

## **Geometry Introduction**

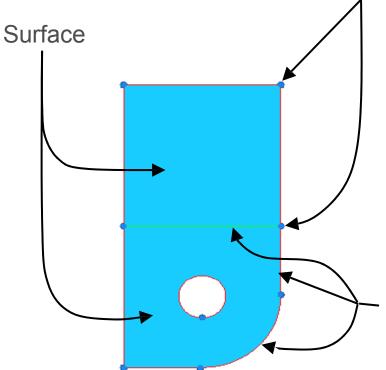
Importing and Repairing CAD

**Generating Midsurface** 

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_

**Simplifying Geometry** 

Refining Topology to Achieve a Quality Mesh


# **Topology Repair: Importing Geometry**

- Import geometry data via:
  - Files > Import > Geometry drop-down menu
  - Toolbar > 🐇
- Common types of geometry files supported:
  - Unigraphics (NX2, NX3, NX4, NX5)
    - UG Part Browser
- Import of \*.prt files
  - Requires an installation of Unigraphics to be available
  - CATIA (V4 & V5)
    - import of \*.model files
    - CATIA V5 license required to import V5 files
  - Pro/ENGINEER (Wildfire 2.0 & 3.0)
    - import of \*.prt and \*.asm files
  - IGES
    - Import of \*.igs / \*.iges files
  - STEP
    - import of \*.stp files

| Import        |             |        |  |  |  |
|---------------|-------------|--------|--|--|--|
| <b>%</b>      | <b>∽_ ∽</b> |        |  |  |  |
| File selectio | n ———       |        |  |  |  |
| File type:    | Auto De     | tect 💌 |  |  |  |
| 📂 🗶 🗶         |             |        |  |  |  |
|               |             |        |  |  |  |
|               |             |        |  |  |  |
|               |             |        |  |  |  |
|               |             |        |  |  |  |
|               |             |        |  |  |  |
|               | Import      | Close  |  |  |  |

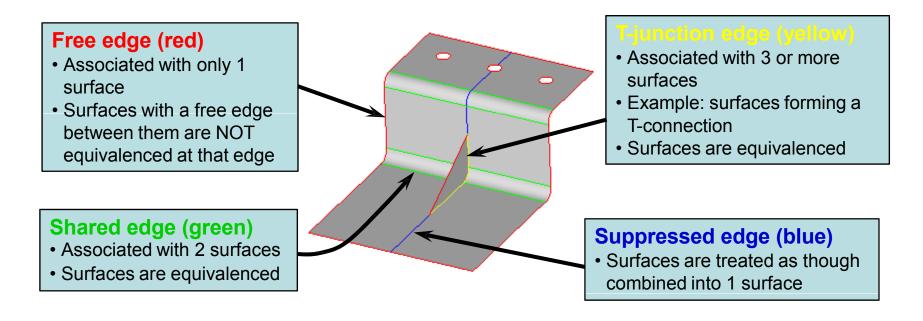
## **Topology Repair: Surface Definitions**





## Fixed point ("Surface vertex")

- Point associated with a surface
- Cannot be moved off the surface
- Can lie on a surface edge or the "interior" of a surface
- Separates surface edges from each other
- Forces a node to be placed at that location during meshing


#### Surface edge

- Line associated with a surface
- Defines a surface's boundary
- Cannot be moved off the surface
- Has a fixed point on both ends

# Automeshing: What is "topology"?



- Topology" is how surfaces connect to adjacent surfaces of a part
  - Surface connectivity is controlled by the associated surface edges
  - If a surface edge is associated with more than 1 surface, those surfaces are considered to be connected ("equivalenced")
  - Surface edges are categorized, named, and colored according to the number of associated surfaces:



# **Topology Repair: Viewing Topology**

🛆 Altair University

Topology display mode is default for some panels (w/ Auto ON)

• surface edit, quick edit, point edit, edge edit, autocleanup, and automesh

#### Can also be accessed via geometry visualization type



| Auto       | Default (topology display in only default panels mentioned above) |
|------------|-------------------------------------------------------------------|
| By Comp    | Always in component color mode                                    |
| Ву Торо    | Always in topology display mode                                   |
| By 2D Topo | Displays only 2D geometry in topology display mode                |
| Ву 3D Торо | Displays only 3D geometry in topology display mode                |
| Mixed      | Displays 2D and 3D geometry in topology display mode              |
| Mappable   | Displays the solid entities in the various mappable states        |

## **Topology Repair: Viewing Topology**

Altair **University** 

Toolbar → ■ *Visualization* tab controls display of:

- Visibility of free, shared, t-junctions, and suppressed edges
- Level of surface transparency
- Solids Mappability

| Visualization           |                  |  |  |  |  |  |
|-------------------------|------------------|--|--|--|--|--|
| 🔳 🛆 🚦 🐟 📲               | <mark>,</mark> 2 |  |  |  |  |  |
| Options                 | Options          |  |  |  |  |  |
| Show line directions    |                  |  |  |  |  |  |
| Edges:                  |                  |  |  |  |  |  |
| Free                    |                  |  |  |  |  |  |
| Shared                  |                  |  |  |  |  |  |
| 🔽 📃 Suppressed          |                  |  |  |  |  |  |
| Non-manifold            |                  |  |  |  |  |  |
| Shaded faces on solids: |                  |  |  |  |  |  |
| 🔽 🗾 Bounding            |                  |  |  |  |  |  |
| 🔽 🔜 Full partition      |                  |  |  |  |  |  |
| Fin                     |                  |  |  |  |  |  |
| Solid transparency:     |                  |  |  |  |  |  |
| 8                       |                  |  |  |  |  |  |
|                         |                  |  |  |  |  |  |
| Mappable solids:        |                  |  |  |  |  |  |
| 1-direction             |                  |  |  |  |  |  |
| 3-direction             |                  |  |  |  |  |  |
| Ignored<br>Not mappable |                  |  |  |  |  |  |
|                         |                  |  |  |  |  |  |
|                         | Close            |  |  |  |  |  |

## **Topology Repair: What is it?**

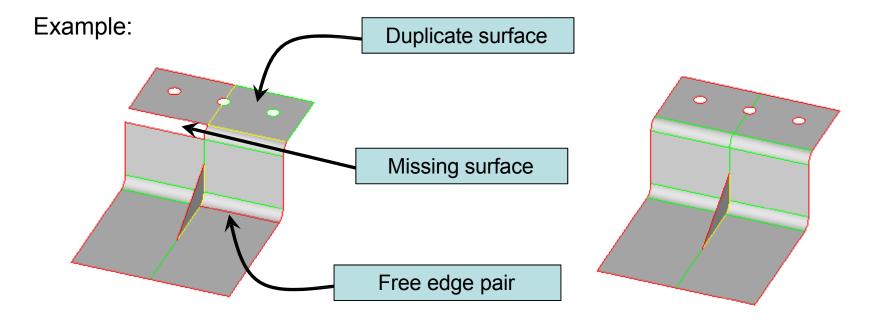


HyperMesh will attempt to properly clean up surfaces during import

- Some types of geometry files have surface connectivity information which helps HyperMesh. Typically native geometry files like Catia, UG, ProE, etc.
- Geometry usually imports cleanly

#### Topology Repair consists of correcting connectivity errors between adjacent surfaces

- Possible errors include:
  - Unconnected adjacent surfaces
  - Duplicate surfaces
  - Missing surfaces


• The Goal of Topology Repair: Restore the surface data to a perfectly clean representation of the part

## **Topology Repair: Process**

#### General process is to:

- Figure out what the ideal surface connectivity of the part should be
- Observe the current display of topology colors (free, shared, t-junction)
  - Figure out what is causing the topology to be displayed this way
- Use the tools in HyperMesh that get the connectivity from what it is to what it should be as quickly and efficiently as possible

🛆 Altair University



## **Topology Repair: Tools**

#### Edge Edit Panel

- *Equivalence* (multiple edges at a time)
  - Search surfaces for pairs of free edges and combine into shared edges
- Toggle (1 edge / edge pair at a time)
  - Select an edge; equivalences with other free edges found within a user specified tolerance
- **Replace** (1 edge pair at a time)
  - Select 2 edges to equivalence together
  - Control which edge to retain and which to move

#### Point Edit Panel

- **Replace** (1 edge at a time)
- Release Combine pairs of free edges with gaps between them into a shared edges

## Defeature Panel

Duplicates – Identify and delete duplicate surfaces within a user specified tolerance

## Surfaces Panel

• Spline / filler – Select lines / surface edges to recreate any missing surfaces

## **Topology Repair: Tools**

# 🛆 Altair University

#### **Quick Edit Panel**

- Has a number of tools found in other panels
- · Focused on tools with minimal user input for rapid editing
- Unsplit Removes / deletes an edge created by splitting a surface in HyperMesh
- Toggle Same as edge edit panel; change edge type within tolerance
- Filler surf Select a line on a free surface edge to recreate any missing surfaces
- **Delete surf** Same as delete panel (surfaces only)
- **Replace point** Same as point edit panel; move/retain point
- Release point Same as point edit panel; must be associated with line

| split surf-node: | node    | node          | \$    | adjust/set density: | line(s)  | line(s)          |    | reject |
|------------------|---------|---------------|-------|---------------------|----------|------------------|----|--------|
| split surf-line: | node    | line          | \$    | replace point:      | point(s) | retain           |    |        |
| washer split:    | line(s) | offset value: | 0.100 | add/remove point:   | point(s) |                  |    |        |
| unsplit surf:    | line(s) |               |       | add point on line:  | line(s)  | no. of points: 🛛 | 1  |        |
| toggle edge:     | line(s) | tolerance:    | 0.080 | release point:      | point(s) |                  |    |        |
| filler surf:     | line(s) |               |       | project point:      | point(s) | line             | \$ |        |
| delete surf:     | surf(s) | J             |       | trim-intersect:     | node     | node             |    | return |

## **Topology Repair: Strategy**



Understand model size & scale to determine an appropriate global element size

Set a cleanup tolerance based on the determined global element size

- Set appropriate value in options, geom cleanup, and automesh : cleanup
- Cleanup tolerance specifies the largest gap size to be closed by topology functions
- Tolerances > 15-20% of global element size can cause mesh distortions
- Can change value multiple times for work on various areas of the model

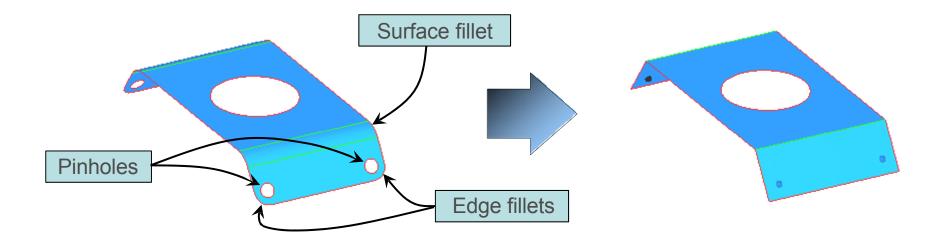
Use topology display tools to decide what needs to be cleaned

Use equivalence to combine as many free edge pairs as possible

• Make sure surfaces are not collapsed in undesirable manner

Use toggle to combine any remaining free edge pairs, 1 by 1

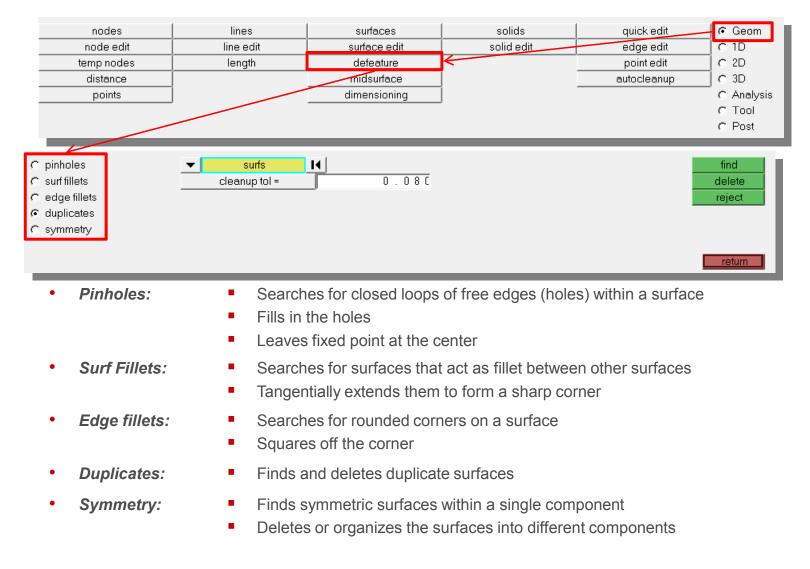
• use *replace* function if more control is needed


Use find duplicates to check for any duplicate surfaces and delete them

Use filler surface to recreate any missing surfaces

## **Defeaturing: What is it?**




- Depending on the analysis, certain details in the geometry may be ignored. This may depend on:
  - Importance of the part in the overall assembly
  - Location of the feature relative to the area of interest in the analysis
  - Size of the feature vs. the average size of the mesh being used
- Defeaturing is the removal of details in the geometry in order to make the shape of the part simpler



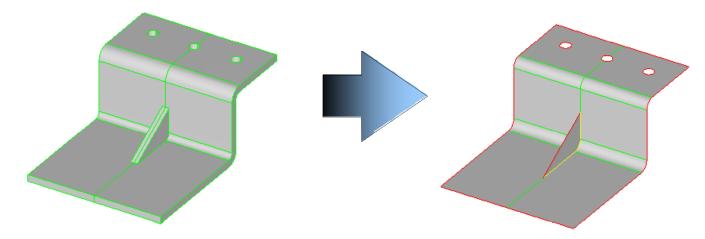
## **Defeaturing: Tools**



#### "Defeature" panel →Geom – defeature



## **Defeaturing: Tools**




- Defeature panel on Geom page
  - Pinholes:
     Searches for closed loops of free edges (holes) within a surface
    - Fills in the holes
    - Leaves fixed point at the center
  - Surf Fillets: Searches for surfaces that act as fillet between other surfaces
    - Tangentially extends them to form a sharp corner
  - Edge fillets: Searches for rounded corners on a surface
    - Squares off the corner
  - **Duplicates:** Finds and deletes duplicate surfaces
    - *Symmetry:* Finds symmetric surfaces within a single component
      - Deletes or organizes the surfaces into different components

## **Midsurfacing: Introduction**



- For many FE analyses, parts are represented by shell elements
  - Thickness is assigned mathematically, rather than geometrically
  - Mesh is usually placed on the midplane of the part
- CAD geometry usually comes as a solid part, or a series of surfaces defining a volume.
- Midsurfacing creates a layer of surfaces on the midplane which can be directly meshed



## Midsurfacing: Tools



- Midsurfaces can be created using *midsurface panel* on the geom page
  - Auto Midsurface Automatically extracts midsurfaces from surfaces that enclose
     a volume or a solid geometry
    - Can sometimes work if there are missing surfaces
    - The greater number of missing surfaces, the less reliable the result
  - *Surface Pair* creates a midsurface between 2 selected surfaces

| <ul> <li>auto midsurface</li> <li>surface pair</li> </ul> | •  | surfs | extraction options | extract<br>sort |
|-----------------------------------------------------------|----|-------|--------------------|-----------------|
| <ul> <li>quick edit</li> </ul>                            |    |       |                    | reject          |
|                                                           |    |       |                    |                 |
| <ul> <li>replace edge</li> </ul>                          |    |       |                    |                 |
| <ul> <li>extend surface</li> </ul>                        |    |       |                    |                 |
| <ul> <li>view/assign thickness</li> </ul>                 | 55 |       |                    | return          |

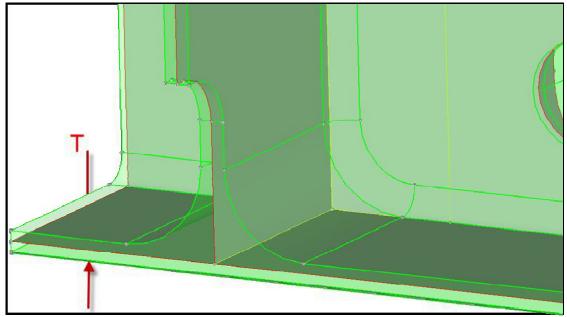
## Midsurfacing: Tools

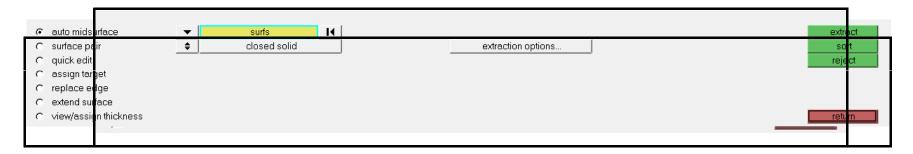


- Once a midsurface has been created, it can be modified using tools on the midsurface panel
  - Quick Edit Repair a midsurface by correcting where the verticies of the surface were placed
  - Assign Target An extension to quick edit, and functions in a similar fashion
  - Replace Edge Fill in gaps and slivers by combining one surface edge with another
    - same as in the edge edit panel
  - Extend Surface Extends two surfaces (e.g., ribs) until they intersect
  - View Thickness Review of the thickness of a midsurface using white lines (probes) extending from each vertex of the surface



## Midsurfacing: Process & Strategy


- 1. Obtain a closed volume of surfaces or solids
  - Midsurface : auto midsurface requires an enclosed volume
  - Use topology repair techniques if needed
- 2. For complex parts, try defeaturing the surface defining the volume
  - This simplifies the part and may give better results with *create : solid*
- 3. Generate the midsurface using *midsurface : auto midsurface* 
  - Use *surface pair* for areas that need more control
  - Use *midsurface : editing tools* for midsurfaces that need fine tuning
- 4. View the midsurface and correct errors using the midsurface editing functionalities
  - Can generally use *quick edit*


## Geometry

🛆 Altair University

Midsurface r/t parameter exposed to allow control over the midsurface generation in areas with high radius-to-thickness ratios

- 9.0 r/t parameter was hard-coded to 2.0
- 10.0 r/t parameter is user-defined with default of 2.0



