet at 8:36.
(c) Average speed of car B during the period 8: 15 to 9: $30=\frac{80-44}{1.25}=28.8 \mathrm{~km} / \mathrm{h}$

That is, the average speed of car B is less than that of car A ($40 \mathrm{~km} / \mathrm{h}$).
Thus, the claim is disagreed.
11. HKDSE 2014 Q. 11
(a) Range $=91-18=73$ thousand dollars

Inter-quartile range $=63-42=21$ thousand dollars
(b) New mean $=\frac{53 \times 33-32-34-58-59}{33-4}=54$ thousand dollars

The original median is 55 thousand dollars.
Note that 32 and 34 are less than 55 , while 58 and 59 are larger than 55 .
So, the median remains unchanged.
Therefore, new median $=55$ thousand dollars.

12. HKDSE 2014 Q. 12

(a) $\mathrm{AG}=\sqrt{(6-0)^{2}+(11-3)^{2}}=10$

Equation of C: $\quad x^{2}+(y-3)^{2}=10^{2}$

$$
x^{2}+y^{2}-6 y-91=0
$$

(b) (i) Let $\mathrm{P}=(x, y)$.

Equation of $\Gamma: \quad \sqrt{(x-6)^{2}+(y-11)^{2}}=\sqrt{x^{2}+(y-3)^{2}}$

$$
\begin{aligned}
& x^{2}+y^{2}-12 x-22 y+157=x^{2}+y^{2}-6 y+9 \\
& 12 x+16 y-148=0 \\
& 3 x+4 y-37=0
\end{aligned}
$$

(ii) Γ is the perpendicular bisector of the line segment $A G$.
(iii) The requried perimeter $=4 \times 10=40$
13. HKDSE 2014 Q. 13
(a) Let $f(x)=a+b x^{2}$, where a and b are non-zero constants.

So, we have $a+b(2)^{2}=59$ and $a+b(7)^{2}=-121$.
Solving, we have $a=75$ and $b=-4$.
$\therefore f(x)=75-4 x^{2}$
$f(6)=75-4(6)^{2}=-69$
(b) Note that $a=-69$.
$f(-6)=75-4(-6)^{2}=-69$
i.e. $b=-69$

Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 12 \times 69=414$ sq. units

14. HKDSE 20140.14

(a) Let $r \mathrm{~cm}$ be the base radius of the vessel and $x \mathrm{~cm}$ be the radius of the water surface.
$\frac{r}{72}=\frac{96-60}{96}$ and $\frac{x}{72}=\frac{96-60+28}{96}$
$\therefore \quad r=27$ and $x=48$
Area of the wet curved surface of the vessel $=\pi(48) \sqrt{48^{2}+64^{2}}-\pi(27) \sqrt{27^{2}+36^{2}}$ $=2625 \pi \mathrm{~cm}^{2}$
(b) Volume of water in the vessel $=\left[\frac{1}{3} \pi(48)^{2}(64)-\frac{1}{3} \pi(27)^{2}(36)\right] \div 100^{3}$

$$
\approx 0.126932909 \mathrm{~m}^{3}
$$

$$
>0.1 \mathrm{~m}^{3}
$$

Thus, the claim is agreed.

15. HKDSE 2014 Q. 15

$\log _{8} y=-\frac{1}{3}\left(\log _{4} x-3\right)$
$\log _{8} y=-\frac{1}{3} \log _{4} x+1$
$\log _{8} y=\log _{4} x^{-\frac{1}{3}}+\log _{4} 4$
$\log _{8} y=\log _{4} 4 x^{-\frac{1}{3}}$
$\log _{8} y=\frac{\log _{8} 4 x^{-\frac{1}{3}}}{\log _{8} 4}$
$\log _{8} y=\frac{3}{2} \log _{8} 4 x^{-\frac{1}{3}}$
$\log _{8} y=\log _{8}\left(4 x^{-\frac{1}{3}}\right)^{\frac{3}{2}}$
$\log _{8} y=\log _{8} 8 x^{-\frac{1}{2}}$
$\therefore \quad y=8 x^{-\frac{1}{2}}$
16. HKDSE 2014 Q. 16
$\mathrm{S}(m)>6888$
$\frac{m}{2}[2(3)+(m-1)(2)]>6888$
$m(m+2)>6888$
$m^{2}+2 m-6888>0$
$(m+84)(m-82)>0$
$m<-84$ or $m>82$
Thus, the least value of m is 83 .

17. HKDSE 2014 Q. 17

(a) $\frac{\sin \angle \mathrm{AVB}}{18}=\frac{\sin 110^{\circ}}{30}$
$\angle \mathrm{AVB} \approx 34.32008291^{\circ}$
$\angle \mathrm{VBA} \approx 180^{\circ}-110^{\circ}-34.32008291^{\circ} \approx 35.67991709^{\circ} \approx 35.7^{\circ}$
(b) $\mathrm{MP}^{2} \approx 9^{2}+15^{2}-2(9)(15) \cos 35.67991709^{\circ}$

MP ≈ 9.310329519
$N Q=M P \approx 9.310329519$
$\mathrm{MN}=10 \div 2=5$
$\mathrm{PQ}=\mathrm{BC}=10$
Let h be the height of the trapezium PQNM.
$h=\sqrt{9.310329519^{2}-((10-5) \div 2)^{2}} \approx 8.968402073$
Area of $\mathrm{PQNM} \approx \frac{(5+10) \times 8.968402073}{2} \approx 67.26301555 \mathrm{~cm}^{2}<70 \mathrm{~cm}^{2}$
Thus, the claim is agreed.

18. HKDSE 2014 Q. 18

(a) Equation of $\mathrm{L}_{2}: \quad y-0=\frac{90-0}{45-180}(x-180)$

$$
\begin{aligned}
& y=-\frac{2}{3}(x-180) \\
& 2 x+3 y=360
\end{aligned}
$$

The system of inequalities is $\left\{\begin{array}{l}6 x+7 y \leq 900 \\ 2 x+3 y \leq 360 \\ x \geq 0 \\ y \geq 0\end{array}\right.$.
(b) Let x and y be the number of wardrobes X and Y produced that month respectively.

The constraints are $6 x+7 y \leq 900$ and $2 x+3 y \leq 360$, where x and y are non-negative integers.

Let $\$ P$ be the total profit on the production of wardrobes. So $P=440 x+665 y$.
The vertices of the shaded region in Figure 7 are $(0,0),(0,120),(45,90)$ and $(150,0)$.
At $(0,0), P=440(0)+665(0)=0$. At $(0,120), P=440(0)+665(120)=79800$.
At $(45,90), \mathrm{P}=440(45)+665(90)=79650$. At $(150,0), P=440(150)+665(0)=66000$.
So, the greatest possible profit is $\$ 79800$. Thus, the claim is disagreed.
19. HKDSE 2014 Q. 19
(a) The required probability $=\frac{1}{6}+\left(\frac{5}{6}\right)^{2} \times \frac{1}{6}+\left(\frac{5}{6}\right)^{4} \times \frac{1}{6}+\cdots=\frac{\frac{1}{6}}{1-\left(\frac{5}{6}\right)^{2}}=\frac{6}{11}$ (or 0.5455)
(b) (i) $\quad \mathrm{P}(10$ tokens $)=\frac{8}{8} \times \frac{1}{8}=\frac{1}{8}$
$P(5$ tokens $)=\frac{2}{8} \times \frac{1}{8}+\frac{6}{8} \times \frac{2}{8}=\frac{7}{32}$
$\therefore \quad$ Expected number of tokens $=\frac{1}{8} \times 10+\frac{7}{32} \times 5=\frac{75}{32}$ (or 2.34375)
(ii) Consider Option 2.
$P(50$ tokens $)=\frac{8}{8} \times \frac{1}{8} \times \frac{1}{8}=\frac{1}{64}$
$\mathrm{P}(10$ tokens $)=\frac{6 \times 3!}{8^{3}}=\frac{9}{128}$
$P(5$ tokens $)=\frac{7 \times C_{2}^{3} \times 2!}{8^{3}}=\frac{21}{256}$
Expected number of tokens in Option 2
$=\frac{1}{64} \times 50+\frac{9}{128} \times 10+\frac{21}{256} \times 5$
$=\frac{485}{256}$ (or 1.89)
Hence the player should adopt Option 1.
(iii) $P($ Ada gets no tokens $)=\left(1-\frac{6}{11}\right)+\frac{6}{11} \times\left(1-\frac{1}{8}-\frac{7}{32}\right)=\frac{13}{16}=0.8125<0.9$
\therefore The claim is incorrect.

