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We review the major progress made since the 50’s in our understanding
of the topology of complex algebraic varieties. Most of the results we will
discuss rely on Hodge theory, which provides by analytic tools the Hodge and
Lefschetz decompositions, and the Hodge-Riemann relations. However, we will
put emphasis on the algebraic arguments and definitions around the notion of
Hodge structure. In another direction, we will emphasize the crucial importance
of polarizations, which are missing in the general Kähler context. We will also
discuss some results and problems related to algebraic cycles and motives.

0 Introduction

The study of the topology of complex manifolds starts with Riemann, whose work
leads to the discovery of some remarkable features of integrals of differential forms on
compact oriented Riemann surfaces, that is, compact 1-dimensional complex mani-
folds Σ. A key object is the space H1,0(Σ) of holomorphic 1-forms, which are locally
of the form g(z)dz where g is holomorphic and z is a local holomorphic coordinate.
The Riemann-Roch formula implies that the space H1,0(Σ) has dimension g, where
2g = b1(Σ). Furthermore, a local computation shows that∫

Σ
α ∧ β = 0,∀α, β ∈ H1,0(Σ), (0.1)∫

Σ
iα ∧ α > 0 ∀0 6= α ∈ H1,0(Σ). (0.2)

Noting that holomorphic 1-forms on Σ are closed, we deduce

Corollary 0.1. (1) The map H1,0(Σ) → H1(Σ,C) which to a holomorphic 1-form
associates its cohomology class is injective.

(2) Furthermore, we have

H1(Σ,C) = H1,0(Σ)⊕H1,0(Σ). (0.3)

Proof. If α is exact, then
∫

Σ iα ∧ α = 0, hence (0.2) implies (1). The equations

(0.1) and (0.2) together imply that the pull-back to the space H1,0(Σ)⊕H1,0(Σ) of
the pairing 〈 , 〉Σ on H1(Σ,C) is nondegenerate, which implies that the natural map
H1,0(Σ)⊕H1,0(Σ)→ H1(Σ,C) is injective. It is thus an isomorphism for dimension
reasons.

Remark 0.2. The decomposition (0.3) also says that the quotientH1(Σ,C)/H1,0(Σ)
is isomorphic to H1(Σ,R). We thus get from the data of the subspace H1,0(Σ) ⊂
H1(Σ,C) a complex torus

J(Σ) = H1(Σ,C)/(H1,0(Σ)⊕H1(Σ,Z)) = H1,0(Σ)/H1(Σ,Z).

This torus is called the Jacobian of Σ. There are several ways of proving that
this torus is in fact an algebraic variety. One can either use the Abel map or
explicitly construct the Theta functions providing an embedding of the complex
torus to projective space. Nowadays we can use the Kodaira embedding theorem
(see Section 2.2) to show that a complex torus built on data as above, satisfying the
Hodge-Riemann relations (0.1) and (0.2), is projective.
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Considering higher dimensional complex compact manifolds, we see that the
very simple arguments given above do not give enough information to understand
the relation between complex geometry and topology. A few statements remain true:
for example a nonzero holomorphic n-form η on a n-dimensional complex manifold
X is closed and not exact because

∫
X η ∧ η 6= 0. It follows that holomorphic n− 1-

forms are closed. For surfaces, this is almost sufficient to prove that the Frölicher
spectral sequence (see Section 1.1) degenerates at E1, but the decomposition (0.3)
is wrong for general compact complex surfaces, as the example of the Hopf surface
H, quotient of C2 \ {0} by the group G ∼= Z generated by multiplication by λ, for
some nonzero complex number λ such that |λ| 6= 1, shows. Indeed it has b1(H) 6= 0
and H1,0(H) = 0.

It is however a remarkable fact that higher dimensional projective manifolds carry
some structure very similar to the one described above, namely the Hodge decom-
position and sign relations of the intersection pairing, which in the case of surfaces
take the very simple form that the intersection pairing restricted to the space H1,1 of
classes of real closed forms of type (1, 1) has signature (1, h1,1−1) (the Hodge index
theorem). In higher dimensions, formulating these sign conditions needs the intro-
duction of the Lefschetz decomposition, which relies on Lefschetz work in algebraic
geometry (see [53] and Section 2.2). The three celebrated theorems of Lefschetz are
the most important results concerning the topology of complex algebraic manifolds
obtained without using any modern sophisticated tool. They are the Lefschetz the-
orem on (1, 1)-classes (Theorem 2.19), the Lefschetz theorem on hyperplane sections
(Theorem 2.14), and the hard Lefschetz theorem (Corollary 2.13). The first one can
be seen as an ancestor of the Hodge conjecture, as it deals with Hodge classes of
degree 2. The original proof by Lefschetz is sketched in Griffiths’ paper [28]. Nowa-
days it is given a formal proof based on sheaf-theoretic methods and the exponential
exact sequence. The second one is a topological result comparing the topology of
a smooth projective manifold and its hyperplane sections. It works with integral
coefficients and can be given a Morse-theoretic proof (see [59]). The last one is a
property of crucial importance satisfied by classes c1(L), where L is an ample holo-
morphic line bundle on a smooth projective complex variety or by a Kähler class
on a compact Kähler manifold. It was not actually proved by Lefschetz, and Hodge
gave an analytic proof of it based on Hodge theory. Deligne gave an arithmetic proof
of this theorem in [20] using étale cohomology, but there is no algebraic geometry
proof of this statement, for example in the setting of algebraic de Rham cohomology.
The Lefschetz decomposition is a formal consequence of the hard Lefschetz theorem.
As we will see in Section 2.2, the structure one gets by combining the Hodge and
Lefschetz decompositions, namely a polarized Hodge structure on cohomology, exists
only on projective manifolds. There are morphisms of Hodge structures associated
to holomorphic maps or more generally correspondences between compact Kähler
manifolds, but the category of polarized Hodge structures behaves much better. It
is semi-simple, which is not the case for the category of Hodge structures. So, even
if formally the natural context to do Hodge theory is the compact Kähler context,
in fact the theory of Hodge structures seems to have its full power and applications
only in the projective context.

The Kodaira embedding theorem (Theorem 2.33) is a major result obtained by
combining sheaf-theoretic methods and Hodge theory, together with the Lefschetz
theorem on (1, 1)-classes. None of these results however uses in an essential way the
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notion of of (mixed, polarized) Hodge structures introduced by Griffiths and Deligne,
that we will describe in Sections 1.5 and 2.2 and fully exploit the contents of the
Hodge decomposition theorem in order to relate complex geometry and topology.
Sheaf cohomology tells us that they are related by the Frölicher spectral sequence,
and the Hodge decomposition theorem tells among other things that this spectral
sequence degenerates at E1. There are many consequences of the degeneration at
E1 of the Frölicher spectral sequence, as we will explain in Section 1.1.

The Hodge structures on the cohomology of a complex projective manifold have
moduli and contain a lot of information on its geometry. Typically, the Hodge
conjecture predicts which cohomology classes can be constructed from complex sub-
manifolds. Although they are objects of a transcendental nature, they are predicted
to contain a lot of information on the “motive” of a variety. To start with, the
Hodge conjecture predicts that classes of cycles (combinations of varieties with ra-
tional coefficients) in a product X × Y are exactly the Hodge classes on X × Y , or
the morphisms of Hodge structures from the cohomology of X to the cohomology of
Y . It is thus expected that the category of cohomological motives (see Sections 2.1
and 2.3) maps faithfully to the category of (polarized) Hodge structures, although
a big problem in the theory comes from the fact that most Hodge structures do not
come from the cohomology of algebraic varieties (or compact Kähler manifolds), as
follows from Griffiths’ transversality [25]. Another source for the extra structure on
the cohomology of an algebraic manifold is the fact that it can be (at least with ad-
equate coefficients), computed by different means, e.g. étale cohomology, algebraic
de Rham cohomology (see Section 1.3), and of course Betti cohomology. Each of
these realizations carries a specific information, e.g. étale cohomology carries the
galois group action, while de Rham cohomology carries the Hodge filtration and is
defined over the same field as the variety. The comparison isomorphisms then allow
to put together these various structures. One should not believe however that this
makes the cohomology theory of algebraic varieties understandable purely inside al-
gebraic geometry. For example, Betti cohomology with integral coefficients has a
transcendental nature.

We conclude this introduction with a general presentation of complex and Kähler
geometries.

0.1 Complex manifolds

A complex manifold of dimension n is a real manifold of dimension 2n equipped
with local holomorphic charts, namely homeomorphisms φU between open sets U of
X and open sets of Cn, such that the transition diffeomorphisms, given by the maps
φU ′◦φ−1

U are holomorphic on φU (U∩U ′) ⊂ Cn. The transition diffeomorphisms being
holomorphic, they are in particular C∞, and even real analytic, hence a complex
manifold is real analytic. The homeomorphisms φU identify locally the real tangent
bundle TX,R with TCn,R and the tangent bundle TCn,R obviously has the structure
of a complex vector bundle. The local structures of complex vector bundle on TX,R
(or almost complex structures) so constructed on open sets of X glue together, since
the transition diffeomorphisms, being holomorphic, have complex linear differential.
Hence a complex manifold has an almost complex structure, which is also described
by an almost complex structure operator I ∈ EndTX,R satisfying I2 = −Id, and it
is proved in [61] that an almost complex structure of class C2 comes from a complex
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structure as above if and only if it satisfies the integrability condition saying that
the Lie bracket of two complex vector fields of type (1, 0) is of type (1, 0). Here
a complex vector field χ is said to be of type (1, 0) for I if Iχ = iχ. In [80],
Weil gives a simple argument proving this result in the real analytic case, where
X and I are real analytic, as a consequence of Frobenius theorem on integrable
distributions. The simplest examples of compact complex manifolds are projective
space CPn and complex tori T = V/L where V is a complex vector space and L is
a lattice in V . Projective space is a big source of further constructions of compact
complex manifolds, as we can consider the projective manifolds, namely the complex
submanifolds of CPn. It is known by work of Chow [14] that they are defined by
algebraic equations, but there is no classification of smooth projective manifolds.
The complete intersections in CPN are those which are of codimension c and globally
defined by exactly c homogeneous polynomials, seen as sections of line bundles on
CPN . A celebrated conjecture by Hartshorne [35] states that a complex submanifold
X of CPN of dimension n and codimension c must be a complete intersection if
n > 2c. It is completely open, but it is motivated by the nice observation due
to Hartshorne that in this range, the rational cohomology of X satisfies many of
the constraints imposed by the Lefschetz theorem on hyperplane sections to the
cohomology of a complete intersection.

Another widely open problem is to decide which almost complex manifolds have
a complex structure. In real dimension 4, using the Kodaira classification of complex
surfaces [50], one can prove that there are almost complex compact fourfolds that
do not admit a complex structure (see for example the work [71] by Van de Ven).
In higher dimension, we do not know if the sphere S6, which has an almost complex
structure, admits a complex structure (see [54] for a discussion).

0.2 Kähler manifolds

A Hermitian structure on a complex manifold is a Hermitian metric on its tangent
bundle, equipped with its complex structure. In local holomorphic coordinates zi,
such a Hermitian metric is given by a Hermitian matrix (hij) of functions, and there
is an associated real form

ω =
i

2

∑
kl

hkldzk ∧ dzl,

called the associated Kähler form. This linear algebra construction works in the
almost complex setting. The metric is said to be Kähler if the form ω is closed.
This notion appears explicitly in the paper [40] but seems to have been already con-
sidered by Shouten and van Dantzig. As the Kähler form is obviously everywhere of
maximal rank, it provides a symplectic structure on X. The set of Kähler form being
obviously connected, a Kähler manifold thus has a natural deformation class of sym-
plectic structures. In the reverse direction, Gromov and later Donaldson beautifully
exploited the (not necessarily integrable) almost complex structures compatible with
a given symplectic structure. Gromov used them in [32] to develop the theory of
pseudoholomorphic curves, leading to the theory of Gromov-Witten invariants, and
Donaldson used them in [23], in order to prove that a compact symplectic manifold
contains many codimension 2 symplectic submanifolds.

There are various characterizations of Kähler metrics. The first one looks techni-
cal but it is very useful for computations, namely it says that the Hermitian metric

5



h on X is Kähler if and only if at any point x ∈ X, there are holomorphic coor-
dinates such that the matrix of h in these coordinates is diagonal at first order, or
equivalently

ω =
i

2

∑
k

dzk ∧ dzk +O(|z·|2). (0.4)

The second characterization is a consequence of the first, and it is very important
in the theory of Calabi-Yau manifolds and Kähler-Einstein metrics, that is, Ricci
flat Kähler metrics (see [82]). It says that the metric is Kähler if and only if the
operator of almost complex structure I is parallel for the Levi-Civita connection of
the metric g = Reh. The “only if” easily follows from (0.4) because the Levi-Civita
connection is computed using only the first order derivatives of the metric.

The importance of this notion for algebraic geometry is the fact that any smooth
complex projective variety is Kähler. This follows from the fact that complex pro-
jective space CPN is Kähler. It even admits explicit Kähler metrics like the Fubini-
Study metric, which is invariant under the group PU(N + 1) acting on CPN . The
Kähler class of the Fubini-Study Kähler metric is a rational cohomology class on
CPN , hence any complex projective manifold admits rational Kähler classes. This
property characterizes complex projective manifolds by the celebrated Kodaira em-
bedding theorem 2.33.

1 Differential forms on complex manifolds

1.1 Frölicher spectral sequence

On a complex manifold X, the cotangent bundle, seen as a complex vector vector
bundle, as in fact the structure of a holomorphic vector bundle, which we denote ΩX .
In local holomorphic coordinates zi, ΩX is generated over OX by the dzi’s. Using
the local holomorphic charts to trivialize ΩX , the transition matrices for ΩX are the
Jacobian matrices of the holomorphic change of coordinates. The holomorphic de
Rham complex Ω•X of a complex manifold X is defined by Ωk

X :=
∧k ΩX , with dif-

ferential d : Ωk
X → Ωk+1

X given by the exterior derivative. The holomorphic Poincaré
lemma is quite easy to prove. It says that a holomorphic form of positive degree
which is closed is locally an exact form dβ with β holomorphic, and a holomorphic
form of degree 0 (that is, a holomorphic function) which is closed is locally constant.
We summarize it in the form

Lemma 1.1. The complex of sheaves Ω•X on X is a resolution of the constant sheaf
C on X.

This resolution is not acyclic. One can obtain an acyclic resolution by choosing
compatible acyclic resolutions of each sheaf Ωp

X . For example the Dolbeault reso-
lution will lead to the full de Rham complex, which is an acyclic resolution of the
constant sheaf C. We deduce from Lemma 1.1 a canonical isomorphism

Hk(X,C) ∼= Hk(X,Ω•X). (1.5)

On the right, we have the hypercohomology of the holomorphic de Rham complex.
The complex Ω•X admits the Hodge filtration (or “filtration bête” or “näıve”)

F pΩ•X = Ω•≥pX . (1.6)
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The corresponding spectral sequence (hypercohomology spectral sequence)

Ep,q1 = Hq(X,Ωp
X)⇒ Hp+q(X,Ω•X) = Hp+q(X,C)

associated to this filtration is called the Frölicher spectral sequence. Thus Hk(X,C)
has a decreasing filtration with graded pieces Ep,q∞ , for p+ q = k, which are subquo-
tients of Ep,q1 .

Corollary 1.2. One has

bk(X) ≤
∑
p+q=k

hp,q(X), (1.7)

where hp,q(X) := dimHq(X,Ωp
X). Furthermore, the equality (1.7) holds for all k if

and only if the Frölicher spectral sequence of X degenerates at E1, that is, all the
derivatives dr vanish for r ≥ 1 (or equivalently, Ep,q1 = Ep,q∞ for all p, q).

Note that d1 : Hq(X,Ωp
X) = Ep,q1 → Ep+1,q

1 = Hq(X,Ωp+1
X ) is induced by the

exterior differential d : Ωp
X → Ωp+1

X .
The degeneracy at E1 of the Frölicher spectral sequence has some important

consequences, particularly in deformation theory. Suppose that a compact complex
manifold X is isomorphic to the central fiber X0 of a smooth proper holomorphic
map

f : X → B,

where (B, 0) is a pointed analytic space. By smoothness, and properness, f is a
topological fibration (e’s theorem), hence we have, for any t ∈ B, bk(Xt) = bk(X0) =
bk(X) at least if B is connected. The fibers Xt have their own Frölicher spectral
sequence and satisfy the inquality (1.7). One can show by upper-semi-continuity
of cohomology that for t close to 0, hp,q(Xt) ≤ hp,q(X0). We thus get the chain of
inequalities

bk(X0) = bk(Xt) ≤
∑
p+q=k

hp,q(Xt) ≤
∑
p+q=k

hp,q(X0). (1.8)

We then conclude:

Theorem 1.3. If the Frölicher spectral sequence of X = X0 degenerates at E1, then
(i) hp,q(Xt) = hp,q(X0) for t close to 0.
(ii) The Frölicher spectral sequence of Xt also degenerates at E1 for t close to 0.

Indeed, in the chain of inequalities (1.8), the two extreme terms are equal hence
the intermediate inequalities are equalities, which proves both statements using
Corollary 1.2.

Writing this argument in a schematic form, Deligne proved an even better state-
ment. Considering again a smooth proper family f : X → B, we have the relative
holomorphic de Rham complex Ω•X/B which is (by analytic local triviality) a reso-

lution of π−1OB, and thus a relative Frölicher spectral sequence

Ep,q1 = Rqf∗Ω
p
X/B ⇒ Rkπ∗C⊗OB. (1.9)

The right hand side is locally free over B. On the other hand, it admits the Hodge
filtration obtained as the abutment of the relative Frölicher spectral sequence. Note
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that, after restriction to X0, we get the Frölicher spectral sequence of X0. Assuming
B is Artinian and replacing the dimension inequalities (1.7) by length inequalities
for the sheaves Rqf∗Ω

p
X/B an Rkπ∗C⊗OB, one gets

Theorem 1.4. (Deligne) Assume B is Artinian (or formal, or a germ). If the
Frölicher spectral sequence of X = X0 degenerates at E1, then

(i) The sheaves Rqf∗Ω
p
X/B are locally free on B and satisfy base change.

(ii) The relative Frölicher spectral sequence of X/B also degenerates at E1.

Here the upper-semi-continuity of cohomology takes the form of the following
inequality

l(Rqf∗Ω
p
X/B) ≤ hp,q(X0)l(OB)

with equality if and only if Rqf∗Ω
p
X/B is locally free and satisfies base change, which

means that the restriction map

(Rqf∗Ω
p
X/B)|0 → Hq(X0,Ω

p
X0

)

is an isomorphism.
This theorem implies the following version of the Bogomolov-Tian-Todorov the-

orem [69].

Theorem 1.5. Let X be a compact complex manifold with trivial canonical bundle.
Assume the Frölicher spectral sequence of X degenerates at E1. Then the deforma-
tions of X are unobstructed.

The conclusion is equivalent to the fact that the first order deformations of X,
or smooth morphisms X1 → B1 := SpecC[t]/(t2) of analytic spaces with fiber over
0 isomorphic to X extend to arbitrary high order n to a smooth morphism Xn →
Bn := SpecC[t]/[tn+1] of analytic spaces. The original proof of the Bogomolov-Tian-
Todorov theorem needs the stronger assumption that X is Kähler (see Section 1.4).
The proof of Theorem 1.5 is done by induction on n. It relies on the very important
T 1-lifiting principle proved in [62], which says the following. Associated to a smooth
morphism fn : Xn → Bn := SpecC[t]/(tn+1) of analytic spaces, one has a relative
Kodaira-Spencer class ρn ∈ Γ(Bn−1, R

1fn−1∗TXn−1/Bn−1
) = H1(Xn−1, TXn−1/Bn−1

),
which is defined as the extension class of the exact sequence

0→ OXn−1 → ΩXn|Xn−1
→ ΩXn−1/Bn−1

→ 0

of locally free sheaves on Xn−1.

Theorem 1.6. (T 1-lifting principle.) The morphism fn extends to a smooth mor-
phism fn+1 : Xn+1 → Bn+1 if and only if the relative Kodaira-Spencer class ρn
extends to a class ρn+1 ∈ Γ(Bn, R

1fn∗TXn/Bn) = H1(Xn, TXn/Bn).

Suppose that X has trivial canonical bundle, that is, Ωd
X := KX

∼= OX , where
d := dimX, and that its Frölicher spectral sequence degenerates at E1. The ev-
erywhere nonzero section η ∈ H0(X,KX) extends to a section ηn of KXn/Bn by
Theorem 1.4 (i), and, as η, ηn is everywhere nonzero, so it follows that the rela-
tive canonical bundle KXn/Bn is trivial. But then, by interior product, we get an
isomorphism

TXn/Bn
∼= Ωd−1

Xn/Bn
of holomorphic vector bundles on Xn. The fact that the relative Kodaira-Spencer
class extends to Xn then follows from Theorem 1.4 (i) applied to Ωd−1

Xn/Bn .
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1.2 Logarithmic de Rham complex

Let X be a complex manifold and D ⊂ X be a reduced analytic hypersurface. D
is said to be a normal crossing divisor if for any x ∈ D, there exist local holomor-
phic coordinates z1, . . . , zn centered at x, such that D is defined by the equation
z1 . . . zk = 0 near x. The number k of branches depends of course on x. The log-
arithmic de Rham complex associated to a normal crossing divisor D is denoted
Ω•X(logD) and constructed as follows. We define the set of sections of the sheaf
Ωk
X(logD) to be the set of holomorphic differentials η with pole order 1 along D,

and whose differential dη also has pole order 1 along D. It is clear from the defini-
tion that the exterior differential maps Ωk

X(logD) to Ωk+1
X (logD). The following is

easily proved.

Proposition 1.7. (i) In local holomorphic coordinates as above, ΩX(logD) is freely
generated over OX by dz1

z1
, . . . , dzkzk , dzk+1, . . . , dzn. In particular, ΩX(logD) is lo-

cally free.
(ii) One has Ωk

X(logD) =
∧k ΩX(logD). In particular, Ωk

X(logD) is locally
free.

Let U := X \D and let j : U ↪→ X be the open inclusion. If x ∈ D with local
holomorphic coordinates zi as above, then for an adequate open neighborhood Vx
of x in X, U ∩ Vx is biholomorphic to D∗k × Dn−k, where D is the unit disc, hence
has the same homotopy type as (S1)k. The Cauchy formula shows that the classes
of the closed logarithmic forms dzI

zI
restricted to U ∩ Vx provide a complex basis of

H∗((S1)k,C). With a little more work, one concludes

Theorem 1.8. The logarithmic de Rham complex is quasiisomorphic to Rj∗C.

Corollary 1.9. There is a canonical isomorphism

H∗(U,C) = H∗(X,Rj∗C) ∼= H∗(X,Ω•X(logD)). (1.10)

Note that we also have the isomorphism (1.5) for U , which provides

H∗(U,C) ∼= H∗(U,Ω•U )

and a Hodge filtration on H∗(U,C) induced by the filtration (1.6) on Ω•U and given
by

F pH∗(U,C) = Im (H∗(U,Ω•≥pU )→ H∗(U,Ω•U )).

This filtration is not very interesting for the following reason. Assume that U is
affine, so that the sheaves Ωl

U are acyclic. Then the formula (1.10) gives in this case

Hk(U,C) =
H0(U,Ωk

U )closed

H0(U,Ωk
U )exact

and Hk(U,C) = F kHk(U,C). In fact, the Hodge filtration we will be considering
on H∗(U,C) for U quasiprojective, with projective compactification X with normal
crossing boundary divisor D = X \ U , is induced by the filtration (1.6) on the
logarithmic de Rham complex using (1.10).

F pH∗(U,C) = Im (H∗(X,ΩX(logD)•≥p)→ H∗(X,Ω•X(logD))). (1.11)

Note that such a compactification always exists by Hironaka resolution of singular-
ities.
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Proposition 1.10. The filtration defined by (1.11) does not depend on the choice
of smooth projective compactification with normal crossing boundary.

This follows from the fact that any two such compactifications are birational and
dominated by a third, and from functoriality properties of the logarithmic de Rham
complex.

1.3 Algebraic de Rham cohomology

Let X be an algebraic variety over C. Then we can define the sheaf of Kähler
differentials ΩX/C. Its stalk at x ∈ X is the OX,x-module of differentials of OX,x,
generated by df , f ∈ OX,x, with relations given by the Leibniz rule d(fg) = fdg +
gdf . Here OX is the sheaf of algebraic functions on X, in the Zariski topology. We
have the universal differential

d : OX → ΩX/C.

When X is smooth, ΩX/C is locally free and we have the algebraic de Rham complex

0→ OX
d→ ΩX/C

d→ . . .
d→

n∧
ΩX → 0,

where n = dimX. The algebraic de Rham cohomology Hk
dR(X/C) was introduced

by Grothendieck [34] and is defined as Hk(X,Ω•X/C). We can now consider the

corresponding complex manifold Xan (with sheaf of rings given by holomorphic
functions in the Euclidean topology instead of algebraic functions in the Zariski
topology). The sheaf of holomorphic differentials ΩX is nothing but the analytization
of the algebraic coherent sheaf ΩX/C, and similarly for the whole de Rham complex.
The following result is due to Grothendieck [34] (but some related remarks had been
made by Serre in [65]).

Theorem 1.11. If X is quasi-projective, one has

Hk(Xan,C) ∼= Hk
dR(X/C). (1.12)

When X is projective, this follows from the comparison isomorphism (1.5) for
Xan and the GAGA isomorphism (see [65])

Hk
dR(X/C) = Hk(X,Ω•X/C) ∼= Hk(Xan,Ω

•
Xan).

When X is not projective, one chooses a smooth projective compactification X
such that X \X is a normal crossing divisor D. One observes that the logarithmic
de Rham complex has an algebraic version Ω•

X/C(logD), whose analytization gives

Ω•
Xan

(logD). The GAGA theorem then provides an isomorphism

Hk(X,Ω•
X/C(logD)) ∼= Hk(Xan,Ω

•
Xan

(logD)),

and by (1.10), the last term is isomorphic to Hk(Xan,C). Using the fact that
Hk(X,Ω•X/C) ∼= Hk(X, j∗Ω

•
X/C), where j is the inclusion of X in X, the proof is

concluded by proving that the natural inclusion of complexes

Ω•
X/C(logD) ⊂ j∗Ω•X/C

is a quasiisomorphism.

10



Remark 1.12. This last point is not proved in [34]. Grothendieck only uses the
fact that Hk(U,C) = Hk(X,Ω•X(∗D)), where Ω•X(∗D) ⊂ j∗Ω

•
U is the complex of

holomorphic differential forms on U with meromorphic growth along D. This is
enough to prove Theorem 1.11 using GAGA.

The comparison isomorphism (1.12) has for consequence the fact that, if a smooth
variety is defined over a subfield K ⊂ C (for example a number field), then its Betti
cohomology Hk(Xan,C) has a natural K-structure, that is, there is a K-vector
space V such that V ⊗K C = Hk(Xan,C). Indeed, it suffices to observe that the
sheaves of Kähler differentials are defined over K, hence also the algebraic de Rham
cohomology of X, so that we can take V = Hk

dR(XK/K). When K = Q, the
cohomology Hk(Xan,C) thus has two Q-structures, the Betti Q-structure given by

Hk(Xan,C) = Hk(Xan,Q)⊗ C,

and the de Rham Q-structure given by

Hk
dR(X/C) = Hk

dR(XQ/Q)⊗ C.

Comparing these two structures is the contents of the arithmetic theory of periods.
Consider the example of the cohomology of the algebraic variety X = Gm defined
over Q with analytization Xan = C∗, for which a Q-generator of H1

dR is given by the
class αdR of dz

z while a Q-generator of H1(Xan,Q) is given by a class αBetti whose
integral over the counterclokwise oriented unit circle is 1. The Cauchy formula shows
that

αdR = (2iπ)αBetti

in this case, so that a transcendental coefficient appears in any case. For even
degree cohomology H2k, it is more natural to compare the de Rham Q-structure
divided by (2iπ)k and the Betti Q-structure, as they coincide on classes of algebraic
subvarieties (cycle classes) of X (still assumed to be defined over a number field).
The Grothendieck period conjecture (see [2]) relates the transcendence degree of the
arithmetic period matrix of X to the cycle classes on powers X l of X.

1.4 The Hodge decomposition theorem

The almost complex structure I of a complex manifold X gives equivalently a de-
composition of the complexified cotangent bundle ΩX,C into the ±i-eigenspaces of
I, which one writes as

ΩX,C = Ω1,0
X ⊕ Ω0,1

X . (1.13)

The differential forms of type (1, 0) are the C-linear maps TX,R → C, where TX,R is
equipped with its structure of C-vector space given by I, and the differential forms
of type (0, 1) are the C-antilinear ones. If X has a complex structure, the vector
bundle Ω1,0

X is generated in local holomorphic coordinates zi by the dzi and it has
a holomorphic structure, namely it is the C∞-bundle underlying the holomorphic
bundle ΩX of section 1.1. The decomposition (1.13) allows to define the ∂-operator
acting on differentiable functions f : U → C defined over an open set U ⊂ X by

∂f = (df)0,1,

11



where (df)0,1 ∈ A0,1(U) = Γ(U,Ω0,1
U ) is the projection of df ∈ Γ(ΩU,C). Defining the

sheaf Ap,q of C∞ forms of type (p, q) by the formula

Ap,q(U) = Γ(U,

p∧
Ω1,0
U ⊗

q∧
Ω1,0
U ),

(1.13) gives a decomposition of the set Ak(U) of complex differential forms on U as

Ak(U) = ⊕p+q=kAp,q(U). (1.14)

Using (1.14), the operator ∂ extends to an operator

∂ : A0,1(U)→ A0,2(U)

where as before ∂α is the (0, 2)-component of dα. One can show that the complex
structure is integrable (that is, the Newlander-Nirenberg criterion [61] is satisfied)
if and only if ∂ ◦ ∂ = 0 on functions. When this is the case, the decomposition
(1.14) has the properties that the differential dα of a form α of type p, q), that
is, α ∈ Ap,q(U), is the sum of a form ∂α of type (p + 1, q) and a form ∂α of type
(p, q+1). The operators ∂ : Ap,q(U)→ Ap,q+1(U) so defined for any open set U ⊂ X
satisfy ∂ ◦ ∂ = 0 hence give for fixed p a complex which can easily be shown to be
the Dolbeault complex ΩX ⊗A0,q of the holomorphic vector bundle ΩX . Dolbeault
theorem [22] says that the Dolbeault complex is a (acyclic) resolution of the sheaf
of sections of Ωp

X , so that one gets an isomorphism

Hq(X,Ωp
X) =

Ker (Ap,q(X)
∂→ Ap,q+1(X))

Im (Ap,q−1(X)
∂→ Ap,q(X))

. (1.15)

Without more assumptions on X, relating the cohomology of d and ∂ is not
easy. The only general fact is that there is a natural map Hk(X,C)→ Hk(X,OX),
induced by the morphism of sheaves C→ OX , which to the de Rham class of a k-form
associates the Dolbeault class of its (0, k)-component. The following major result
of Hodge says that, to the contrary, when X is compact Kähler, the decomposition
(1.14) descends to cohomology.

Theorem 1.13. (Hodge [38].) For a complex manifold X, define Hp,q(X) ⊂
Hp+q(X,C) as the set of de Rham cohomology classes of closed forms of type (p, q)
on X. Then, if X is compact Kähler,

Hk(X,C) = ⊕p+q=kHp,q(X), (1.16)

Hp,q(X) ∼= Hq(X,Ωp
X). (1.17)

The isomorphism in (1.17) is not natural. Essentially it associates to the d-class
of a closed (hence ∂-closed) (p, q)-form α its ∂-class, but one has to prove that the
later depends only on the d-class of α, which is not a formal fact. Although Theorem
1.16 is very useful independently of its proof, it turns out that other results, for
example the hard Lefschetz theorem cannot be deduced directly from it but need
the whole power of Hodge theory. To summarize the main points of the proof, let
us say that, choosing a Hermitian metric h on the compact complex manifold X,
one gets a L2-metric on the spaces of differential forms, or a L2-hermitian metric
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on the spaces of differential forms of type (p, q). If n = dimX, there is the Hodge
∗-operator

AkX → A2n−k
X ,

which is of order 0, such that

||α||L2 =

∫
X
α ∧ ∗α.

One defines the first order adjoint operators d∗, ∂
∗
, ∂∗ by the formulas

d∗ = − ∗ d∗, ∂∗ = − ∗ ∂∗, ∂∗ = − ∗ ∂ ∗ .

They are formal adjoints in the sense that

〈α, dβ〉L2 = 〈d∗α, β〉L2 (1.18)

and similarly for the other operators. One defines the Laplacians ∆d, ∆∂ , ∆∂ by
the formulas

∆d = dd∗ + d∗d, ∆∂ = ∂ ∂
∗

+ ∂
∗
∂, ∆∂ = ∂∂∗ + ∂∗∂. (1.19)

Note that the Laplacians ∆∂ and ∆∂ act on each space Ap,q(X) of differential forms
of type (p, q), which is a priori not the case for ∆d. A differential form is harmonic
(for d, ∂ or ∂) if it is annihilated by the corresponding Laplacian. As one easily
sees using formulas (1.18) and (1.19), a form α on a compact complex manifold is
∆d-harmonic if and only if dα = 0 and d∗α = 0, and similarly for the two other
Laplacians.

The general theory of elliptic operators developed by Hodge says that one has
orthogonal decompositions

Ak(X) = Im ∆d ⊕Ker ∆d (1.20)

Ak(X) = Im d⊕ Im d∗ ⊕Hk(X), (1.21)

hence an isomorphism

Hk(X,R) ∼= Hk(X), (1.22)

where Hk(X) is the space of real harmonic forms of degree k, and similarly for the
other Laplacians, or with C-coefficients. Up to now, we have not been using the
Kähler assumption, and any Hermitian metric could be used. Theorem 1.13 is then
a consequence of the following fact.

Theorem 1.14. If the metric h is Kähler, one has ∆d = 2∆∂ = 2∆∂.

Indeed, Theorem 1.14 implies that the Laplacian ∆d preserves the decomposi-
tion (1.14), which implies that, if a form α =

∑
p+q=k α

p,q is harmonic, then its
components αp,q are harmonic. We thus get a decomposition

Hk = ⊕p+q=kHp,q

where Hp,q is the set of ∆d-harmonic (or ∆∂-harmonic, or ∆∂-harmonic) forms on
X, which implies (1.16). The statement (1.17) follows from the equality ∆d = 2∆∂

which implies that Hp,q(X) is also the set of ∆∂-harmonic forms of type (p, q) and
from the isomorphism (1.22) for the ∂-operator, which gives

Hp,q ∼= Hq(X,Ωp
X).
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Corollary 1.15. The Frölicher spectral sequence of a compact Kähler manifold
degenerates at E1.

Indeed, as we have seen in Section 1.1, this is a consequence of the equality
bk(X) =

∑
p+q=k h

p,q(X), hp,q(X) = dimHq(X,Ωp
X).

Remark 1.16. The complex conjugacy acts on the space Hk(X,C), with fixed part
Hk(X,R). It is clear that, with the definition above

Hp,q(X) = Hq,p(X). (1.23)

This phenomenon is called Hodge symmetry. It implies the restriction hp,q(X) =
hq,p(X) on the Hodge numbers hp,q(X) = dimHq(X,Ωp

X) of a compact Kähler
manifold. This symmetry is strong enough to characterize compact Kähler surfaces
since it implies in the case of surfaces that b1 is even. Indeed, the Frölicher spectral
sequence of a compact complex surface always degenerates at E1, so that b1(S) =
h1,0(S) + h0,1(S) holds without the Kähler assumption.

In the case of complex projective manifolds, the degeneracy at E1 of the Frölicher
spectral sequence has been given an algebraic proof by Deligne-Illusie [21] using
reduction to nonzero characteristic. Note here that the degeneracy at E1 of the
analytic Frölicher spectral sequence is equivalent by GAGA [65] to the degeneracy
at E1 of the algebraic Frölicher spectral sequence (see Section 1.3). This is thus an
algebraic statement.

One consequence of (the proof of) the Hodge theorem is the celebrated ∂∂-lemma.

Lemma 1.17. Let X be a compact complex manifold. Let α be a closed form of
type (p, q) on X which is d-closed and is ∂-closed or ∂-closed, or d-closed. Then
α = ∂∂β for some form of type (p− 1, q − 1) on X.

Note that each of the three conditions stated is equivalent by the arguments
given above to the fact that the harmonic representative of α is 0 and, in particular,
the three conditions are equivalent. The proof of Lemma 1.17 uses (1.20) and the
Kähler identities, which are commutation relations between the operators ∂∗ an ∂,
and are used in the proof of Theorem 1.14. The following important application of
the ∂∂-lemma is the starting point in the proof of the Kodaira embedding theorem
[49]. If L is a holomorphic line bundle on a complex manifold, and hL is a Hermitian
metric on L, the form ωhL = 1

2iπ∂∂log hL, computed as 1
2iπ∂∂log hL(σ) for some (in

fact, any) local generating holomorphic sections σ of L, is a real closed form of type
(1, 1) and it is a well-known fact of the theory of Chern classes that it is a de Rham
representative of the second Chern class c1(L).

Proposition 1.18. Let X be a compact Kähler manifold and L a holomorphic line
bundle on X. Let α be a closed (1, 1)-form which is a de Rham representative of the
second Chern class c1(L). Then there exists a Hermitian metric hL on L such that
ωhL = α.

Indeed, choose any Hermitian metric h′L on L. Then the form ωh′L − α is closed

of type (1, 1) and its de Rham cohomoloy class is 0, so it is exact. The ∂∂-lemma
says that it is 1

2iπ∂∂log φ for some real function φ. The Hermitian metric e−φh′L
satisfies the required properties.
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1.5 Hodge structures and mixed Hodge structures

Definition 1.19. An integral Hodge structure of weight k is a torsion free lattice L
and a decomposition

LC := L⊗ C = ⊕p+q=kLp,q (1.24)

into a direct sum of complex vector subspaces satisfying Lp,q = Lq,p.

One can define as well rational Hodge structures. By the Hodge decomposition
theorem 1.13, this structure appears on the integral cohomology modulo torsion of
a compact Kähler manifold, using the isomorphism

Hk(X,C) = Hk(X,Z)⊗ C.

In this case, we have Hp,q(X) = 0 for p < 0 or q < 0 (Hodge structures satisfying
this condition will be said effective), but one should not impose this as a general
condition since it is useful to consider dual Hodge structures with weight of opposite
sign. The Hodge decomposition is a data equivalent to the corresponding Hodge
filtration

F rLC = ⊕p≥rLp,q (1.25)

which has to be finite and to satisfy the condition

F rLC ⊕ F k+1−rLC = LC (1.26)

for any r. Indeed, when (1.26) is satisfied, one defines Lp,q = F rLC ∩ F k−rLC and
one shows that it satisfies (1.25). For the Hodge structure on Hk(X,Z), with X
compact Kähler, one has

Lemma 1.20. One has F rHk(X,C) = Im (Hk(X,Ω•≥rX )→ Hk(X,Ω•X)).

Indeed, let V := Im (Hk(X,Ω•≥rX )→ Hk(X,Ω•X)). The inclusion F rHk(X,C) ⊂
V follows from the definition of the spaces Hp,q(X) in Theorem 1.13 and in the other
direction, we can argue that, by a spectral sequence argument,

dimV ≤
∑

p≥r,p+q=k
dimHq(X,Ωp

X).

As the right hand side is the dimension of F rHk(X,C) by Theorem 1.13, they must
be equal. qed

Corollary 1.21. If X is a smooth projective variety defined over a subfield K of C,
the Hodge filtration on Hk(X,C) is defined over K.

This follows indeed from the algebraic de Rham cohomology arguments given in
Section 1.3, and from the fact that the Serre isomorphism

Hk(Xan,Ω
•
Xan) ∼= Hk(X,Ω•X/C)

is compatible with the filtrations induced by the näıve filtration on both sides.
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The theory of Hodge structures is a very rich tool to study the topology of
smooth projective varieties, but it is also crucial to be able to say something on
nonprojective, for example quasi-projective, or singular varieties. One reason is
the following: it is natural to study fibered smooth projective varieties, that is,
morphisms f : X → B. In most cases, the morphism f will have critical points,
and will determine a topological fibration X0 → B0 only over the Zariski open set
B0of regular values. The complement will consist of singular fibers. Usually the
complement B \ B0 (called the discriminant) is itself singular. Another example
concerns the study of the coniveau of cohomology. Given a Betti cohomology class
α on X, the coniveau of α is the maximal codimension of a closed algebraic subset
Y ⊂ X such that α is supported on Y , that is, vanishes on X \ Y . The support Y
cannot in general taken to be smooth, because the topology of smooth subvarieties
is too restricted (for example by the Lefschetz theorem on hyperplane sections in the
case of hypersurfaces). Deligne [19] introduced the notion of mixed Hodge structure
that turns out to exist on any cohomology group of any quasiprojective complex
variety.

Definition 1.22. ([19], [63]) A mixed Hodge structure is the data of a lattice (or Q-
vector space) L, equipped with an increasing filtration W on L (the weight filtration),
and a decreasing filtration F on LC (the Hodge filtration) such that the filtration F
induces a Hodge structure of weight k on GrWk L := WkL/Wk−1L.

The indexing of weights is sometimes very hard to relate to the geometry so
it might be preferable to choose a weight k0 and to ask instead that the filtration
F induces a Hodge structure of weight k + k0 on GrWk L := WkL/Wk−1L. Hodge
structures as in Definition 1.19 are called pure Hodge structures

Deligne’s fundamental theorem states the existence of mixed Hodge structure
on any cohomology group coming from algebraic geometry over C. Its fundamental
character and major applications, also developed in [19], come from the properties
of the category of mixed Hodge structures that we will see in Section 2.1.

Theorem 1.23. [19] The Betti cohomology groups Hk
B(X,Q) = Hk(Xan,Q) for

X quasiprojective over C, or relative cohomology groups Hk
B(X,Y,Q), for Y ⊂ X

closed or open algebraic subvariety, carry natural mixed Hodge structures.

These mixed Hodge structures are also functorial (see next Section). The easiest
case is the case of a smooth quasiprojective variety X. By Hironaka resolution theo-
rem [36], there exists a smooth projective variety X containing X as a Zariski open
set, such that the boundary X \X is a simple normal crossing divisor D. Denoting
j : X ↪→ X the inclusion map, one can then use the isomorphism (1.10) and compute
Hk(X,C) as Hk(X,Ω•

X
(logD)). The two filtrations are then easy to define, at least

on cohomology with C-coefficients. The Hodge filtration F was already mentioned.
It is induced by the näıve fitration Ω•≥r

X
(logD) on the complex Ω•

X
(logD). The

weight filtration is induced up to a shift by the filtration W ′kΩ
•
X

(logD) ⊂ Ω•
X

(logD)
defined by

W ′k = Ω•≤k
X

(logD) ∧ Ω•−k
X

is the subcomplex of sheaves of logarithmic forms with pole multiplicity at most k
at any point. Thus W ′k ignores the singularities of the boundary divisor D where
at least k + 1 branches intersect. It turns out that the filtration on cohomology

16



induced by W ′ is in fact defined on cohomology with Q-coefficients, as one can
relate it directly to the Leray filtration associated to the map j. More precisely,
if W ′′• := W ′−• to make it decreasing, the E1-term of the W ′′-spectral sequence
identifies with the E2-term of the Leray specctral sequence. The fact that these two
filtrations together endow the cohomology Hk(X,Q) with a mixed Hodge structure
uses the study of this filtration and its differentials. It turns out that it degenerates
on E2 (which corresponds to degeneracy on E3 of the Leray spectral sequence).
The differentials d1 of the spectral sequence associated to the filtration W ′′ identify
with Gysin morphisms induced by the inclusions D(k) ⊂ D(k−1), where D(k) is the
disjoint union of the intersection of k components of D. Hodge theory on the smooth
projective varieties D(k) is needed in order to show that the differentials dr vanish
for r ≥ 2.

2 Polarizations

2.1 The category of Hodge structures

Definition 2.1. A morphism of integral (or rational) Hodge structures (L,F iLC),
(L′, F iL′C) of respective weights k, resp. k+ 2r, is a morphism φ : L→ L′ of lattices
(or Q-vector spaces) such that

φC(F iLC) ⊂ F i+rL′C ∀i.

Equivalently, one has φC(Lp,q) ⊂ L′p+r,q+r for all (p, q) with p+ q = k, and the
morphism is said of type (r, r).

Definition 2.2. A Hodge class α ∈ Hdg(L), where (L,F iLC) is a Hodge structure
of even weight 2k, is an element of L ∩ Lk,k, where the intersection takes place in
LC.

Given two Hodge structures of weights k and k′, we endow the lattice (or Q-
vector space) Hom (L,L′) with the Hodge structure of weight k′ − k corresponding
to the Hodge decomposition

Hom (L,L′)s,t := ⊕Hom (Lp,q, L′
p+s,q+t

), s+ t = k′ − k.

The following lemma follows from the definition in a straightforward way.

Lemma 2.3. A morphism φ ∈ Hom (L,L′) is a morphism of Hodge structures if
and only if φ is a Hodge class.

Remark 2.4. When L′ is the trivial Hodge structure of weight 0, the definition
above defines the dual of a Hodge structure.

The category of rational Hodge structures is not semisimple. This means that,
given a Hodge substructure

L ⊂ L′,

there does not exist in general a Hodge substructure L′′ ⊂ L′ such that

L′ ∼= L⊕ L′′
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as Hodge structures. Let us construct an explicit example in weight 1. Let L be a
rank 4 lattice and L′ ⊂ L be a sublattice of rank 2. Consider the effective Hodge
structures of weight 1 on L such that L′ is a Hodge substructure. The condition on
L1,0 is that L′1,0 := L1,0 ∩ L′C has dimension 1, thus defining a Hodge structure on
L′. The parameter space for such an L1,0 is an open set in a Schubert variety of
Grass(2, LC) and is easily seen to be of dimension 3. Next consider the condition
that there is, at least with Q-coefficients, a supplementary Hodge structure L′′ ⊂ L.
Fixing L′′ ⊂ L such that L′ ⊕L′′ has finite index in L, the condition on L1,0 is that
L′′1,0 := L1,0 ∩ L′′C also has dimension 1, so that

L1,0 = L′
1,0 ⊕ L′′1,0.

The parameters for L′1,0 and L′′1,0 are open sets in P(L′C) and P(L′′C) respectively, so
the set of Hodge structures split as above by a fixed L′′ has dimension 2. Thus the
locus of split Hodge structures is the countable union (over all choices of L′′) of loci
of dimension 2, hence the very general Hodge structure L with Hodge substructure
L′ is not split.

Note first that the category of effective weight 1 integral Hodge structures is
naturally equivalent to the category of complex tori while the category of effective
weight 1 rational Hodge structures is naturally equivalent to the category of isogeny
classes of complex tori. This correspondence is explained in the first case in Remark
0.2. In the rational case, we use the fact that choosing a lattice L ⊂ LQ = H1(T,Q)
is equivalent to choosing a torus T ′ isogenous to T . With this translation, the
existence of a non split Hodge substructure L′ ⊂ L of weight 1 is equivalent to the
fact that one can have a surjective morphism

T → T ′′

of compact complex tori of respective dimensions 2 and 1, such that T is not isoge-
nous to T ′′ ⊕ T ′. If T is projective, this phenomenon is not possible, because one
can then explicitly construct a section T ′′ → T up to isogeny. For example, one
chooses a curve C ⊂ T dominating T ′′ via a morphism r of degree d and then define
as section up to isogeny the morphism of tori

T ′′ → T, t 7→ albT (Ct − d0T ),

where Ct is the 0-cycle r−1(t) and 0T is the origin of T . We will discuss in next section
the notion of polarization for Hodge structures that generalizes the projectivity
condition of the associated complex tori that can be used for effective weight 1
Hodge structures.

Hodge structures on the cohomology of compact Kähler manifolds have the fol-
lowing functoriality properties:

Proposition 2.5. Let φ : X → Y be a holomorphic map, where X and Y are
compact Kähler of respective dimensions n and m. Then, for any k

φ∗ : Hk(Y,Z)→ Hk(X,Z)

is a morphism of Hodge structures.
The Gysin morphism

φ∗ : Hk(X,Z)→ Hk−2(n−m)(Y,Z)

is a morphism of Hodge structures.
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To be perfectly consistent, we should consider cohomology modulo torsion in
this statement. The first statement is obvious since using the definition of the Hp,q

spaces given in Theorem 1.13, we just have to observe that the pull-back of a closed
form of type (p, q) is a closed form of type (p, q). The second statement follows from
the first by duality, since one checks that the Hodge structures on H2n−k(X,Q),
resp. H2n−k(Y,Q) are dual in the sense described in Remark 2.4 to the Hodge
structures on Hk(X,Q), resp. Hk−2(n−m)(Y,Q). (This is in fact true only up to a
shift of bidegree, that is called a Tate twist.) One then uses the fact that the Gysin
morphism identifies via Poincaré duality to the transpose of the morphism φ∗.

Definition 2.6. A morphism of mixed Hodge structures (L,W,F ) and (L′,W ′, F ′)
is a morphism φ : L→ L′ of Q-vector spaces such that

φ(WrL) ⊂W ′rL′, φC(F pLC) ⊂ F pL′C.

Such a morphism induces for each r a morphism φr : GrWr L→ GrWr′ L of Hodge
structures of weight r. A variant of this definition allows a shift by a bidegree (k, k),
where for each r,

φ(WrL) ⊂W ′r+2kL
′, φC(F pLC) ⊂ F p+kL′C.

Although this is a purely formal result, the following theorem due to Deligne [19]
has striking consequences (see Section 2.3.1).

Theorem 2.7. A morphism of Hodge structures is strict for both filtrations, that is

Imφ ∩W ′rL′ = φ(WrL), ImφC ∩ F pL′C = φC(F pLC).

This theorem is an easy consequence of the following formal but important result.

Theorem 2.8. Let (L,W,F ) be a mixed Hodge structure. Then there is a decom-
position

LC = ⊕p,qIp,q (2.27)

of LC into complex vector subspaces, such that

WkLC = ⊕p+q≤kIp,q (2.28)

F rLC = ⊕p≥rIp,q. (2.29)

Furthermore, one can construct such a decomposition to be functorial.

Note that, in particular, Ip,q ⊂ Wp+qLC ∩ F pLC and via the projection map
Wp+qLC → GrWp+qLC, Ip,q is naturally isomorphic to Hp,q(GrWp+qLC). However,
unlike the case of a pure Hodge structure, the Ip,q of decomposition (2.27) cannot
in general be imposed to satisfy both the Hodge symmetry property (1.23) and
the properties (2.28), (2.29). Theorem 2.8 implies Theorem 2.7 as follows. Let
α ∈ W ′kL′ ∩ Imφ so that α = φ(β). Write β =

∑
p,q β

p,q, using the decomposition
(2.27) for L. Then φ(β) =

∑
p,q φ(βp,q) with φ(βp,q) ∈ I ′p,q. Using the decomposition

(2.27) for L′ and α ∈ WkL
′, we deduce that φ(βp,q) = 0 for p + q > k, and thus

α = φ(β′), where β′ =
∑

p+q≤k β
p,q. As β′ ∈ WkL, this proves the result for the

weight filtration W and the proof for the Hodge filtration F is the same. qed
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2.2 Polarizations and the Hodge-Riemann bilinear relations

Definition 2.9. A polarization on a rational Hodge structure (H,F pHC) of weight
k is a perfect pairing 〈 , 〉 on H, which is symmetric if k is even and skew-symmetric
if k is odd, and has the following properties:

(i) (First Hodge-Riemann bilinear relations.) One has 〈Hp,q, Hp′,q′〉 = 0 if
(p′, q′) 6= (k − p, k − q).

(ii) (Second Hodge-Riemann bilinear relations.) The sesquilinear intersection
pairing h(α) := ik〈α, α〉 is definite on Hp,q, of sign (−1)p (up to a global sign).

It is sometimes better to formulate (i) in the equivalent form 〈F pHC, F
k+1−pHC〉 =

0, which makes clear that the condition is holomorphic in the Hodge filtration F .
These rules may seem too complicated to be useful but this is what one gets from
geometry and the best possible generalization of the relations (0.1), (0.2) of the in-
troduction, which were valid in the case of degree 1 cohomology. The category of
polarized Hodge structures (where the morphisms are morphisms of rational Hodge
structures as in Definition 2.1) is semi-simple, as shows the following

Lemma 2.10. Let H be a polarized Hodge structure, and H ′ ⊂ H be a Hodge
structure. Then there exists a Hodge substructure H ′′ ⊂ H such that

H ∼= H ′ ⊕H ′′ (2.30)

(as vector spaces, hence as Hodge structures).

Proof. Choose a polarization 〈 , 〉 on H. We define H ′′ as the orthogonal of H ′ w.r.t.
〈 , 〉. Using property (i) in Definition 2.9, we see that H ′′ is also a Hodge substructure
of H. In order to prove (2.30) we just have to show that 〈 , 〉|H′ is nondegenerate.
Of course this can be checked after complexification, and after replacing 〈 , 〉|H′
by the sesquilinear pairing h(α, β) = ik〈α, β〉. The Hodge decomposition of HC is
orthogonal for this pairing, and H ′C is the direct sum of its components H ′p,q. It
thus suffices to show that h|H′p,q is nondegenerate, and this is obvious since by (ii),
h|Hp,q is definite nondegenerate.

The following result is fundamental.

Theorem 2.11. The Hodge structures Hk(X,Q), for X smooth projective, admit
polarizations.

Let us sketch the proof, as this will make clear the nature and the importance
of the problem formulated under the name of standard conjectures (see [47]). We
consider X as a compact Kähler manifold (see Section 0.2) with Kähler form ω. Let
n = dimX. It is an easy algebraic fact that for k ≤ n, the cup-product map acting
on differential forms

ωn−k∧ : Ωk
X,R → Ω2n−k

X,R (2.31)

is an isomorphism of real vector bundles. One deduces a decomposition (Lefschetz
decomposition on differential forms).

Corollary 2.12. For k ≤ n = dimX, define Ωk
X,R,prim as

Ker (ωn−k+1∧ : Ωk
X,R → Ω2n−k+2

X,R ).

Then Ωk
X,R = ⊕k−2r≥0ω

r ∧ Ωk−2r
X,R,prim.
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It is not very hard to prove that the Laplacian commutes with the operator
ωn−k∧. Hence we conclude that the operator ωn−k∧ acts on harmonic form and
induces an injective linear map

Ln−k : Hk → H2n−k (2.32)

which is nothing than the map (called the Lefschetz operator)

Ln−k : Hk(X,R)→ H2n−k(X,R) (2.33)

of cup-product by [ω]n−k, after applying the identifications

Hk ∼= Hk(X,R), H2n−k ∼= H2n−k(X,R)

of (1.22). As the two spaces in (2.33) have the same dimension, we conclude

Corollary 2.13. (Hard Lefschetz theorem.) The operator Ln−k in (2.33) is an
isomorphism.

When the class ω is the class of a hyperplane section of a smooth projective
manifold of dimension n, it is interesting to compare the hard Lefschetz theorem
with the Lefschetz theorem on hyperplane sections, saying the following.

Theorem 2.14. For any smooth complete intersection j : Y ↪→ X of n − k hy-
perplane sections Hi of X, the restriction map j∗ : H i(X,Z) → H i(Y,Z) is an
isomorphism for i < k and is injective for i = k.

Consider for simplicity the case k = n− 1. The operator L of cup-product with
the hyperplane class is equal to the composite map

j∗ ◦ j∗ : Hn−1(X,Z)
j∗→ Hn−1(Y,Z)

j∗→ Hn+1(X,Z).

Theorem 2.14 says that j∗ is injective, so that by Poincaré duality, j∗ is surjective.
However the hard Lefschetz theorem is the stronger statement that

j∗ ◦ j∗ : Hn−1(X,Q)→Hn+1(X,Q)

is an isomorphism, and this is equivalent to the fact that the Poincaré intersection
pairing 〈 , 〉Y on Hn−1(Y,Q) remains nondegenerate on

Im (Hn−1(X,Q)→ Hn−1(Y,Q)).

There exist different proofs of Theorem 2.14. Note that, by induction, it clearly
suffices to do the case of hypersurfaces (where n − k = 1). One proof is by Morse
theory and it is due to Andreotti and Frankel [3] (see also [59]) who prove that a
smooth complex affine manifold of dimension n has the homotopy type of a CW
complex of real dimension ≤ n and then apply Poincaré duality. The first part of
the argument can be replaced by Serre vanishing on affine varieties. There is also
an algebraic proof (working only with C-coefficients) using the Akizuki-Kodaira-
Nakano vanishing theorem (see [51]). In contrast, no algebraic proof of the hard
Lefschetz theorem, using algebraic de Rham cohomology, is known.

Using the hard Lefschetz isomorphism (in all degrees) on harmonic differential
forms, we also conclude that the space of harmonic forms Hk is stable under the
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Lefschetz decomposition appearing in Corollary 2.12. Defining, for any k′ ≤ n,
Hk′(X,R)prim as

Ker (Ln−k
′+1 : Hk′(X,R)→ H2n−k′+2(X,R))

we see from the above arguments that each space Hk−2r(X,R)prim is represented
by harmonic forms annihilated by ωn−k+2r+1, that is, primitive forms, and that the
Lefschetz decomposition on harmonic forms induces the Lefschetz decomposition on
cohomology

Hk(X,R) ∼= ⊕k−2r≥0L
rHk−2r(X,R)prim, (2.34)

formally deduced from the hard Lefschetz isomorphism.
We now explain how to construct a polarization on the Hodge structureHk(X,Q).

Recall from section 0.2 that on a complex projective manifold, one can choose a ra-
tional Kähler class [ω]. It follows that the operator L of cup-product with [ω] acts
on rational cohomology and that the Lefschetz decomposition (2.34) is defined on
cohomology with rational coefficients. Next we use the rationality of the class [ω] to
define the Lefschetz intersection pairing on cohomology

〈α, β〉Lef = 〈α,Ln−kβ〉, (2.35)

for α, β ∈ Hk(X,Q). Using the fact that the class [ω] has type (1, 1), one sees
immediately that this pairing satisfies the first Hodge-Riemann bilinear relations
(i), but unfortunately, it does not satisfy the second ones. In fact, we have

Theorem 2.15. The Lefschetz intersection pairing induces a polarization on each
Hodge structure LrHk−2r(X,Q) appearing in the Lefschetz decomposition.

Unfortunately, the global sign appearing in Definition 2.9 (ii) changes with r, so
the statement above is not true for the whole of Hk(X,Q). The recipe to remedy this
is the following. We observe that the Lefschetz decomposition (2.34) is orthogonal
for 〈 , 〉Lef . We define the polarization h to be (−1)r〈 , 〉Lef on the r-th piece of
the Lefschetz decomposition, and we impose them to be mutually orthogonal for h.
Theorem 2.15 says that, up to a global sign, we get this way a polarization of the
Hodge structure.

For the proof of Theorem 2.15, we have to check the sign condition (ii) in Defi-
nition 2.9. It follows from the fact that, as already mentioned, we can work at the
level of forms using harmonic representatives. Furthermore, on primitive forms α of
type (p, q), p+ q = k, we have a relation of the form

∗α = ±Ln−kα,

where the sign depends only on p, q, n. It follows that on each piece of the Hodge-
Lefschetz decomposition, the Hermitian Lefschetz intersection pairing 〈α, β〉Lef equals
up to a sign the L2 Hermitian intersection pairing.

2.3 Motives and algebraic cycles

2.3.1 The Hodge and generalized Hodge conjectures

Let X be a smooth projective variety and α ∈ Hk(X,Q) be a cohomology class.

22



Definition 2.16. The class α is of coniveau ≥ c if there exists a closed algebraic
subset Y ⊂ X of codimension ≥ c such that α|U = 0, where U := X \ Y .

An easy statement is the following.

Lemma 2.17. If α is of coniveau ≥ c, α is of Hodge coniveau ≥ c, that is,

αp,q = 0 for p < c or q < c. (2.36)

Proof. The class α is supported on Y , that is, it is the Poincaré dual of a homology
class T ∈ H2n−k(Y,Q). We can assume that T is not supported on Sing Y (otherwise
we replace Y by Sing Y ). The vanishings (2.36) are equivalent to

∫
T β = 0 for

β ∈ Hp′,q′(X), with p′ + q′ = 2n− k, p′ > n− c or q′ > n− c. But then β vanish on
Yreg, since it is smooth of complex dimension ≤ n− c, hence on T . (For the proof to
be rigorous, one should introduce here stratification of singular analytic spaces).

The extreme example is the case of Hodge classes (cf. Definition 2.2), which are
rational cohomology classes of degree 2k and Hodge coniveau c. If Y ⊂ X is an
algebraic subvariety of codimension c, it has a cohomology class [Y ] ∈ H2c(X,Z),
which by Lemma 2.17 is a (integral) Hodge class. The class [Y ] can be defined
using stratification, or using a desingularization j̃ : Ỹ → Y → X and defining
[Y ] = j̃∗(1Ỹ ). When Y is irreducible, the class [Y ] can be shown to generate the
kernel of the restriction map H2c(X,Z)→ H2c(X \ Y,Z). The Hodge conjecture is
the following statement.

Conjecture 2.18. The Q-vector space Hdg2c(X,Q) of rational Hodge classes is
generated by classes [Y ]as above.

The only nontrivial case of the Hodge conjecture that is known in full generality
is the case of degree 2, which is the Lefschetz theorem on (1, 1)-classes. It has the
specifity that it works as well with integral Hodge classes.

Theorem 2.19. Let α ∈ Hdg2(X,Z), where X is smooth projective. Then α = [D]
for some divisor D =

∑
i niDi, codimDi = 1 of X.

Griffiths explained in [28] the Lefschetz idea of using normal functions to prove
this result for surfaces. The modern proof is very short, very elegant, but also very
mysterious. One ingredient is the Serre GAGA theorem [65], which shows that it
suffices to find a holomorphic line bundle H on X, such that

c1(L) = α.

Indeed, such a holomorphic line bundle is algebraic and for any rational section σ
of H, the divisor D of σ satisfies [D] = c1(H) by Lelong formula. The end of the
argument works on any complex manifold; it rests on the exponential exact sequence

0→ Z→ OX
exp→ O∗X → 1,

where OX is the sheaf of holomorphic functions. Taking the associated cohomology
long exact sequence, one finds that classes c1(H) ∈ H2(X,Z) are exactly those
mapping to 0 in H2(X,OX), and when X is projective or compact Kähler, they are
the integral Hodge classes.
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We know examples of compact Kähler manifiolds not containing any closed an-
alytic subset of codimension 1 but having nonzero degree 2 Hodge classes. Take
for example a general complex torus of dimension 2 having a degree 2 Hodge class
represented by a (1, 1)-form which is nondegenerate and indefinite. The proof given
above shows that in this case, the Hodge class is nevertheless the first Chern class of
a holomorphic line bundle. This suggests that in the more general setting of compact
Kähler manifolds, Hodge classes could be generated by Chern classes of holomor-
phic vector bundles or coherent sheaves. This has been disproved in [78], where it
is shown that on a very general 4-dimensional Weil torus T (a torus admitting an
endomorphism φ such that φ2 = −Id, with some condition on the eigenvalues of φ),
the Weil Hodge classes (which are of Hodge classes of degree 4) cannot be generated
by Chern classes of coherent sheaves. Indeed, it is proved that, on such a torus,
any coherent sheaf F satisfies c1(F) = c2(F) = 0. The proof uses the extension to
reflexive coherent sheaves, due to Bando and Siu, of the Uhlenbeck-Yau theorem [70]
on the existence of Hermite-Einstein metrics on stable holomorphic vector bundles.

Hodge asked, inspired by Lemma 2.17 if more generally a rational cohomology
class of Hodge coniveau c (but any degree ≥ 2c) must be of coniveau ≥ c, and
Grothendieck disproved this statement in [33]. One reason why this is not true is
the following result, in fact due to Deligne.

Theorem 2.20. The set N cHk(X,Q) of cohomology classes of coniveau ≥ c is a
Hodge substructure of Hk(X,Q), contained in ⊕p≥c,q≥cHp,q(X) (that is, of Hodge
coniveau ≥ c).

Proof. It suffices to show that the set of cohomology classes on X vanishing on X\Y ,
where Y ⊂ X is a closed algebraic subset of codimension c, is a Hodge substructure
of Hk(X,Q), (contained in ⊕p≥c,q≥cHp,q(X) by Lemma 2.17). This set is the image
of H2n−k(Y,Q) in Hk(X,Q) via the composition

H2n−k(Y,Q)
j→ H2n−k(X,Q) ∼= Hk(X,Q)

where j is the inclusion of Y in X, and the last map is Poincaré duality on X.
The morphism j∗ above is (up to a shift of (n, n)) a morphism of mixed Hodge
structures. As the Hodge structure on Hk(X,Q) is pure of weight k, the image is
WkH

k(X,Q) ∩ Im j∗. By Theorem 2.7, one thus has

Im j∗ = j∗(Wk−2nH2n−k(Y,Q)).

Looking at the construction of the weight filtration on H2n−k(Y,Q), one has

Wk−2nH2n−k(Y,Q) = Im (τ∗ : H2n−k(Ỹ ,Q)→ H2n−k(Y,Q))

(and this is the minimal weight piece of H2n−k(Y,Q)). Here τ : Ỹ → Y is any
desingularization. Thus we conclude that

Im j∗ = Im ((j ◦ τ)∗ : H2n−k(Ỹ ,Q)→ Hk(X,Q)),

which concludes the proof since, Ỹ being smooth, (j ◦ τ)∗ is a morphism of Hodge
structures.
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This statement allows to give counterexamples to the statement expected by
Hodge (although this is not the way Grothendieck argues). Consider the family of
hypersurfaces of degree 5 in P4. They have h3,0(X) = 1. Choose a nonzero degree 3
rational cohomology class α on X, and consider the locus of deformations Xt of X
for which α0,3

t = 0, where α0,3
t is the (0, 3)-component of the Hodge decomposition of

α on Xt. This condition implies α3,0
t = 0 by Hodge symmetry, because α is rational,

and it imposes one holomorphic equation to the parameter t, defining a hypersurface
D in the parameter space for X. We can now show that along any hypersurface D
in this parameter space, the general element Xt for t ∈ D does not contain any
nontrivial Hodge substructure contained in H2,1(Xt) ⊕ H1,2(Xt). It then follows
from Theorem 2.20 that the class α is not of coniveau ≥ 1 on Xt for a general t ∈ D,
while by construction, it is of Hodge coniveau 1.

The generalized Hodge conjecture corrects the expectation of Hodge taking into
account Theorem 2.20 and gives the following generalization of the Hodge conjecture
2.18.

Conjecture 2.21. Let L ⊂ Hk(X,Q) be a Hodge substructure of Hodge coniveau
≥ c, that is, Lp,q = 0 for p < c or q < c. Then L ⊂ N cHk(X,Q).

This conjecture is widely open. The Hodge conjecture is the particular case where
one considers a Hodge substructure of H2c(X,Q) of Hodge coniveau c. It is much
easier to exhibit concrete unsolved instances of the generalized Hodge conjecture
than the Hodge conjecture (the already mentioned Weil construction of Weil Hodge
classes on Weil tori is rather sophisticated). Consider smooth hypersurfaces X of
degree d in Pn. By the Lefschetz theorem on hyperplane sections (Theorem 2.14),
only the degree n− 1 cohomology of X carries a nontrivial Hodge structure. Work
of Griffiths [29] implies that the Hodge coniveau of Hn−1(X,Q) is ≥ 2 if n ≥ 2d.
For n large enough, it is not known that the cohomology of a smooth hypersurface
of degree d in Pn with n ≥ 2d has coniveau ≥ 2. For d = 3, n = 6, or d = 4, n = 8,
one can check this is true.

2.3.2 Motives

Let X be an algebraic variety over a field K. We define the group of k-cycles
Zk(X) as the free abelian group generated by letters Z, for each closed irreducible
algebraic subset Z ⊂ X of dimension k. When the field is not algebraically closed,
there is a subtlety in the fact that being irreducible over K is not equivalent to
being irreducible over the algebraic closure K. As we will work over C, this is
not very important here, but the great interest of algebraic cycles is that they are
sensitive to the field of definition. When X is smooth of dimension n, we denote
Zk(X) =: Zn−k(X). There is no good intersection theory on the space of cycles,
but after putting an adequate equivalence relation ≡ on Zk(X) for which a “Chow
moving lemma” holds, one can define when X is smooth, a graded ring structure
on Z•(X)/ ≡ (see [24]). The smallest equivalence relation satisfying the Chow
moving lemma and functoriality properties (stability under proper push-forward
and flat pull-back) is rational equivalence, where one defines the subgroup Zk(X)rat

of cycles rationally equivalent to 0 as the subgroup generated by n∗(div φ), for all
subvarieties W ⊂ X of codimension k − 1 with normalization n : W ′ → W , and all
rational functions φ ∈ K(W )∗ = K(W ′)∗ . We denote the quotient Zk(X)/Zk(X)rat
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by CHk(X). Having the Fulton refined intersection product (or by Chow moving
lemma), we have a pull-back φ∗ : CHk(Y ) → CHk(X) for any morphism between
smooth algebraic varieties. Assuming now we are over C, the cycle class map

Z 7→ [Zan] ∈ H2k(X,Z),

defined on Zk(X), factors through CHk(X) and is compatible with the functorialities
(pull-back, proper push-forward) and intersection product. We can define much
weaker equivalence relations, like algebraic equivalence, homological equivalence,
and, when X is projective, numerical equivalence. The subgroup Zhom defining
homological equivalence is the group of cycles homologous to 0, and the subgroup
Znum defining numerical equivalence is the group of cycles Z ∈ Zk(X) such that
degZ · Z ′ = 0 for any Z ′ ∈ Zn−k(X). Here Z · Z ′ is a 0-cycle of X and its degree
is the number of points counted with their multiplicities. The intersection pairing
so defined can also be computed in cohomology as

∫
X [Zan] ∪ [Z ′an]. The following

conjecture, for smooth projective complex varieties, will be discussed in next section.

Conjecture 2.22. Let X be smooth projective. On cycles of X with rational coef-
ficients, numerical and homological equivalence coincide.

Remark 2.23. As we use the Betti cycle class, the conjecture seems to assume
working over C. In fact this is not true, as one can construct a cycle class in algebraic
de Rham cohomology (see Section 1.3), which over C differs from the Betti cycle
class with complex coefficients by a coefficient of (2iπ)k for codimension k cycles
(here we use the comparison isomorphism of Theorem 1.11).

Remark 2.24. Suppose X is defined over a subfield K ⊂ C. For any subvariety Z ⊂
X of codimension k, there exists a Hilbert scheme, or Chow variety W defined over
K and parameterizing the set of subvarieties of X with the same numerical invariants
as Z. This variety being defined over K, its geometric irreducible components are
defined over K. The subvariety Z is parameterized by a point z in such a component
W ′, and all complex points in this component parameterize subvarieties Z ′ ⊂ X
which are deformation equivalent to Z, hence have the same cycle class. As W ′ is
defined over K, it has points over K. We thus conclude that any cycle class on X is
the class of a cycle defined over K, hence, seen as a algebraic de Rham cohomology
class, is defined over K (up to a coefficient of (2iπ)k).

The interest of studying cycles modulo numerical equivalence is that these groups
(or Q-vector spaces) are defined inside algebraic geometry, and independently of any
cohomology theory. They provide Q-vector spaces, and not Q`-vector spaces as étale
cohomology would do, while algebraic de Rham cohomology would produce K-vector
spaces, K being the field of definition.

Definition 2.25. A correspondence between two varieties X and Y is a cycle in
X × Y modulo a given adequate equivalence relation. We denote by Corr(X,Y ) the
group of correspondences.

Of course, the nature of the correspondence will depend on the equivalence re-
lation we consider on cycles.We can thus speak of homological, numerical, Chow
correspondences. It is also useful to work with Q-cycles. Assume now that X, Y, T
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are three smooth varieties, with Y projective. Then we can compose correspondences
Z ∈ Corr(X,Y ), Z ′ ∈ Corr(Y, T by the rule

Z ′ ◦ Z = prXT∗(pr∗XY Z · pr∗Y TZ
′). (2.37)

When Z, Z ′ are respectively the graphs of morphisms f : X → Y , g : Y → T , Z ′◦Z is
the graph of the composed morphism g◦f . Motives introduced by Grothendieck use
correspondences in place of morphisms. They also enlarge the category of varieties
by adding projectors:

Definition 2.26. A (smooth, projective, effective) motive is a pair (X,Z) where X
is smooth projective and Z ∈ Corr(X,X) is a projector : Z ◦ Z = Z.

Example 2.27. The full motive of X is the pair (X,∆X), where ∆X is the diagonal
of X. If x ∈ X, we can also consider the motives

(X,X × x), (X,x×X), (X,∆X −X × x− x×X).

Correspondences act in a compatible way on cycles (modulo the given equivalence
relation) and on cohomology. If γ ∈ H2k(X × Y,Q), the action of γ on H•(X,Q)
(resp. H•(Y,Q)) is given by

γ∗(α) = prY ∗(γ ∪ pr∗Xα) ∈ H•+2k−2n(Y,Q),

γ∗(α) = prX∗(γ ∪ pr∗Y α) ∈ H•+2k−2m(X,Q),

where n = dimX, m = dimY . The Hodge structure on H∗(X × Y,Q) identifies
canonically, via the Künneth decomposition and Poincaré duality on X, with the
Hodge structure on Hom (H∗(X,Q), H∗(Y,Q)) as defined in Section 2.1. Lemma 2.3
then tells us that the Hodge classes on X × Y identify to the morphisms of Hodge
structures inside Hom (H∗(X,Q), H∗(Y,Q)). If dimX = dimY , the Hodge classes of
degree 2n on X×Y identify to the degree preserving morphisms of Hodge structures
in Hom (H∗(X,Q), H∗(Y,Q)). (Here, by Hodge structures, we mean direct sums of
Hodge structures, allowing different weights.) There is a faithful functor from the
category of cohomological motives to the category of Hodge structures, which to a
pair (X,π) associates the Hodge structure Imπ∗ ⊂ H∗(X,Q). By the arguments
above, the Hodge conjecture 2.18 predicts that it is fully faithful.

2.3.3 Standard conjectures

The standard conjectures (see [47]) are specific cases of the Hodge conjecture, applied
to natural Hodge classes on squares X×X of projective manifolds X, and designed to
produce self-correspondences of X allowing to split the motive of X, as introduced
in the previous section, according to the Lefschetz decomposition on cohomology
(2.34). We will focus on one main conjecture and its many implications, namely the
Lefschetz standard conjecture. Recall that if X is smooth projective of dimension
n with polarizing class [ω] = c1(H) ∈ H2(X,Q), H an ample line bundle on X, one
has, for any k ≤ n, the hard Lefschetz isomorphism

Ln−k : Hk(X,Q)
∼=→ H2n−k(X,Q) (2.38)
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of Corollary 2.13, where L is the operator of cup-product with the class [ω]. The
morphism Ln−k is a morphism of Hodge structures, and it is induced by the class of
the cycle Zn−k = δX∗(H

n−k) ⊂ X ×X, where Hn−k is the k-cycle of X represented
by the intersection of n − k members of |H|, and δX : X → X ×X is the diagonal
embedding. The inverse

(Ln−k)−1 : H2n−k(X,Q)→ Hk(X,Q) (2.39)

is also a morphism of Hodge structures. According to the discussion in the previous
section, the following conjecture is thus implied by the Hodge conjecture.

Conjecture 2.28. (Lefschetz standard conjecture.) There exists a cycle

ZLef,k ∈ CHk(X ×X)Q,

such that

[ZLef,k]
∗ ◦ Ln−k = IdHk(X,Q), L

n−k ◦ [ZLef,k]∗ = IdH2n−k(X,Q). (2.40)

Note that the second equality follows from the first, by dualizing via by Poincaré
duality. There are good reasons to state the Lefschetz standard conjecture separately
from the Hodge conjecture. The Lefschetz standard conjecture could be true even if
the Hodge conjecture is wrong. Indeed, the Hodge classes appearing in the standard
conjectures are very special. We will discuss this point in Section 4. The second point
is that the Hodge conjecture is specific to Betti cohomology while the statement
of the Lefschetz standard conjecture can be made in other cohomology theories,
like étale cohomology or algebraic de Rham cohomology. The Lefschetz standard
conjecture is known in full generality for degree 1 cohomology. In this case, the
cycle ZLef,1 is obtained up to a coefficient by pulling-back to X × X the Poincaré
(or universal) divisor P on Pic0(X) × X, via the morphism (j, IdX) : X × X →
Pic0(X) × X, where the morphism j : X → Pic0(X) is the composition of the
Albanese morphism albX : X → Alb(X) and the isogeny Alb(X)→ Pic0(X) induced
by the choice of ample line bundle H.

The main general consequence of Conjecture 2.28 is the following (cf. Conjecture
2.22).

Theorem 2.29. (see [55]) If X satisfies the Lefschetz standard conjecture in all even
degrees, homological and numerical equivalence coincide on algebraic cycles of X with
Q-coefficients. Equivalently, the pairing between H2k(X,Q)alg and H2n−2k(X,Q)alg

is perfect.

Here we denote by H2k(X,Q)alg ⊂ H2k(X,Q) the Q-vector subspace generated
by classes of codimension k closed algebraic subsets of X. Conjecturally, it is equal
to Hdg2k(X,Q).

Proof. The equivalence between the two statements is clear. Indeed, if Z is homolo-
gous to 0, then it is numerically equivalent to 0, since the pairing deg (Z ·Z ′) for any
cycle of codimension n − k can be computed as

∫
X [Z] ∪ [Z ′], hence is 0 if [Z] = 0.

In the other direction, if Z ∈ CHk(X)Q is numerically equivalent to 0, the above
formula shows that [Z] pairs to 0 with any cycle class of degree 2n − 2k, so if the
pairing is perfect, one must have [Z] = 0. Let us now explain the proof of the second
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statement. We assume 2k ≤ n and X satisfies the Lefschetz standard conjecture in
even degrees. We claim that the pairing 〈 , 〉Lef on H2k(X,Q)alg given by

〈[Z], [Z ′]〉Lef =

∫
X

[Z] ∪ Ln−2k[Z ′]

is perfect. This will conclude the proof because Ln−2k[Z ′] = [Hn−2k ·Z ′] is algebraic
and, by formula (2.40), the Lefschetz standard conjecture for degree 2k implies that
the Lefschetz operator induces an isomorphism

Ln−2k : H2k(X,Q)alg
∼= H2n−2k(X,Q)alg

since it is injective and (2.40) provides a left inverse. To prove the claim, observe
that, assuming the Lefschetz standard conjecture in even degrees ≤ 2k, we also have
a restricted hard Lefschetz isomorphism

Ln−2k+2r : H2k−2r(X,Q)alg
∼= H2n−2k+2r(X,Q)alg

for any r ≤ k. It follows that H2k(X,Q)alg is stable under the Lefschetz decompo-
sition (2.34). Thus we have

H2k(X,Q)alg = ⊕r≤kLrH2k−2r(X,Q)alg,prim. (2.41)

The decomposition (2.41) is orthogonal for 〈 , 〉Lef so it suffices to show that the
restriction of 〈 , 〉Lef on each term LrH2k−2r(X,Q)alg,prim is nondegenerate. This
follows from the second Hodge-Riemann relations (see Theorem 2.15), since one has

LrH2k−2r(X,Q)alg,prim ⊂ LrHk−r,k−r(X)prim,

and 〈 , 〉Lef is definite nondegenerate on LrHk−r,k−r(X)prim.

Formal consequences of Theorem 2.29 are as follows:

Corollary 2.30. Let Y ⊂ X be smooth complex projective varieties, both satisfying
the standard Lefschetz conjecture. Denote by j the inclusion of Y in X. Let c =
codimY ⊂ X.

(i) Let Z ∈ CHk(Y )Q and assume that there exists β ∈ H2k(X,Q) such that
β|Y = [Z] in H2k(Y,Q). Then there exists Z ′ ∈ CHk(X)Q such that

[Z ′]|Y = [Z].

(ii) Let Z ∈ CHk(X)Q and assume that there exists β ∈ H2k−2c(Y,Q) such that
j∗β = [Z] in H2k(X,Q). Then there exists Z ′ ∈ CHk−c(Y )Q such that

j∗[Z
′] = [Z].

Proof. We only prove (i), as the argument for (ii) is exactly the same. Let n =
dimX. The class β defines by Poincaré pairing a linear form β∗ on H2n−2k(X,Q)alg,
given by

β∗([W ]) =

∫
X
β ∪ [W ].
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By Theorem 2.29, assuming the Lefschetz standard conjecture for X, there exists a
cycle Z ′ ∈ CHk(X)Q such that

β∗([W ]) =

∫
X

[Z ′] ∪ [W ]

for any W ∈ CHn−k(X)Q. We claim that [Z ′]|Y = [Z]. By Theorem 2.29 now
applied to Y which by assumption also satisfies the Lefschetz standard conjecture,
it suffices to prove that for any W ∈ CHn−c−k(Y )Q,∫

Y
[W ] ∪ [Z ′]|Y =

∫
Y

[W ] ∪ [Z]. (2.42)

We have ∫
Y

[W ] ∪ [Z ′]|Y =

∫
X
j∗[W ] ∪ [Z ′] = β∗(j∗[W ]) =

∫
X
j∗[W ] ∪ β∫

Y
[W ] ∪ β|Y =

∫
Y

[W ] ∪ [Z],

which proves (2.42).

Remark 2.31. We stated Corollary 2.30 only for inclusion morphisms j, but it
would work as well for any morphism, and even any correspondence between smooth
complex projective varieties.

The Lefschetz standard conjecture concerns Hodge classes on the self-product
X × X of a smooth complex projective variety X. There are other Hodge classes
on X ×X, which are much easier to construct, namely the Künneth components of
the diagonal. As we mentioned, any endomorphism of Hodge structure H∗(X,Q)→
H∗(X,Q) can be seen as a Hodge class on X×X. If the endomorphism preserves the
degree, then the Hodge class is of degree 2n, n = dimX. The Künneth components
of the diagonal are the projectors

δk = IdHk(X,Q ∈ EndH∗(X,Q)

onto the degree k cohomology of X. One has
∑

k δk = IdH∗(X,Q) hence∑
k

δk = [∆X ],

where the right hand side is the class of the diagonal of X, hence is an algebraic
class. However it is not known if each δk individually is algebraic, a problem which
is referred to as the Künneth standard conjecture.

Proposition 2.32. ([47]) The Lefschetz standard conjecture for X implies the
Künneth standard conjecture for X.

Proof. One argues inductively on k. Choose a polarizing class h = c1(H) ∈ H2(X,Q)alg
on X, and suppose the Lefschetz standard conjecture holds for X and the δi are al-
gebraic on X ×X for i < k. It follows that the class

δ≥k :=
∑
i≥k

δi = [∆X ]−
∑
i<k

δi
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is algebraic and acts as the projector on ⊕l≥kH l(X,Q). For k ≤ n, let Tk =
δX∗h

n−k ∈ H2n+2k(X × X,Q)alg be the class of a complete intersection of n − k
members of |H| supported on the diagonal of X, and Zk ∈ H2k(X ×X,Q)alg be a
Lefschetz class, such that

[Zk ◦ Tk]∗ = Id : Hk(X,Q)→ Hk(X,Q). (2.43)

The cycle class [Zk ◦ Tk ◦ δ≥k] ∈ H2n(X ×X,Q)alg acts as 0 on H l(X,Q) for l < k
because δ≥k does; it acts as the identity on Hk(X,Q) and as 0 on H l(X,Q) for
l > 2k because Tk acts as 0 on H l(X,Q) for l > 2k (indeed, dimTk = k). We have
to understand what happens on H l(X,Q) for k < l < 2k but in fact, as [Zk ◦ Tk ◦
δ≥k]∗ factors through the action of [Tk] in this range, that is, through the Lefschetz
operator hn−k, it is only the action of [Zk] on hn−kH l(X,Q) ⊂ H l+2n−2kX,Q), with
l+ 2n− 2k > 2n− k that we have to consider. Using the Lefschetz cycles for l′ < k,
we can thus correct [Zk ◦Tk ◦δ≥k] by algebraic classes on X×X so that the resulting
class acts trivially on H>k(X,Q), hence is the Künneth projector δk.

2.4 On the topology of Kähler and projective manifolds

We are going to discuss in this section a completely different application of polariza-
tions on Hodge structures, showing that their existence produces some topological
restrictions on complex projective manifolds, that general compact Kähler manifolds
do not necessary satisfy. To start with, the Kodaira embedding theorem says the
following.

Theorem 2.33. A compact Kähler manifold X is projective if and only if it admits a
Kähler form ω whose cohomology class is rational, i.e. [ω] ∈ H2(X,Q) ⊂ H2(X,R).

The proof beautifully uses the sheaf-theoretic language combined with Hodge
theory. The first step consists in using the Lefschetz (1, 1)-theorem to conclude that
(after passing to a multiple), ω = c1(H), for some holomorphic line bunlde H on
X. The ∂∂-lemma 1.17 then guarantees that ω is the Chern form of a Hermitian
metric h on H (see Proposition 1.18). The second part consists in proving that the
line bundle H is ample, that is a power H⊗N is very ample. A first reduction step
introduces blow-ups τ : X̃ → X of X at points x, y, thus introducing exceptional
divisors Ex, Ey in X̃. The goal of this operation is the following: in order to
prove that holomorphic sections of H⊗N separate the points x, y, it suffices to show
the vanishing H1(X,H⊗N ⊗Mx ⊗My) = 0, where Mx ⊂ OX is the subsheaf of
holomorphic functions vanishing at x. This vanishing is equivalent to the vanishing

H1(X̃, τ∗H⊗N (−Ex − Ey)) = 0, (2.44)

where O
X̃

(−Ex − EY ) is the sheaf of holomorphic functions on X̃ vanishing along
the hypersurfaces Ex, Ey. This sheaf is the sheaf of sections of a holomorphic line

bundle on X̃, to which Kodaira applies his celebrated vanishing theorem

Theorem 2.34. (Kodaira vanishing theorem) Let Y be a smooth compact complex
manifold, and M a holomorphic line bundle on Y admitting a Hermitian metric h
whose Chern form ωh is positive. Then

H i(Y,KY ⊗M) = 0 (2.45)

for i > 0.
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The proof of the vanishing theorem rests on Hodge theory, that is the study of
harmonic forms, and Kähler identities with the inclusion of a curvature term.

The Kodaira vanishing theorems has been improved later on in various ways.
First of all, the statement itself has been improved, with weakened positivity proper-
ties, by Kawamata [44] and Viehweg [73] independently. Second, by the introduction
due to Nadel [60] of the multiplier ideals, which give vanishing theorems with coeffi-
cients in ideals sheaves which are not locally free. In the above line of argument, the
Hermitian metric on the original line bundle is allowed to have singularities. The
multiplier ideals appear as the necessary corrections to make certain singular forms
to be L2.

Theorem 2.33 has the following corollary

Corollary 2.35. Let X be a compact Kähler manifold such that H2(X,OX) = 0.
Then X is projective.

Proof. The Hodge decomposition theorem says, whenH2(X,OX) = 0, thatH2(X,R) =
H1,1(X)R, where H1,1(X)R is the set of de Rham cohomology classes of closed real
forms of type (1, 1). Among these forms, the Kähler condition is a positivity con-
dition which is open. There is thus a non-empty open cone in H2(X,R) consisting
of Kähler classes. As H2(X,Q) is dense in H2(X,R), this cone contains rational
cohomology classes.

When H2(X,OX) = 0, there are examples of Kähler nonprojective manifolds,
for example a general complex torus of dimension ≥ 2 has no topologically nontrivial
holomorphic line bundle, but Theorem 2.33 allows in many cases to prove that, given
a deformation family, that is, a smooth proper holomorphic map π : X → B, the
set of points t ∈ B such that the fibre Xt is projective is dense in B, being locally
the countable union of closed analytic spaces. More precisely, we can assume B is
contratible, so that by Ehresman’s fibration theorem, the family X is topologically
a product X0 × B and any cohomology class α ∈ H2(X0,Q) extends to a class α ∈
H2(X ,Q), with restrictions αt ∈ H2(Xt,Q). Then we get for each α ∈ H2(X0,Q) a
locally closed analytic space Bα ⊂ B defined by

BK
α = {t ∈ B, αt is Kaehler on Xt}.

The locus BK
α is locally closed, because the Kähler condition is open on the sets of

classes of closed (1, 1)-forms, so BK
α is open in the set

Bα = {t ∈ B, αt is of type (1, 1) on Xt}

which is closed analytic in B. Kodaira theorem 2.33 says that the union of the loci
Bα parameterizes the projective fibers in the family X → B. This analysis allows to
show that compact Kähler manifolds with trivial or torsion canonical bundle admit
algebraic approximations, meaning that the points parameterizing projective fibres
are dense in their Kuranishi families. The following result, originally proved by
Kodaira using his classification of surfaces, has been reproved by Buchdahl [11] by
such a deformation argument, and even an infinitesimal argument.

Theorem 2.36. (Kodaira [50], [11]) Compact Kähler surfaces admit algebraic ap-
proximations.
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This theorem implies in particular

Corollary 2.37. A compact Kähler surface is homeomorphic to a projective complex
surface.

This last result is completely wrong in higher dimensions.

Theorem 2.38. ([75]) Starting from dimension 4, there exist compact Kähler man-
ifolds X whose cohomology algebra is not isomorphic to the cohomology algebra of a
complex projective manifold.

The case of dimension 3 left by Theorems 2.36 and 2.38 has been solved by Lin
[56], who proved that Theorem 2.36 also holds in dimension 3. Our original argu-
ment used the cohomology ring, but with the help of Deligne, it turned out that
the cohomology algebra with rational coefficients provides enough obstructions. It
was even proved in [76] that, starting from dimension 8, there exist compact Kähler
manifolds X with the property that for any compact complex manifold X̃ bimero-
morphic to X, the cohomology algebra of X̃ is not isomorphic to the cohomology
algebra of a complex projective manifold. These compact Kähler manifolds are not
homeomorphic to any complex projective manifold, and neither any of their smooth
bimeromorphic models.

Let us explain the ingredients in the proof of 2.38. The key point is the obser-
vation that the Hodge structures on the various cohomology groups Hk(X,Q) are
constrained by their compatibility with the algebra structure on cohomology. This
is summarized in the following definition. Here we will call a cohomology algebra
(say with Q-coefficients) any finite dimensional graded and graded-commutative Q-
algebra satisfying A2n = Q for some integer n, and the condition that Ai⊗A2n−i →
A2n is a perfect pairing.

Definition 2.39. A Hodge structure on a cohomology algebra A is the data of a
Hodge structure of weight k on Ak for each k, such that the multiplication map
Ak ⊗Al → Ak+l is a morphism of Hodge structures for each k, l.

If X is compact Kähler, its cohomology algebra carries a Hodge structure, hence
this criterion cannot be used in itself to distinguish topologically projective manifolds
from general compact Kähler manifolds. Note however that it is very restrictive, and
this provides new ways of constructing compact symplectic non-Kähler manifolds
(classical examples can be found in [68], [50]). For example, in [77], the following
result is proved:

Theorem 2.40. Let M be a real oriented compact manifold of dimension 2m, whose
cohomology algebra is generated in degrees ≤ 2. Let E → M be a complex vector
bundle on M such that c1(E) = 0. Then the manifold N constructed as the complex
projective bundle P(E) admits a Hodge structure on its cohomology algebra if and
only if M admits a Hodge structure on its cohomology algebra, such that the Chern
classes ci(E) ∈ H2i(M,Q) are Hodge classes.

Using this result, one can construct symplectic non-Kähler manifolds as complex
projective bundles over complex tori. In fact, most complex projective bundles over
complex tori are topologically non-Kähler because, using Theorem 2.40, they do not
admit a Hodge structure on their cohomology algebra.
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Coming back to the proof of Theorem 2.38, the key point is to use the fact
that the cohomology algebra of a projective complex manifold admits a polarized
Hodge structure, namely a Hodge structure in the sense of Definition 2.39 and
a degree 2 Hodge class ω satisfying the hard Lefschetz property and the Hodge-
Riemann bilinear relations of Definition 2.9. Our strategy was to show that, for
some well chosen examples X, any Hodge structure on the cohomology algebra of
X is not polarizable. The first examples in [75] were constructed starting from
the observation that certain automorphisms φ prevent a complex torus T to be
algebraic. More precisely, as described in the introduction, T corresponds to a
weight 1 Hodge structure on H1(T,Z), and φ∗ acts on the lattice H1(T,Z) as an
automorphism of Hodge structures. The presence of such an automorphism φ∗

may prevent the Hodge structure to be polarizable, for example if the action of
φ∗ on H2(T,Q) =

∧2H1(T,Q) is irreducible, since this implies that Hdg2(T ) = 0
when dimT ≥ 2. Indeed, Hdg2(T ) cannot be equal to the whole of H2(T,Q) if
H2,0(T ) 6= 0, that is, once dimT ≥ 2. On the other hand, Hdg2(T ) is preserved by
φ∗, so if the action of φ∗ is irreducible, Hdg2(T ) must be 0. We thus started from
such a pair (T, φ) and constructed the compact Kähler manifold X as follows: inside
T × T , blow-up T × x, x × T , the diagonal ∆T and the graph of φ. The resulting
compact Kähler manifold satisfies the property stated in Theorem 2.38, that is

Theorem 2.41. The manifold X so constructed does not have the cohomology al-
gebra of a smooth projective manifold.

If we consider the cohomology ring, instead of the cohomology algebra, then one
can argue as follows: Note that, because X is bimeromorphic to a complex torus
T × T of dimension 2n, with n ≥ 2, the natural map

4n∧
H1(T × T,Z)→ H4n(X,Z) (2.46)

given by cup-product is an isomorphism. This property is a characterization, among
compact Kähler manifolds, of manifolds bimeromorphic to complex tori. Indeed, any
compact Kähler manifold admits an Albanese map, which is a holomorphic map

albY : Y → AlbY = H1,0(Y )∗/H1(Y,Z)

given by integrating holomorphic 1-forms along paths. The map albY induces by
construction an isomorphism

alb∗Y : H1(AlbY,Z) ∼= H1(Y,Z)

so that (2.46) identifies with the pull-back map

alb∗Y : H4n(AlbY,Z) ∼= H4n(Y,Z)

which is an isomorphism if and only if the map albY is of degree 1, that is bimero-
morphic. Having this, suppose Y is a compact Kähler manifold with a cohomology
ring isomorphic to the one of X, say

i : H∗(X,Z) ∼= H∗(Y,Z).

Then albY : Y → Alb(Y ) is also bimeromorphic by the characterization above and
thus the classes in Ker albY ∗ ⊂ H2(Y,Z) are divisor classes, and they are images
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i(d) of the similarly defined divisor classes d ∈ Ker albX∗ ⊂ H2(X,Z) on X. The
group of these divisor classes has rank 4 and contains exactly (up to a multiple) 4
generators dj having the property that

dj : H1(X,Z)→ H3(X,Z)

is not injective. These divisor classes are exactly (up to a multiple) the classes of the
four exceptional divisors and their kernels are Hodge substructures Lj ⊂ H1(X,Z) =
H1(T,Z)×H1(T,Z), defined as

H1(T,Z)× 0, 0×H1(T,Z), Γ−1, Γ−φ,

where Γ−1 ⊂ H1(T,Z)×H1(T,Z) is the graph of−Id and Γ−φ ⊂ H1(T,Z)×H1(T,Z)
is the graph of −φ∗. The images under i of the Lj are Hodge substructures of
H1(Y,Z), being the kernels of the cup-product maps i(dj)∪ : H1(Y,Z)→ H3(Y,Z).
One then uses these four Hodge substructures to conclude that the Hodge structure
on H1(Y,Z) is, as a Hodge structure, a direct sum H ⊕ H, where H carries an
endomorphism of Hodge structures conjugate to φ∗. But we already know that the
presence of an endomorphism in this conjugacy class prevents the weight 1 Hodge
structure on H to be polarized and Y cannot be projective. This concludes the
proof in the case of the cohomology ring. qed

In the case of the rational cohomology algebra, there is an alternative argument,
due to Deligne, which is purely algebraic and replaces the geometric part above
involving the Albanese map. It relies on the following.

Lemma 2.42. Let A∗ be a cohomology algebra (say with Q-coefficients) equipped
with a Hodge structure in the sense of Definition 2.39. Let W ⊂ Ak be a closed
algebraic subset which is defined by homogeneous equations involving only the algebra
structure on A∗. Let W ′ ⊂ W be an irreducible component of W which is defined
over Q. Then the Q-vector subspace 〈W ′〉 ⊂ Ak is a Hodge substructure of Ak.

This lemma applies to algebraic subsets defined by rank conditions, e.g. fixing l
and s,

W = {α ∈ Ak, α : Al → Ak+l has rank ≤ s}, (2.47)

or more simply, defined by a simple algebraic equation in A∗, e.g. fixing l,

W = {α ∈ Ak, αl = 0 in Akl}. (2.48)

Example (2.47) applies to the previous proof and directly shows that the classes
i(dj) must be divisor classes (equivalently, degree 2 Hodge classes), even if we know
only the cohomology algebra with Q-coefficients. This proves Theorem 2.41 starting
from the cohomology algebra instead of the cohomology ring.

Lemma 2.42 combined with Example (2.48) is the main ingredient in the proof
of Theorem 2.40. Consider the projective bundle p : N = P(E) → M . It has the
Hopf line bundle H with first Chern class h = c1(H) ∈ H2(N,Q) and we have

H∗(N,Q) = ⊕r−1
i=0h

ip∗Hk−2i(N,Q), (2.49)
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the cohomology algebra structure being determined by the equation

hr =
r−1∑
i=0

±hip∗cr−i(E). (2.50)

Using the fact that the cohomology algebra of M is generated in degree ≤ 2,
it is clear that Theorem 2.40 is implied by the fact that h ∈ H2(N,Q) is a Hodge
class of degree 2 and H2(M,Q) ⊂ H2(N,Q) is a Hodge substructure. Indeed,
this implies that Hk(M,Q) ⊂ Hk(N,Q) is a Hodge substructure for all k, and
(2.50) then implies that ci(E) ∈ H2i(M,Q) are Hodge classes. In order to prove
that p∗H2(M,Q) ⊂ H2(N,Q) is a Hodge substructure, we can apply Lemma 2.42.
Indeed, elements of p∗H2(M,Q) satisfy αm+1 = 0 in H2m+2(N,Q) and one can
show they form an irreducible component of the closed algebraic subset of H2(N,Q)
defined by this condition. To prove that the class h is a Hodge class, we observe
that, since c1(E) = 0, it satisfies the equations

hrp∗H2m−2(M,Q) = 0,

and is an isolated solution of this equation. Hence a variant of Lemma 2.42 implies
that h is a Hodge class. qed

3 The topology of families

3.1 The Leray spectral sequence and Deligne’s decomposition the-
orem

Let f : X → Y be a smooth proper C∞ map and A an abelian group. Then by
Ehresmann’s fibration theorem, f is a local fibration, so that the sheaves Rkf∗A are
locally constant on Y . The Leray spectral sequence of f has E2-term

Ep,q2 = Hp(Y,Rkf∗A)⇒ Hp+q(X,A).

It is usually very complicated with nonzero differentials of high degree, as the ex-
ample of sphere bundles show: for a r − 1-sphere bundle S → Y , S ⊂ E, where E
is a real oriented vector bundle of rank r, the only nonzero cohomology sheaves are
R0f∗Z = Z, Rr−1f∗Z = Z and thus the nontrivial differentials are

dr : Hp(Y,Z)→ Hp+r(Y,Z).

For p = 0, dr(1) ∈ Hr(Y,Z) is well-known to give the Euler class of E, which is
nonzero in general.

At least with Q-coefficients, this situation cannot happen for projective mor-
phisms, or more generally proper morphisms X → Y with Kähler fibers, carrying
a degree 2 cohomology class α whose restriction αt to the fiber Xt of f is a Kähler
class, for any t ∈ Y .

Theorem 3.1. ([9], [19]) Let f : X → Y , α ∈ H2(X,R) be as above. Then the
Leray spectral sequence of f with Q-coefficients degenerates at E2.
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Proof. It suffices to prove the result with R-coefficients. Choosing a closed repre-
sentative of α, we see that the maps of cup-product with the powers αr act on the
Leray spectral sequence. The only fact we will need is the hard Lefschetz property
satisfied by the class αt. In particular the result has nothing to do with the complex
structure of the fibers. One proves by induction on r that dr = 0 for r ≥ 2. Let us
just prove that

d2 : Hp(Y,Rqf∗R)→ Hp+2(Y,Rq−1f∗R)

is 0. First of all, we reduce the problem to the case where q ≤ n because for q > n,
we can apply the Lefschetz isomorphism

αq−n∪ : R2n−qf∗R ∼= Rqf∗R

with 2n− q < n, which commutes with the Leray differentials. For q ≤ n, we have
the Lefschetz decomposition of the local system Rqf∗R

Rqf∗R = ⊕q−2r≥0α
r ∪ (Rq−2rf∗R)prim,

and using the induction hypothesis, we just have to prove the vanishing of d2 on the
primitive part

(Rqf∗R)prim := Ker (αn−q+1∪ : Rqf∗R→ R2n−q+2f∗R).

The vanishing of d2 on Rqf∗R)prim now follows from the following commutative
diagram

Hp(Y, (Rqf∗R)prim)
d2→ Hp+2(Y,Rq−1f∗R)

αn−q+1 ↓ αn−q+1 ↓
Hp(Y, (R2n−q+2f∗R)prim)

d2→ Hp+2(Y,R2n−q+1f∗R)

,

where the first vertical arrow is by definition 0, while the second vertical arrow is
the Lefschetz isomorphism in degree q − 1.

With integral coefficients, the degeneracy at E2 of the Leray spectral sequence
for smooth projective morphisms is completely wrong. For example, the Brauer-
Severi varieties p : P → Y are projective bundles which are locally trivial in the
analytic or étale topology, but not in the Zariski topology. Assume the fibers Pt are
isomorphic to Pr. Then P is a projectivized vector bundle

P ∼= P(E)

if and only if there exists a holomorphic line bundle H on P whose restriction to
the fibers is the line bundle OPt(1). Indeed, if H exists, P is canonically isomorphic
to P((R0p∗H)∗). We have R2p∗Z = Z and, assuming H2(Y,OY ) = 0, the existence
of H is equivalent to the surjectivity of the restriction map

H2(P,Z)→ H0(Y,R2p∗Z),

appearing in the Leray spectral sequence. The existence of nontrivial Brauer-Severi
varieties over bases Y with H2(Y,OY ) = 0 thus entirely depends on the nondegen-
eracy at E2 of the Leray spectral sequence with integral coefficients.

The Deligne decomposition theorem for projective smooth morphisms is the fol-
lowing stronger version of Theorem 3.1.
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Theorem 3.2. [17] Let f : X → Y be a C∞ map satisfying the same assumptions
as in Theorem 3.1. Then, in the bounded derived category DY of (locally constant)
sheaves of Q-vector spaces on Y , there is a decomposition

Rf∗Q = ⊕Rqf∗Q[−q].

Proof. We observe that the argument used for the proof of Theorem 3.1 would work
as well with the constant sheaf on X replaced by any local system V of Q-vector
spaces pulled-back from Y . In particular we can take V = f−1((Rqf∗Q)∗), and
we know that the Leray spectral sequence of (V, f) degenerates at E2. There is a
canonical section

sq ∈ H0(Y,Rqf∗V ),

since Rqf∗V ∼= Rqf∗Q ⊗ (Rqf∗Q)∗. The degeneracy at E2 of the Leray spectral
sequence now gives a class αq ∈ Hq(X,V ), which maps to sq ∈ H0(Y,Rqf∗V ).
Next,

Hq(X,V ) = Hq(Y,Rf∗V ) = Hq(Y, (Rqf∗Q)∗⊗Rf∗Q) = HomDY (Rqf∗Q[−q], Rf∗Q),

so the αq give morphisms Rqf∗Q[−q] → Rf∗Q inducing an isomorphism on degree
q cohomology. The αq together provide the desired decomposition.

3.2 The global invariant cycle theorem

Let X, Y be smooth projective complex varieties with Y connected, and let f : X →
Y be a surjective morphism. There is a dense Zariski open set Y 0 of Y (the open
set of regular values) such that, denoting X0 := f−1(Y 0), the restricted map

f : X0 → Y 0

is a smooth morphism, which is proper, hence a local fibration. Note that, since Y
is connected and Rkf∗Q is a local system with stalk Hk(X0Y ,Q) at 0Y , if 0Y ∈ Y is
a base-point, the space H0(Y 0, Rkf∗Q) identifies via the restriction map

H0(Y 0, Rkf∗Q)→ Hk(X0Y ,Q)

with the invariant subspace

Hk(X0Y ,Q)inv ⊂ Hk(X0Y ,Q)

under the monodromy representation

ρ : π1(Y 0, 0Y )→ EndHk(X0Y ,Q). (3.51)

Theorem 3.1 tells us that the natural map

Hk(X0,Q)→ H0(Y 0, Rkf∗Q)

is surjective, or equivalently that

Hk(X0Y ,Q)inv = Im (r0
0Y

: Hk(X0,Q)→ Hk(X0Y ,Q)), (3.52)

where r0
0Y

is the restriction map from X0 to X0Y . The following crucial result is
due to Deligne [19].
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Theorem 3.3. One has

Hk(X0Y ,Q)inv = Im (r0Y : Hk(X,Q)→ Hk(X0Y ,Q)),

where r0Y is the restriction map from X to X0Y .

Corollary 3.4. Hk(X0Y ,Q)inv ⊂ Hk(X0Y ,Q) is a Hodge substructure of Hk(X0Y ,Q)
whose isomorphism class does not depend on the reference point.

The corollary follows from the theorem because the restriction map r0Y : Hk(X,Q)→
Hk(X0Y ,Q) is a morphism of Hodge structures. Hence its image is a Hodge sub-
structure. It is a constant Hodge substructure because the morphism is locally
constant. If α = r0Y (βp,q) is of type (p, q), then rt(β

p,q) = αt is also of type (p, q),
hence the Hodge decomposition on the image is constant. Note that Corollary 3.4
can also formulated as follows.

Corollary 3.5. Let α ∈ Hk(X0Y ,Q)inv. Write α =
∑

p,q α
p,q in the Hodge decom-

position of Hk(X0Y ,C). Then each αp,q belongs to Hk(X0Y ,C)inv.

Theorem 3.3 follows from (3.52) and Theorem 2.7, using the fact that the restric-
tion map r0

0Y
: Hk(X0,Q)→ Hk(X0Y ,Q) is a morphism of mixed Hodge structures,

where on the right the Hodge structure is pure of weight k. Theorem 2.7 thus says
that Im r0

0Y
= r0

0Y
(WkH

k(X0,Q)). On the left, the minimal weight is k and

WkH
k(X0,Q) = Im (Hk(X,Q)→ Hk(X0,Q)).

It follows that
Im r0

0Y
= Im r0Y ,

which implies the result since we already know by (3.52) that Im r0
0Y

= Hk(X0Y ,Q)inv.
qed

A first important consequence is the rigidity theorem which says that a variation
of Hodge structures is determined by the underlying local system and its value at
one point.

Corollary 3.6. Let f : X → Y , g : X ′ → Y be two smooth projective morphisms,
where Y is smooth quasi-projective and connected. Assume the local systems Rkf∗Q
and Rkf ′∗Q are isomorphic and that the isomorphism

i : Rkf∗Q ∼= Rkf ′∗Q

is at some point y ∈ Y an isomorphism of Hodge structures Hk(Xy,Q) ∼= Hk(X ′y,Q).
Then i induces an isomorphism of Hodge structures at any point of Y .

Indeed, we already explained that the isomorphism iy can be seen via Künneth
decomposition as a cohomology class in the product Xy ×X ′y. By assumption this
class is monodromy invariant, and it is a Hodge class at the point y. Hence it is a
Hodge class everywhere on Y . qed

Another corollary is the following.

Corollary 3.7. The situation and notation being as in Theorem 3.3, the set

Hk(X0Y ,Q)fin ⊂ Hk(X0Y ,Q)

of elements α ∈ Hk(X0Y ,Q) such that the orbit of α under the monodromy action
(3.51) is finite, is a Hodge substructure of Hk(X0Y ,Q).
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Indeed, it suffices to prove the statement for the set of elements

Hk(X0Y ,Q)G
′ ⊂ Hk(X0Y ,Q)

invariant under any fixed finite index subgroup G′ ⊂ π1(Y 0, 0Y ). Such a finite
index subgroup produces a finite étale cover Y ′ of Y 0 which is algebraic and a base-
changed family X0

Y ′ → Y ′, for which Hk(X0Y ,Q)G
′

is now monodromy invariant,
and to which Corollary 3.4 applies.

In the opposite direction, the following result, which is again a consequence of
the Hodge-Riemann relations, exhibits elements of Hk(X0Y ,Q)fin. We assume now
k = 2l is even.

Theorem 3.8. Let X → Y be as above, and let t ∈ Y be a very general point.
Then the Q-vector space Hdg2l(Xt,Q) of Hodge classes on Xt is stable under the
monodromy action

π1(Y 0, t)→ AutH2l(Xt,Q)

and we have

Hdg2l(Xt,Q) ⊂ H2l(Xt,Q)fin. (3.53)

Here by “very general”, we mean that t can be chosen outside a countable union
of Zariski closed subsets of Y .

Proof of Theorem 3.8. As it is stated, the theorem needs hard results about Hodge
loci (see Section 3.6), from which we extract the following statement: There exists
a countable union H of closed proper algebraic subsets Yi ⊂ Y 0, such that for any
t ∈ Y 0 \ H, and any Hodge class

α ∈ Hdg2l(Xt,Q),

the class α remains Hodge in a neighborhood of t. Here we take a contractible
neighborhood U ⊂ Y 0 of t, so that the family X0 → Y 0 is topologically trivial and
the cohomology groups H2l(Xt,Q), H2l(Xt′ ,Q) are canonically isomorphic for any
t′ ∈ U ; the class α can thus be transported to a class αt′ ∈ H2l(Xt′ ,Q), and our
statement is that αt′ is still a Hodge class on Xt′ . To conclude that for any path
γ : [0, 1] → Y 0 from t to another point t′ ∈ Y , the class α remains Hodge on Xγ(s)

for any s ∈ [0, 1], we use then the analytic continuation principle. This proves that α
remains Hodge under parallel transport along paths, hence a fortiori under parallel
transport along loops. This implies that the classes γ(α) are Hodge on Xt for any
γ ∈ π1(Y 0, t). Thus Hdg2l(Xt,Q) is stable under the monodromy action.

In order to prove that the monodromy acting on Hdg2l(Xt,Q) is finite, we use
the fact that the morphism X → Y is projective, so that there is an integral degree
2 cohomology class l = c1(L) whose restriction to the fibers Xt is a Kähler class lt
which induces the Lefschetz isomorphism (see (2.33))

ld−2l : H2l(Xt,Q) ∼= H2d−2l(Xt,Q)

where d = dim(X/Y ) and assuming 2l ≤ d. The Lefschetz isomorphisms preserve
Hodge classes since they are isomorphisms of Hodge structures, hence they provide
restricted isomorphisms

ld−2l : Hdg2l(Xt,Q) ∼= Hdg2d−2l(Xt,Q). (3.54)
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When 2l ≥ d, we can use the Lefschetz isomorphism (3.54) to deduce finite mon-
odromy on Hdg2l(Xt,Q) from finite monodromy on Hdg2d−2l(Xt,Q). Assuming
2l ≤ d, the isomorphisms (3.54) imply that Hdg2l(Xt,Q) is stable under the Lef-
schetz decomposition which provides

Hdg2l(Xt,Q) ∼= ⊕2l−2r≥0l
rHdg2l−2r(Xt,Q)prim. (3.55)

The end of the proof is the following. Recall the Lefschetz intersection pairing 〈 , 〉Lef

on Hdg2l(Xt,Q) defined on H2l(Xt,Q) by

〈α, β〉Lef = 〈ln−2lα, β〉Xt .

The Lefschetz decomposition is orthogonal for 〈 , 〉Lef , and furthermore the sec-
ond Hodge-Riemann relations (2.15) say that the pairing 〈 , 〉′Lef which is equal to
(−1)r〈 , 〉Lef on lrHdg2l−2r(Xt,Q)prim, and for which the Lefschetz decomposition is
also orthogonal, is definite.

The proof is now finished because the monodromy action preserves l, hence
〈 , 〉Lef and the Lefschetz decomposition on Hdg2l(Xt,Q), so it also preserves 〈 , 〉′Lef .
Moreover, there is an integral structure on the Q-vector spaces considered, and it is
preserved by the monodromy action. So we conclude that the monodromy action on
Hdg2l(Xt,Q) factors through the orthogonal group O(L, 〈 , 〉) of a lattice equipped
with a definite intersection form, and such a group is finite.

A consequence of these results is the following statement concerning the varia-
tional Hodge conjecture.

Proposition 3.9. Let X → B be a smooth projective morphism, where B is con-
nected smooth quasi-projective. Let 0 ∈ B, and Z0 ∈ CHk(Xt) be a cycle with class
α ∈ Hdg2k(X0,Q). Assume the class α remains Hodge on Xt for t in a neighbor-
hood of 0. Then assuming the Lefschetz standard conjecture, the class αt remains
algebraic on Xt for any t ∈ B.

In fact, as the proof will show, we only need the Lefschetz standard conjecture

for both X̃ and the fiber X0, where X̃ is a variety deduced from X by an étale base
change B̃ → B and by taking a projective compactification.

Proof. By analytic continuation, the class αt remains Hodge on Xt for any t ∈ B.
By the finiteness theorem 3.8, the orbit of the class α under the monodromy action
is finite, so after passing to an étale cover B̃ of B, we can assume that the class α

is invariant under monodromy. By Theorem 3.3, there exists a class β ∈ H2k(X̃ ,Q)
such that (denoting also 0 any point of B̃ over 0 ∈ B) β|X̃0

= α. As we assumed

the Lefschetz standard conjecture for both X̃ and X0 = X̃0, Corollary 2.30 shows

that there exists a cycle Z with Q-coefficients on X̃ such that, denoting Zt = Z|Xt ,
[Z0] = α, hence [Zt] = αt for any t ∈ B̃, which proves the result.

3.3 Variational aspects; Griffiths’ transversality

So far, we have been discussing the formal properties of Hodge structures and their
polarizations. In the next sections, we are going to concentrate on how they vary,
and how the study of the so-called “period map” leads to further results on the
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topology of families. Most of the results here are due to Griffiths, except in the
weight 1 case, where the polarized Hodge structures correspond to abelian varieties,
and a lot of work had been done previously using the theory of automorphic forms
(see [6]).

Let X be a compact Kähler or complex projective manifold and k be an integer.
The Hodge filtration F iHk(X,C) ⊂ Hk(X,C) (see (1.25)) determines a point in
the flag manifold Flbi,k(Hk(X,C)) parameterizing the filtrations on Hk(X,C) with

successive dimensions bi,k := dimF iHk(X,C), i = k, . . . , 0. Recall from Section
1.1 (combined with Corollary 1.15) that, under a small deformation (Xt)t∈B of the
complex structure of X, the dimensions bi,k(Xt) remain constant, and it follows by
the Hodge theory of harmonic representative that the subspace

F iHk(Xt,C) ⊂ Hk(Xt,C) ∼= Hk(X,C)

vary in a C∞ way with t.
Griffiths [25] proved much more. We concentrate on a fixed i, since the flag

manifold Flbi,k(Hk(X,C)) is contained in the product
∏k
i=0 Grass(bi,k, H

k(X,C)).
It is indeed the closed algebraic subvariety

Z = {(W1, . . . ,Wk) ∈
k∏
i=0

Grass(bi,k, H
k(X,C)), Wi ⊂Wi−1, ∀i ≥ 1}.

The period map
Pi,k : B → Grass(bi,k, H

k(X,C))

maps t to the point [F iHk(Xt,C))] ∈ Grass(bi,k, H
k(X,C)). It is a priori of class

C∞ in t. Let us now assume that the family of deformations of X is holomorphic in
the sense that it comes from a family given by an analytic variety equipped with a
smooth proper holomorphic map

π : X → B (3.56)

and a topological trivialization
X ∼= B ×X0

over B, with X0
∼= X as a complex manifold. Let W be a complex vector space of

dimension bk and bi,k ≤ dimW be an integer. The Grassmannian Grass(bi,k,W ) is a
projective complex manifold. It has a cell decomposition with affine cells isomorphic
to Abi,k(bk−bi,k) constructed as follows. Let V ⊂ W be a complex vector space of
dimension bi,k, defining a point [V ] ∈ Grass(bi,k,W ). Choose a decomposition

W = V ⊕ V ′,

with dimV ′ = bk−bi,k. Then, an open set of deformations of the vector subspace V ⊂
W parameterizes vector subspaces Vt of W of dimension bi,k which are transverse
to V ′, and such Vt is exactly parameterized by an element ht of Hom (V, V ′). (To
ht one associates the graph of ht in V ⊕ V ′, and to Vt ⊂ V ⊕ V ′ transverse to
V ′, one associates ht = pr2 ◦ (pr1|Vt)

−1.) This construction gives local holomorphic
coordinates for Grass(bi,k,W ). This is used to show the following

Lemma 3.10. The tangent space to Grass(bi,k,W ) at [V ] is canonically isomorphic
to Hom (V,W/V ).
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The canonical isomorphism given above is constructed as follows. Let [V ] ∈
Grass(bi,k,W ). Choose a basis αj of V . In a neighborhood of [V ] in Grass(bi,k,W ),
one can choose holomorphic sections α̃j of the universal subbundle

V ⊂ Grass(bi,k,W )×W

such that α̃i([V ]) = αi. For any u ∈ TGrass(bi,k,W ),[V ], we get a linear map

hu : V →W/V,

defined by
hu(αi) = duα̃j mod V.

One checks using the Leibniz formula that hu does not depend on the choice of
the sections α̃j and one checks using the coordinates described above that this
construction gives a linear isomorphism u 7→ hu, proving Lemma 3.10. Coming back
to the case W = Hk(X,C), bi,k = dimF iHk(X,C), one has

Theorem 3.11. (Griffiths) (i) The period map is holomorphic.
(ii) The period map satisfies the transversality condition

dP(TB,0) ⊂ Hom (F iHk(X,C), F i−1Hk(X,C)/F iHk(X,C)) (3.57)

⊂ Hom (F iHk(X,C), Hk(X,C)/F iHk(X,C)).

It is interesting to note that the transversality property is automatic in the case
of the variation of Hodge structure on degree 1 cohomology, because the varying
subspace is F 1H1 and F 0H1 is everything. Griffiths’ proof of Theorem 3.11 is by
explicit computation relying on the Cartan-Lie formula, using the recipe described
above and differentiating families of cohomology classes to compute the differential
of the period map. The operation of differentiating families of cohomology classes
in the fibers of a fibration is called the Gauss-Manin connection. More generally,
for any local system H of R-vector spaces on B, there is a connection ∇ on the
associated holomorphic vector bundle H := H ⊗ OB, which is characterized by the
fact that sections of H are the ∇-flat sections of H. The connection ∇ is flat,
that is has 0-curvature, and conversely by Frobenius theorem, a connection with
0-curvature gives rise to a local system of flat sections (hence to a representation
of the fundamental group of the base). This correspondence is called the Riemann-
Hilbert correspondence. In our context, the Gauss-Manin connection on the vector
bundle H = Rkπ∗C⊗OB is extremely interesting because, as we will see below, it is
an algebraic data, and even more, it is algebraic defined over K if π is a morphism
of quasiprojective varieties defined over K. By contrast, the associated local system
is a highly transcendental data. The reason is that solutions of an algebraic linear
differential equation are usually transcendental, like the function log z which is the
solution of the linear equation f ′ = 1

z .
The proof given by Katz-Oda of Griffiths transversality (Theorem 3.11(ii)) relies

on the following description of ∇ (see [43]). Consider the smooth holomorphic map
π : X → B. There is the relative holomorphic de Rham complex

Ω•X/B
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(see Section 1.1) which restricts on each fiber Xt to the holomorphic de Rham com-
plex Ω•Xt , and which provides, using the local analytic triviality of the map π (even
if B is singular), a resolution of the sheaf π−1OB. It follows that

Rkπ∗C⊗OB ∼= Rkπ∗Ω•X/B. (3.58)

The right hand side has the Hodge filtration by analytic coherent sheaves

F pRkπ∗Ω•X/B = Rkπ∗Ω•≥pX/B

and it follows from the base change property explained in Section 1.1 that this
filtration is a filtration by locally free subsheaves which induces the Hodge filtration
on each fiber. This proves part (i) of Theorem 3.11.

Let us assume for simplicity that X is smooth. The absolute de Rham complex
of X carries the following filtration

LiΩ•X := π∗Ωi
B ∧ Ω•−iX .

We have by construction an isomorphism of complexes

Ω•X /L
1Ω•X

∼= Ω•X/B

and an exact sequence

0→ π∗ΩB ⊗ Ω•−1
X/B → Ω•X /L

2Ω•X → Ω•X/B → 0. (3.59)

Applying Rπ∗, we get a connecting map (which is not OB-linear because the differ-
ential in the complex Ω•X /L

2Ω•X is not OB-linear)

δ : Rkπ∗Ω
•
X/B → Rkπ∗Ω

•
X/B ⊗ ΩB.

Theorem 3.12. Via the isomorphisms (3.58), ∇ identifies to the Gauss-Manin
connection.

This theorem immediately implies the transversality property. Indeed, the exact
sequence (3.60) is compatible with the Hodge (or näıve) filtrations

F pΩ•X = Ω•≥pX , F pΩ•X/B = Ω•≥pX/B,

inducing an exact sequence

0→ π∗ΩB ⊗ Ω•−1≥p−1
X/B → Ω•≥pX /L2Ω•≥pX → Ω•≥pX/B → 0, (3.60)

so that the map δ induces as well for each p

∇ : F pHk → F p−1Hk ⊗ ΩB,

proving transversality. The great advantage of this construction is that it works as
well, using the relative version of Theorem 1.11, on the level of algebraic (relative) de
Rham complexes and over the same definition field as the family X → B, providing
a natural algebraic structure for the Hodge bundles F pHk and the Gauss-Manin
connection.
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3.4 Polarized period domains

If we work with a smooth projective morphism

π : X → B,

choosing a relatively ample holomorphic line bundle L on X , and denoting l :=
c1(L) ∈ H2(X ,Z), the class l provides a Lefschetz decomposition on the local systems
Rkπ∗Q, which for each t ∈ B gives a decomposition of Hk(Xt,Q) into a direct sum
of Hodge structures. Note also that there is an integral structure on each term
(namely primitive cohomology groups), although the Lefschetz decomposition itself
works only with Q-coefficients. We can thus restrict to study the variation of Hodge
structure on each primitive cohomology group Hk(Xt,Z)prim and each of them gives
a polarized variation of Hodge structures, where the polarization is given (up to
sign) by the integral locally constant nondegenerate intersection pairing 〈 , 〉Lef of
(2.35).

Choose a reference point 0 ∈ B. Fix k, the numbers bp,k,prim := dimF pHk(X0,C)prim

for p+ q = k, and a lattice (L, ( , )) isomorphic to (Hk(X0,Z)prim, 〈 , 〉Lef). The po-
larized period domainD is the locally closed subspace of the flag manifold Fl(bp,k, LC)
parameterizing decreasing filtrations

. . . ⊂ F pLC ⊂ F p−1LC ⊂ . . . ⊂ LC

on LC, with dimF pLC = bp,k and satisfying the Hodge-Riemann relations 2.9, (i)
and (ii).

Note that there is no need to ask for the opposite filtration property, that is

F pLC ⊕ F k−p+1LC = LC

because it is automatic in this case. Indeed, a class in F pLC ∩ F k−p+1LC is in the
kernel of ( , ) by 2.9, (i), hence is 0 since the pairing is nondegenerate.

Coming back to our family π : X → B, if we restrict to simply connected open
sets U ⊂ B containing the reference point 0 ∈ U (e.g. a neighborhood of a path γ
from t to 0 in B), we have by topological trivialization a canonical isomorphism

(Hk(Xt,Z)prim, 〈 , 〉Lef) ∼= (Hk(X0,Z)prim, 〈 , 〉Lef) ∼= (L, ( , )), (3.61)

and the Hodge filtration on Hk(Xt,Z)prim provides via this isomorphism a polarized
Hodge structure (or filtration) on L, that is, a point of D. This defines the polarized
local period map

P : U → D.

This map is only locally defined because it depends on the choice of isomorphism
(3.61) which itself depends on the choice of U , or of γ. A different choice γ′ produces
a loop γ ◦ γ′−1 which acts on (L, ( , )) via the monodromy representation

ρ : π1(B, 0)→ Aut (Hk(X0,Z)prim, 〈 , 〉Lef).

The group Γ := Aut (L, ( , )) acts in an obvious way on D and the considerations
above show that the global period map is well defined modulo this action, that
is, with value in Γ \ D. Here we see immediately a major difference between the
unpolarized case and the polarized case. In the unpolarized case, the group AutL
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acts on the set of Hodge structures on L with given Hodge numbers, but this action
is far from being properly discontinuous; to the contrary, it tends to be ergodic (see
[72]). The stabilizer groups are not necessarily finite in the unpolarized case: for
example, in weight 1, assuming the rank of the lattice L is 2p with p ≥ 2, we have
weight 1 Hodge structures on L wich are the direct sum Lp1, of p copies of a weight
1 Hodge structure of rank 2. The automorphisms group of the Hodge structure Lp1
contains Gl(p,Z), which is infinite when p ≥ 2. To the contrary, in the polarized
case we have:

Lemma 3.13. The group G of automorphisms of an integral weight k polarized
Hodge structure (L, ( , ), F pLC) is finite.

Proof. As the group is contained in AutLZ, it suffices to show that G is contained in
a compact subgroup of AutLC. The Hodge decomposition and the Hermitian form
hC(α, β) = ik(α, β) on LC, for which, by definition of a polarization, the Lp,q are
mutually orthogonal, provide a modified Hermitian form h′C on LC which is defined
as (−1)phC on Lp,q, the spaces Lp,q being also mutually orthogonal for h′C. By the
second Hodge-Riemann bilinear relations, h′C is definite. Furthermore the group G is
contained in Aut (LC, h

′
C) since it preserves both hC and the Hodge decomposition

which is used to construct h′C. As Aut (LC, h
′
C) is compact, this concludes the

proof.

It is not hard to modify this proof to prove

Proposition 3.14. The action of Γ = Aut (L, ( , )) is properly discontinuous on
the polarized period domain D.

The polarized period domain is defined, inside the flag manifold Fl (LC, bp,k) by
algebraic equations and by open conditions. The algebraic equations correspond
to the first Hodge-Riemann bilinear relations (Definition 2.9 (i)), while the open
conditions are the sign conditions given by the second Hodge-Riemann bilinear re-
lations (Definition 2.9 (ii)). Although the polarized period domain is smaller than
the set of unpolarized Hodge structures, the transversality property of the period
map imposes in general (but not always) further restrictions. To see this, consider
the case of effective weight 2 Hodge structures. A polarized effective weight 2 Hodge
structure (L, ( , ), F pLC) is determined by the subpace L2,0 ⊂ LC, which has to be
totally isotropic for ( , ) by 2.9 (i) (and such that ReL2,0 ⊂ LR is positive definite
for ( , ) by 2.9 (ii)). Indeed, one then defines F 1LC as (L2,0)⊥ and then (as in (1.26)
one must have

L0,2 = L2,0, L1,1 = F 1LC ∩ F 1LC.

With these definitions, the Hodge structure one gets is indeed polarized. Thus in
our case, the polarized period domain identifies with the positive open subset of the
isotropic Grassmannian G(h2,0, LC)isot. Its tangent space a point [L2,0] is the set of
φ : L2,0 → LC/L

2,0 such that

(v, φ(w)) = −(φ(v), w) (3.62)

for any v, w ∈ L2,0. The transversality condition restricts the tangent space to be
contained in Hom (L2,0, F 1LC/L

2,0), and indeed, any φ ∈ Hom (L2,0, F 1LC/L
2,0)

satisfies (3.62) since (L2,0, F 1LC) = 0. However the set of φ satisfying (3.62) is
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larger than Hom (L2,0, F 1LC/L
2,0) once h2,0 > 1. When h2,0 = 1, the transversality

is automatically implied by the polarization condition.
In this example, we find that, due to transversality and the existence of countably

many families parameterizing all smooth projective complex varieties, a general
polarized Hodge structure of weight 2 with h2,0 > 1 is not the Hodge structure
on the H2 of a projective complex manifold, and neither a direct summand in it.
To the contrary, the theory of hyper-Kähler manifolds [39] gives many examples of
families of projective manifolds whose period points exhaust a period domain for
weight 2 polarized Hodge structures with h2,0 = 1.

3.4.1 Curvature properties

Consider first a variation of effective Hodge structures of weight 1, given by a (inte-
gral, rational or real) local system H1 over a complex manifold B and a holomorphic
vector subbundle

H1,0 ⊂ H1 = H1 ⊗OB.

The vector bundle H1 is flat, equipped with the Gauss-Manin connexion ∇,
so the subbundle H1,0 should not have any positivity properties. To the contrary,
it is positive when the variation of Hodge structure is polarized. Let 〈 , 〉 be the
skew-symmetric intersection pairing on H1 giving the polarization. The sesquilinear
intersection pairing

h1(α, β) = i〈α, β〉

on H1 or H1 is not Hermitian positive definite, as it has signature (n, n), where
2n = rankH1. By definition of a polarization, h1 restricts to a Hermitian metric
h on H1,0, so that we can compute the curvature of the Chern connection of h.
It is nonnegative and 0 if and only if the variation of Hodge structure is constant.
This phenomenon is well explained in [27]. The key point in the computation is
the alternance in the signs of the Hermitian intersection pairings induced by h1 on
H1,0 and H0,1 (one is positive, the other is negative, according to (0.1), (0.2)). The
statement generalize to any weight as follows

Theorem 3.15. For a variation of Hodge structures of weight k, the Hodge bundle
Hk,0 are positive semidefinite.

This is particularly troubling in the case where the base B is a projective mani-
fold. Although this rarely happens, we have, at least abstractly, plenty of examples
obtained by observing that the moduli space Mg parameterizing smooth (say au-
tomorphisms free) curves of genus g ≥ 4 admits a projective compactification with
boundary of codimension ≥ 2. Thus any curve B avoiding the boundary in this
compactified moduli space will produce a family of smooth genus g curves param-
eterized by a projective base B. This observation was used by Kodaira [48] to
construct interesting surfaces. There is of course no contradiction between flatness
of H1 and the existence of the positively curve subbundle H1,0. If B is a curve, an
indecomposable holomorphic vector bundle F on B admits a flat connection if and
only if it satisfies c1(F) = 0. This result is due to Weil [81]. The presence of the
positive subbundle H1,0 ⊂ H1 simply says that the holomorphic vector bundle H1

is unstable.
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3.4.2 The horizontal distribution

Let D be a period domain, that is, D is, in the unpolarized case, an open subset of a
flag manifold Fl(bk,p, HC) for given numbers bk,k ≤ bk,k−1 . . . ≤ bk,0 = dimHC and in
the polarized case, HC is endowed with a (−1)k-symmetric pairing 〈 , 〉 and D is an
open subset of the isotropic flag manifold Flisot(bk,p, HC) for given numbers bk,k ≤
bk,k−1 . . . ≤ bk,0 = dimHC, where the isotropy conditions are F pHC ⊂ F k−p+1H⊥C
for any p.

Forgetting the polarization conditions, the tangent space to the flag manifold at
a point [F •HC] parameterizing a filtration with given dimensions bk,p is TD,[F •HC] =
W ⊂

∏
p Hom (F pHC, HC/F

pHC), where

W = {(φp), φp+1,p = φp|F p+1HC ∀p}.

Here φp+1,p : F p+1HC → HC/F
pHC is the composition of φp+1 : F p+1HC →

HC/F
p+1HC and the projection HC/F

p+1HC → HC/F
pHC.

The Griffiths transversality condition (Theorem 3.11) says that the local period
map P : U → D associated with a family of complex projective or compact Kähler
manifolds with trivialized local system has the image of its differential contained in
a subspace W hor ⊂W defining the horizontal distribution

T hor
D ⊂ TD.

The subspaceW hor is the set of (φp) ∈W such that Imφp ⊂ F p−1HC and it naturally
identifies with ⊕pHom (Hp,k−p, Hp−1,k−p+1), where Hp,k−p = F pHC/F

p+1HC.
A difficulty of the subject is the fact that the horizontal distribution so defined

is not integrable. To see this, let us mention the following lemma (see [12]). Let B
be a smooth complex manifold and P : B → D be a holomorphic map satisfying the
transversality condition, that is, Im dP ⊂ T hor

D . For any b ∈ B, and any u ∈ TB,b,
denote by (φp(u)) ∈ ⊕pHom (Hp,k−p, Hp−1,k−p+1) the element dP(u).

Lemma 3.16. For any u, v ∈ TB,b, one has

φp−1(v) ◦ φp(u) = φp−1(u) ◦ φp(v) : Hp,k−p → Hp−2,k−p+2.

This result, which easily follows from the symmetry of double derivatives, shows
that the distribution T hor

D has a nontrivial curvature. In [12], the authors prove that
for most hypersurfaces in projective space, the corresponding period map provides
maximal solutions of the transversality equation for the polarized period map.

The lack of integrability makes a little painful to speak of the curvature of the
period domain in the horizontal directions. Nevertheless the holomorphic sectional
curvature of any holomorphic distribution makes sense, since it is computed by
restricting the metric to holomorphic discs tangent to the distribution, and taking
the usual Ricci curvature of the restricted metric. It can be used in the same way as
the general holomorphic sectional curvature in order to prove hyperbolicity results
(see next section). A natural Hermitian metric exists on the polarized period domain
D, and is defined up to a scalar. It is induced by the Hodge metric on the Hp,q-
bundles. Griffiths proves the following result.

Theorem 3.17. The holomorphic sectional curvature K of the horizontal subbundle
T hor
D is bounded above by a negative constant. There exists A > 0 such that for any

0 6= ξ ∈ T hor
D , K(ξ) ≤ −A.
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3.4.3 The monodromy theorem

Consider a polarized variation of Hodge structures over the punctured disc ∆∗ of
radius 1 + ε, so we can take the reference point 1 ∈ ∆∗. We thus have a local system
H of Z-modules on ∆∗, which is entirely characterized by its monodromy operator

T = ρ(γ1) : H1 → H1,

where γ1 is a counterclockwise loop around the origin based at 1, equipped with a
T -invariant pairing 〈 , 〉 and a holomorphic filtration F iH on H := H ⊗O∆∗ , which
satisfies two conditions

(1) The filtration F •HC,t induces a Hodge structure on Ht ∼= Ht ⊗ C which is
polarized by 〈 , 〉.

(2) The filtration F •Ht has the transversality property

∇F iH ⊂ F i−1H⊗ Ω∆∗

with respect to the Gauss-Manin connection ∇ of H.
The following result is of major importance. It has several proofs (see [41], [30]),

especially in the algebraic geometry context, where the variation of Hodge structures
comes from an algebraic family of projective varieties.

Theorem 3.18. The monodromy operator T is quasiunipotent of order ≤ k + 1.

This means that the eigenvalues of ρ are roots of unity, that is, Id − ρN is
nilpotent for some N , and that (Id−TN )k+1 = 0. The proof of the quasiunipotency
that is sketched by Griffiths in [27] and attributed to Borel goes as follows. Let H be
the upper-half plane, which is a uniformization of the punctured disc ∆∗. When we
pull-back our variation of Hodge structures to H, the local system being trivialized
gives a period map

P : H→ D

where D is the polarized period domain associated to the data (H1, 〈 , 〉, bp,k =
dimF pHt,C. The upper-half space H admits the Poincaré metric, and, using Theo-
rem 3.17 and the Ahlfors-Schwarz lemma, Griffiths shows that, up to a coefficient,
the period map is distance decreasing, where the distance on D is the Hodge metric
mentioned previously. The argument is now the following. Let x ∈ H be a point.
Then x, x+1, x+2, . . . are all over the same point z ∈ ∆∗ and we have by definition
of monodromy P(x + 1) = T · P(x). The distance decreasing property mentioned
above gives

dD(P(x+ 1),P(x)) ≤ dH(x, x+ 1),

and the right hand side tends to 0 when Imx tends to 0. Write P(x) = gx · P(x0),
where x0 is a fixed point in H and gx ∈ Aut (H1,R, 〈 , 〉). Then

dD(P(x+ 1),P(x)) = dD(T · P(x),P(x)) = dD(g−1
x ◦ T ◦ gx · P(x0),P(x0)).

Hence we conclude that

lim
Imx→0

dD(g−1
x ◦ T ◦ gx · P(x0),P(x0)) = 0.

In other words, the conjugates g−1
x ◦T ◦ gx are as close as one wants to the stabilizer

of P(x0) in Aut(H1,R, 〈 , 〉), that we already proved to be a compact group. It easily
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follows that T has its eigenvalues of modulus 1. To conclude, one can apply Kro-
necker’s lemma, since T acts preserving a lattice, hence its eigenvalues are algebraic
integers. It follows that the eigenvalues are roots of unity. qed

Following [63, 11.2.4], one can be even more precise in the geometric setting, us-
ing semistable reduction. Assume one has a projective morphism f : X → ∆, which
is smooth over ∆∗. Then, assuming X irreducible, one can arrange by Hironaka
resolution theorem, that the central fiber X0 = X∗ \∆∗ is a simple normal crossing
divisor. One cannot however always arrange that the schematic central fiber X0

(which equals Y set-theoretically) is a reduced normal crossing divisor. This can be
achieved only after base-change by the semi-stable reduction theorem (see [45]). An
important improvement of Theorem 3.18 is the following (see [63, 11.2.4])

Theorem 3.19. If f : X → ∆ is a projective morphism with reduced normal cross-
ing central fiber X0, the monodromy T on Hk(X1,Q) is unipotent for all k.

Another application of the Ahlfors-Schwarz lemma and curvature computations
of the horizontal distribution is the following result by Griffiths [31].

Theorem 3.20. Let (H, 〈 , 〉, F pH) be a polarized variation of Hodge structure on
the punctured disc ∆∗. Then, if the monodromy T is trivial, the period map P :
∆∗ → D extends over 0.

3.5 Degenerations and limit mixed Hodge structures

In order to understand the topology and motive of a family parameterized by a quasi-
projective basis, it is essential to understand what happens at infinity. We mentioned
that one can construct families of smooth projective varieties with projective base.
In dimension 2, one can construct many of them as follows: start with a smooth
projective threefold X and choose a Lefschetz pencil (Xt)t∈P1 of hyperplane sections
of X. This means that the base locus Z := X0 ∩ X∞ is smooth and the singular
points of fibers are ordinary double points. The Lefschetz pencil provides, after blow-
up of Z, a morphism φ : X̃ → P1 and the local monodromies around the critical
values are, thanks to the Picard-Lefschetz formula [79, 3.2.1], of order 2. Choose a
proper morphism C → P1, where C is a smooth curve, which is fully ramified with
ramification of order 2 over each critical value of φ. Then the base-changed family
X̃C → C admits a small resolution of singularities at each of its singular points,

which produces a smooth fibration
˜̃
XC → C. This construction, which provides

a simultaneous resolution of singularities of the singular fibers, is due to Atiyah
[4]. In higher even dimension, this construction provides families for which the local
monodromies are trivial (but for which there is in general no simultaneous resolution
of singularities). For families of varieties of odd dimension, the local monodromy,
even for an innocent singularity like an ordinary double point, is infinite, so we need
to go farther than Theorem 3.20 and this is exactly what is done in the crucial series
of papers [64], [15], [67].

We consider a projective morphism f : X → ∆, smooth over ∆∗, with a central
fiber X0 that we can assume after base change to be a reduced normal crossing
divisor. Denote by f ′ : X∗ → ∆∗ the restriction of f to X∗ = f−1(∆∗). As observed
in Section 3.3, the vector bundles Hk = Rkf ′∗C⊗O∆∗ on ∆∗ are holomorphic vector
bundles with a natural meromorphic structure, which means that there is a natural
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meromorphic equivalence class of extensions of these bundles to ∆. This follows
from the construction of Hk using holomorphic de Rham cohomology:

Hk = Rkf ′∗(Ω
•
X∗/∆∗). (3.63)

The regularity theorem says that the Gauss-Manin connection has regular singu-
lar points, which means that there is a canonical extension He of H to ∆, in the
same bimeromorphic equivalence class of extensions, for which the Gauss-Manin
connection extends to a connection with pole order 1 at 0.

∇e : He → He ⊗ Ω∆(log 0).

Such an extension is provided by Steenbrink [67] and Katz-Oda [43], see also Theo-
rem 3.12. Namely, Steenbrink introduces the relative logarithmic de Rham complex

Ω•X/∆(logX0) := Ω•X(logX0)/(f∗Ω∆(log 0) ∧ Ω•−1
X (logX0)). (3.64)

Theorem 3.21. [67] The sheaves Rkf∗(Ω
•
X/∆(logX0)) are locally free and satisfy

base change.

Having this result, it is clear using Theorem 3.12 over ∆∗ thatRkf∗(Ω
•
X/∆(logX0))

is the canonical extension Hke , for which the Gauss-Manin extension extends with
logarithmic pole. Steenbrink also proves that the bundles

F pRkf∗(Ω
•
X/∆(logX0)) := Rkf∗(Ω

•≥p
X/∆(logX0))

are subbundles of Rkf∗(Ω
•
X/∆(logX0)), thus extending the Hodge filtration on Hk

to a Hodge filtration on Hke .
By Theorem 3.19, the monodromy T is unipotent, so we can define its logarithm

N = log T as a polynomial in Id−T . This is thus a matrix with Q-coefficients. The
local system Hk on ∆∗ pulls-back to the upper-half plane with coordinate q = log z
to a constant local system, and we thus have the period map

P : H→ D,

where D is the polarized period domain for Hk equipped with the adequate inter-
section form and with the given Hodge numbers. We have P(q + 1) = T · P(q), so
that

ψ(q) = exp(−qN) · P(q)

depends only on z = exp(z) which provides a holomorphic map

Ψ : ∆∗ → Dˇ.

Here the spaceDˇ is called the compact dual ofD. Typically, the polarized period
domain D is defined inside a flag manifold, first by algebraic equations related to the
first Hodge-Riemann bilinear relations (2.9(i)), and second by certain inequalities
related to the second Hodge-Riemann relations (2.9(ii)). The compact dual Dˇ is
only defined by the first Hodge-Riemann relations. It is thus an algebraic variety.

Let X̃ = X×∆∗H and Hlim := Hk(X̃,Q). Schmid’s nilpotent orbit theorem says
the following.
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Theorem 3.22. [64] (i) The limit limz→0 Ψ(z) exists. The filtration so defined on
Hlim ⊗ C is the Hodge filtration of a mixed Hodge structure on Hlim.

(ii) The weight filtration of this mixed Hodge structure is the monodromy weight
filtration.

(iii) The nilpotent orbit z 7→ exp(qN)ψ0 has the property that it defines a polar-
ized Hodge structure on Hlim for Im q large enough. Furthermore, it is an excellent
approximation of the original period map.

3.6 Hodge loci

Let φ : X → B be a smooth projective morphism between smooth complex quasi-
projective varieties. For any b ∈ B, denote by Xb the fiber φ−1(b). Let α ∈
Hdg2k(Xb0) be a Hodge class. The Hodge locus of α can be first defined locally
in a simply connected open neighborhood U ⊂ B of b0, on which the local system
R2kφ∗Z with stalk H2k(Xb,Z) at b is trivial. The class α thus provides a section α̃
of R2kφ∗Z on U , transporting the class α to a class αb for any b ∈ U .

We define the Hodge locus Uα of α in U as the set of points b ∈ U , such that
the class αb ∈ H2k(Xb,Z) is a Hodge class. The following result is a consequence of
Theorem 3.11.

Theorem 3.23. The Hodge locus Uα is closed analytic, of codimension ≤ hk−1,k+1 :=
dimHk−1,k+1(Xb).

Indeed, the local analytic equations are obtained as follows : the locally constant
section α̃ provides as well a holomorphic section of the holomorphic bundle H2k on
U , and it projects to a holomorphic section σ̃ of the quotient bundle H2k/F kH2k.
The Hodge locus Uα identifies with the vanishing locus of σ̃, because a rational (or
real) cohomology class is of type (k, k) if and only if it belongs to F kH2k, as follows
from Hodge symmetry. The second statement needs Griffiths transversality which
implies that the

∑
p+q=k, p<k h

p,q = rankH2k/F kH2k local equations described above

can be reduced, at least generically, to hk,k equations.
The global structure and definition of the Hodge locus is made complicated by

the presence of monodromy, although we can of course use analytic continuation.
However in the paper [10], Cattani, Deligne and Kaplan introduced the following
convenient viewpoint on the Hodge locus, by introducing the locus of Hodge classes.
We observe that in the definition above, the Hodge class αb lies in F kH2k(Xb) ∩
H2k(Xb,Z)tf (where “tf” stands for “torsion free part”). It follows that, denoting
F kH2k the total space of the holomorphic (in fact algebraic) vector bundle F kH2k :=
R2kφ∗Ω

•≥k
X/B, we have a natural section of this bundle over Uα

Uα → F kH2k

b 7→ αb ∈ F kH2k(Xb).

The image of this lift (or rather the union over all α of such subsets) has now a
global definition for which no local trivialization is needed, namely

Definition 3.24. The locus of Hodge class for the family φ : X → B is the set of
(b, αb) ∈ F kH2k, with αb ∈ F kH2k(Xb) ∩H2k(Xb,Z)tf .
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In other words, in the first approach, we first choose an integral class and imposed
to it the condition of being of Hodge type (2k, 0) + . . .+ (k, k), while in the second
approach, we choose a class of Hodge type (2k, 0) + . . . + (k, k) and impose to it
the condition of being integral. What we gained is that the locus of Hodge classes
is globally defined and is naturally a closed (for the Euclidean topology) subset of
a complex algebraic variety. Furthermore this construction allows to globalize the
definition of the Hodge loci Uα by considering the images in B of the connected
components of the locus of Hodge classes. The following result heavily uses the
nilpotent orbit theorem 3.22. It has been recently reproved in [8] using definability
theory (but their proof also uses the Schmid asymptotic analysis) and it is probably
the most important general result on the Hodge conjecture.

Theorem 3.25. (Cattani, Deligne, Kaplan 1995) The locus of Hodge classes is a
countable union of closed algebraic subsets of F kH2k.

That this is indeed the structure predicted by the Hodge conjecture for the
Hodge locus of α was observed by Weil and follows from the existence of relative
Hilbert schemes (or Chow varieties) which are projective over B and parameterize
subschemes (or effective cycles) Zt ⊂ Xt of a given cohomology class. Using these
relative Hilbert schemes Mi, we can construct a countable union of varieties Mij

projective over B, defined by Mij = Mi ×B Mj parameterizing all cycles Zt =
Z+
t −Z

−
t in the fibers Xt. For any point t ∈ B, if the class αt on Xt is algebraic, αt

is the class of a cycle Z+
t −Z

−
t parameterized by a point in the fiber of at least one

of these varieties Mij . Hence the locus of Hodge classes is the union of the images
of Mij in F kH2k under the relative algebraic de Rham cycle class.

4 More structure and more open problems

4.1 Coefficients and comparisons

The cohomology of algebraic varieties over a field K of characteristic zero can be
computed by different means, however with different coefficients. Each of these
tools, combined with comparison theorems, provides extra structure on cohomology.
The most elementary and traditional way is to imbed the field K in C, so that the
variety X defined over K can be seen as a variety defined over C, which itself has
an analytic variant Xan, a complex manifold whose underlying topological space has
Betti cohomology groups. We denote

Hk
B(X,Z) = Hk(Xan,Z).

This notation needs however a caveat. Indeed, the homotopy type of the underlying
topological space of Xan depends on the choice of embedding K ⊂ C. This is a very
subtle phenomenon discovered by Serre [66]. For another embedding τ : K → C,
we denote by Xτ the complex variety deduced from X/K using τ , and we say that
Xτ and X are conjugate varieties. Serre exhibited examples where Xτ

an and Xan

do not have the same fundamental group. Charles constructed in [13] examples
where Xτ

an and Xan do not have isomorphic cohomology algebras. When K is a
finitely generated field over an algebraically closed field k (for example Q), it is
the function field of an irreducible variety B defined over k, and we can spread
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the variety X/K into a morphism X → B, which we can assume (even without
properness assumptions) to be a topological fibration over a Zariski open set B0

of B, with complement also defined over k. All the complex points of B0, which
correspond to fields embeddings K ↪→ C exactly when they are not contained in a
proper subvariety of B defined over k, have in this case the same topology. When k
is not algebraically closed, the above argument does not work because the variety B
which is irreducible over k may be not irreducible, and in fact not connected, over C.
The above argument shows more generally that the phenomenon of conjugate not
homeomorphic complex varieties is of an arithmetic nature and concerns varieties
defined over a number field.

The two other main theories are the algebraic de Rham cohomology (see Section
1.3), which works for smooth X, and étale cohomology.

Étale cohomology Hk
et(X,Z`(i)) is defined for a variety X over a field k as the

projective limit over n of the étale cohomology groups Hk
et(Xk, µ

⊗i
ln ), where µln is

the étale sheaf (i.e. sheaves for the étale topology, or rather site) of ln-roots of unity
on X. If the field k is algebraically closed (or contains all roots of unity), the étale
sheaf µ`n is isomorphic to the constant sheaf Z/`n. In general however, the étale
sheaves µ⊗iln depend on the twist i. There is a Galois group action of Gal(k/k) on
Hk
et(Xk, µ

⊗i
ln ) and the Galois group action depends on the twist i. This Galois group

action is essential in the arithmetic context, when X is defined over a number field.
Over C, the easiest comparison theorem between étale and Betti cohomology

theory is the Artin comparison theorem (see [58]).

Theorem 4.1. Let X be an algebraic variety over C. Then there is a canonical
isomorphism

Hk
B(Xan,Z/`n) ∼= Hk

et(X,Z/`n). (4.65)

By taking projective limits, we get as well an isomorphism

Hk
B(Xan,Z)⊗Q` = Hk

B(Xan,Q`) ∼= Hk
et(X,Q`), (4.66)

where we pass here to Q`-coefficients because the change of coefficients that is used
in the first equality is more complicated with Z`-coefficients.

We already commented on the comparison theorem between algebraic de Rham
cohomology and Betti cohomology of a smooth variety defined over C. When the
variety is defined over a subfield K ⊂ C, algebraic de Rham cohomology has a version
with coefficients in K, and the comparison gives an isomorphism after tensoring with
C:

Hk
B(Xan,Z)⊗ C = Hk

B(Xan,C) ∼= Hk(X,Ω•X/C) = Hk(X,Ω•X/K)⊗ C. (4.67)

We wish now to discuss the constraints of an arithmetic nature on cycle classes
provided (even for cycles on complex algebraic manifolds) by the existence of a
cycle class in these various theories and the comparison theorems. When X is
smooth, there is a cycle class in the three theories. The étale and Betti cycle classes
correspond under the isomorphism (4.66), while the de Rham and Betti cycle classes
compare as follows

[Z]dR = (2iπ)c[Z]Betti (4.68)

for any cycle Z of codimension c in a smooth variety X defined over a field K ⊂ C.
Let us make the following
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Definition 4.2. [18] A Hodge class α ∈ Hdg2c(Xan,Q) is absolute Hodge if for any
automorphism τ of the field C, the class

1

(2iπ)c
((2iπ)cα)τ ∈ F cH2c(Xτ

an,C) (4.69)

is also a Hodge class, that is, belongs to H2c(Xτ
an,Q).

In (4.69), we use the transportation via τ of a class β ∈ F cH2c(Xan,C) to a class
βτ ∈ F cH2c(Xan,C) using the comparison isomorphism

F cH2c(Xan,C) ∼= H2c(X,Ω•≥cX/C).

Thinking to X as defined in projective space by algebraic equations with coefficients
αi, and letting τ act on these coefficients, we get the algebraic variety Xτ in pro-
jective space, whose analytization will provide the complex manifold Xτ

an. It is not
hard to construct a τ -linear isomorphism

H2c(X,Ω•≥cX/C) ∼= H2c(Xτ ,Ω•≥cXτ/C) (4.70)

which, combined with the Betti-de Rham comparison

H2c(Xτ ,Ω•≥cXτ/C) ∼= F cH2c(Xan,C)

gives our transportation β 7→ βτ .
Let Z ∈ CHc(X) be a cycle of codimension c. Then for any field automorphism τ

of C, transporting via (4.70) the class [Z]dR ∈ H2k(X,Ω•≥cX/C) to an algebraic de Rham

class in H2k(Xτ ,Ω
•≥c
Xτ/C) provides the de Rham cohomology class of the conjugate

subvariety Zτ of Xτ . It follows that the Hodge class

[Z]Betti =
1

(2iπ)c
[Z]dR ∈ Hdg2k(Xan,Q),

is absolute Hodge, since its transportations as in (4.69) give the Betti Hodge class
of Zτ in Xτ . In other words, the Betti cycle classes are absolute Hodge classes and
thus, an intermediate step towards the Hodge conjecture is

Conjecture 4.3. Hodge classes on smooth projective complex varieties are absolute
Hodge.

Example 4.4. The Hodge classes on products X × X appearing in the standard
conjectures are absolute Hodge, because they are constructed from cycle classes,
which are absolute Hodge, by formal operations.

Coming back to the étale setting, there is a cycle class [Z]et for codimension
c cycles of smooth projective varieties defined over any field K and it takes value
in H2c

et (XK ,Q`(c)). We already mentioned that the Galois group Gal(K/K) acts
on H2c

et (XK ,Q`(c)). Let Z be a cycle of codimension c on XK . Then there is an
algebraic extension K ⊂ K ′, and a cycle Z ′ defined over K ′ which is algebraically
equivalent to Z, hence has the same cycle class. Indeed, the Hilbert scheme pa-
rameterizing subvarieties of X of codimension c and given degree is defined over
K, so its irreducible components, which parameterize deformation classes of subva-
rieties of X, are defined over algebraic extensions of K. It follows that the étale
cycle class [Z]et ∈ H2c

et (XK ,Q`(c)) is invariant under the finite index subgroup
Gal(K/K ′) ⊂ Gal(K/K). The Tate conjecture is that this is a characterization
of cycle classes.
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Conjecture 4.5. Assume K is a number field (or finitely generated over a number
field). Then the image of the cycle class map

CHc(XK)⊗Q` → H2c
et (XK ,Q`(c))

is equal to the set of Tate classes, that is, classes which are stabilized by a finite
index subgroup Gal(K/K ′) ⊂ Gal(K/K).

This conjecture is widely open, even for divisor classes.

4.2 Bloch-Ogus theory

The various cohomology theories mentioned in the previous section involve not only
different sheaves of coefficients but also different topologies. Bloch-Ogus theory [7]
directly addresses the change of topology. Let us focus on the Euclidean and Zariski
topologies. Let X be an algebraic variety (in particular, it is irreducible and we can
speak of its function field). If X is defined over C, we can consider two topologies
on X(C), namely the Euclidean (or analytic) topology and the Zariski topology.
We will denote Xan, resp. XZar, the topological space X(C) equipped with the
Euclidean topology, resp. the Zariski topology. As Zariski open sets are open for
the Euclidean topology, the identity of X(C) is a continuous map

f : Xan → XZar.

Given any abelian group A, the Bloch-Ogus spectral sequence is the Leray spectral
sequence of f , abutting to the cohomology H i

B(X,A) := H i(Xan, A). It starts with

Ep,q2 (A) = Hp(XZar,Hq(A)), (4.71)

where Hq(A) is the sheaf on XZar associated with the presheaf U 7→ Hq
B(U,A). The

Betti cohomology groups Hn
B(X,A) = Hn(Xan, A) thus have a filtration, namely

the Leray filtration for which GrpLH
p+q
B (Xan, A) = Ep,q∞ , the latter group being a

subquotient of Ep,q2 .
A fundamental result of Bloch-Ogus is the Gersten-Quillen resolution for the

sheaves Hq(A). It is constructed as follows: For any variety Y , we denote by
H i(C(Y ), A) the direct limit over all dense Zariski open sets U ⊂ Y of the groups
H i
B(U,A):

H i(C(Y ), A) := lim
→

∅6=U⊂Y,open

H i
B(U,A). (4.72)

Let now Z be a normal irreducible closed algebraic subset of X, and let Z ′ be an
irreducible reduced divisor of Z. At the generic point of Z ′, both Z ′ and Z are
smooth. There is thus a residue map ∂ : H i(C(Z), A) → H i−1(C(Z ′), A). It is
defined as the limit over all pairs of dense Zariski open sets V ⊂ Zreg, U ⊂ Z ′reg
such that U ⊂ V ∩ Z ′reg, of the residue maps

ResZ,Z′ : H i((V \ V ∩ Z ′)an, A)→ H i−1(Uan, A).

If now Z ′ ⊂ Z is a divisor, with Z not necessarily normal along Z ′, we can introduce
the normalization n : Z̃ → Z with restriction n′ : Z ′′ → Z ′, where Z ′′ = n−1(Z ′),
and then define ∂ : H i(C(Z), A)→ H i−1(C(Z ′), A) as the composite

H i(C(Z), A) ∼= H i(C(Z̃), A)
∂→ H i−1(C(Z ′′), A)

n′∗→ H i−1(C(Z ′), A). (4.73)
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In (4.73), the pushforward morphism

n′∗ : H i−1(C(Z ′′), A)→H i−1(C(Z ′), A)

is defined by restricting to pairs of Zariski open sets U ⊂ Z ′′reg, V ⊂ Z ′reg such that
n′ restricts to a proper (in fact, finite) morphism U → V . More precisely, as Z ′′ is
not necessarily irreducible, we should in the above definition write Z ′′ = ∪jZ ′′j as a
union of irreducible components, and take the sum over j of the morphisms (4.73)
defined for each Z ′′j .

For each subvariety j : Z ↪→ X, we consider the group H i(C(Z), A) as a constant
sheaf supported on Z and we get the corresponding sheaf j∗H

i(C(Z), A) on XZar.
Finally, we observe that we have a natural sheaf morphism

Hi(A)→ H i(C(X), A)

where we recall that the second object is a constant sheaf on XZar. This sheaf
morphism is simply induced by the natural maps H i(Uan, A) → H i(C(X), A) for
any Zariski open set U ⊂ X, given by (4.72). The residue maps have the following
property: Let D1, D2 ⊂ Y be two smooth divisors in a smooth variety, let Z be
a smooth reduced irreducible component of D1 ∩D2 and let α ∈ H i

B(U,A), where
U : Y \ (D1 ∪D2). Then

ResZ(ResD1(α)) = −ResZ(ResD2(α)), (4.74)

where on the left Z is seen as a divisor in D1, and on the right it is seen as a divisor
in D2. Considering the case where Y ⊂ X is the regular locus of any subvariety of
codimension k of X, D, D′ ⊂ Y are of codimension k+ 1, and Z ⊂ D∩D′ ⊂ Y is of
codimension k+ 2 in X, we conclude from (4.74) that for any i, the two sheaf maps

∂ : ⊕codimY=kH
i(C(Y ), A)→ ⊕codimD=k+1H

i−1(C(D), A)

and

∂ : ⊕codimD=k+1H
i−1(C(D), A)→ ⊕codimZ=k+2H

i−2(C(Z), A)

satisfy ∂ ◦ ∂ = 0.

Theorem 4.6. (Bloch-Ogus, [7]) Let X be smooth. The complex

0→ Hi(A)→ H i(C(X), A)→ ⊕codimD=1H
i−1(C(D), A)→ (4.75)

. . .→ ⊕codimZ=iH
0(C(Z), A)→ 0

is an acyclic resolution of Hi(A).

It is clear that this resolution is acyclic. Indeed, all these sheaves appearing in the
resolution are acyclic, being constant sheaves for the Zariski topology on algebraic
subvarieties of X. Note that the codimension i subvarieties Z of X appearing above
are all irreducible, so that H0(C(Z), A) = A and the global sections of the last sheaf
appearing in this resolution is the group Zi(X) ⊗ A of codimension i cycles with
coefficients in A.

Theorem 4.6 says first that the sheaf map Hi(A) → H i(C(X), A) is injective,
which is by no means obvious. The meaning of this assertion is that if a class
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α ∈ H i
B(U,A) vanishes on a dense Zariski open set V ⊂ U , then U can be covered

by Zariski open sets Vi such that α|Vi = 0. This is a moving lemma for the support
of cohomology.

Theorem 4.6 has the following consequence, simplifying the Bloch-Ogus spectral
sequence (4.71).

Corollary 4.7. One has Ep,q2 = Hp(XZar,Hq(A)) = 0 for p > q.

Indeed, as (4.75) is an acyclic resolution of Hq(A), the complex of global sections
of (4.75) has degree p cohomology equal to Hp(XZar,Hq(A)). As the resolution has
length q, the degree p cohomology vanishes for p > q. qed

4.2.1 Finite coefficients

The Bloch-Ogus theory can be combined with the analogous resolution for K-
theory sheaves. The original Gersten-Quillen resolution worked for Quillen K-theory
sheaves, but Kerz [46] recently established a Gersten-Quillen resolution for Milnor
K-theory sheaves which are much more concrete and easy to define. Define the
Milnor K-theory groups of a field K (or a ring R) as follows

KM
i (K) = (K∗)⊗i/I,

where I is the ideal generated by x⊗ (1− x) for x ∈ K∗, 1− x ∈ K∗. In particular,
we have KM

1 (K) = K∗. Fix an integer n prime to the characteristic of K. The
exact sequence of Galois modules

0→ µn → K
∗ → K

∗ → 1,

where µn ⊂ K
∗

is the group of n-th roots of unity, gives a map

∂ : K∗/n→ H1(K,µn) := H1(GK , µn), (4.76)

where GK = Gal (K/K), which is known by Hilbert’s Theorem 90 to be an isomor-
phism (this is equivalent to the vanishing H1(GK ,K

∗
) = 0). More generally, one

has a morphism (called the Galois symbol or norm residue map)

∂i : KM
i (K)/n→ H i(GK , µ

⊗i
n ) (4.77)

which to (x1, . . . , xi) associates ∂x1∪. . .∪∂xi. The following fundamental result gen-
eralizing the isomorphism (4.76) is the Bloch-Kato conjecture solved by Voevodsky
[74].

Theorem 4.8. The map ∂i is an isomorphism for any i and n prime to charK.

This result was known for i = 2 as the Merkur’ev-Suslin theorem [57].
We now work over C. We observe that Galois cohomology of the function field

L = C(Y ) of a smooth algebraic variety Y over C can be expressed, using the Artin
comparison theorem as

H i(GL,Z/n) = lim
→

∅6=U⊂Y,open

H i
et(U,Z/n) = lim

→
∅6=U⊂Y,open

H i
B(U,Z/n) =: H i(C(Y ),Z/n).

Combining Theorem 4.8 with Kerz resolution for the Milnor K-theory sheaves on
one hand, and the Bloch-Ogus Gersten-Quillen resolution on the other hand, one
then gets
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Corollary 4.9. Let X be smooth over C. Then the sheafified norm residue map
gives sheaf isomorphisms

∂i : KMi /n→ Hi(Z/n).

Here the sheaves KMi are associated to the presheaves U 7→ KM
i (Γ(U,OU )).

4.2.2 Integral coefficients

The Hodge conjecture is not true with integral coefficients. There are counterexam-
ples due to Atiyah and Hirzeburch [5] who exhibit nontrivial topological obstructions
for an integral cohomology class on a differentiable manifold to be the class of sub-
manifold with a complex structure on the normal bundle. There are also examples
due to Kollár [52] which are much more mysterious, as they are not of a topological
nature. Kollár proves for example that for a very general hypersurface X of degree
divisible by pn in Pn+1, all the curves C ⊂ X are of degree divisible by p. When
n ≥ 3, by the Lefschetz theorem on hyperplane sections, H2(X,Z) is isomorphic to
Z, with generator α of degree 1 (with respect to the hyperplane class c1(OX(1))).
The class dα is the class of a plane section of X, so dα is algebraic. Kollár’s theorem
shows that α itself is not algebraic in general. However, when X contains a line (a
degree 1 curve), its class is the class α, which is then algebraic. This example shows
that the variational form of the Hodge conjecture mentioned in Section 3.2 is not
true for integral Hodge classes.

The defect of the Hodge conjecture with integral coefficients provides in some
cases obstructions to stable rationality for a complex projective manifold X. Here
X is said to be rational if it is birational to Pn and stably rational if X × Pr is
rational for some r.

Proposition 4.10. If X is stably rational, integral Hodge classes of degree 4 and
degree 2n− 2 on X are classes of cycles with integral coefficients.

In [16], the case of degree 4 has been related to another sort of stable birational
invariants provided by Bloch-Ogus theory, namely unramified cohomology. With the
notation as in the previous section, one defines unramified cohomology H i

nr(X,A)
as H0(XZar,Hi(A)).

The following results are proved in [16], as a consequence of the Bloch-Kato
conjecture (Theorem 4.8) and its consequence Corollary 4.9.

Theorem 4.11. If X is a smooth algebraic variety over C, the sheaves Hi(Z) have
no torsion.

This means that a torsion integral cohomology class α on a smooth complex vari-
ety X vanishes on the open sets Ui of a Zariski open covering. A formal consequence
is

Corollary 4.12. For each i, N there is an exact sequence of sheaves on XZar

0→ Hi(Z)
N→ Hi(Z)→ Hi(Z/N)→ 0. (4.78)

The next result is a consequence of Theorem 4.11.
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Theorem 4.13. For any smooth algebraic variety over C, there is an exact sequence

0→ H3
nr(X,Z)⊗Q/Z→ H3

nr(X,Q/Z)→ Tors (H4(X,Z)/Im c)→ 0, (4.79)

where c : CH2(X)/alg→ H4(X,Z) is the cycle class map.

The key point is the identification, due to Bloch-Ogus [7], of the cycle map c to
the natural map

H2(XZar,H2(Z))→ H4(X,Z)

appearing in the Bloch-Ogus spectral sequence. The existence of this map is due
to the vanishing of Corollary 4.7, which says that there are no nonzero differentials
starting from H2(XZar,H2(Z)) = E2,2

2 which thus admits E2,2
∞ as a quotient, and

that, also by Corollary 4.7, E2,2
∞ ⊂ H4(X,Z) as the deepest term in the Leray

filtration. It follows that

Tors (H4(X,Z)/Im c) = Tors (H4(X,Z)/E2,2
∞ ).

The Bloch-Ogus spectral sequence has two other terms in degree 4 at E2, namely

E1,3
2 = H1(XZar,H3(Z)), E0,4

2 = H0(XZar,H4(Z)).

We have H0(XZar,H4(Z)) ⊂ E0,4
∞ and H1(XZar,H3(Z)) ∼= E1,3

∞ , again as a conse-
quence of the vanishing of Corollary 4.7. It follow that there is an exact sequence

0→ H1(XZar,H3(Z))→ H4(X,Z)/Im c→ H0(XZar,H4(Z))

where the last term is torsion free by Theorem 4.11. It follows that

Tors (H4(X,Z)/E2,2
∞ ) = Tors (H1(XZar,H3(Z))).

To compute the right hand side, we apply the exact sequence (4.78) in degree 3, and
this provides the exact sequence (4.79). qed

References

[1] Y. Akizuki, S. Nakano. Note on Kodaira-Spencer’s proof of Lefschetz theorems.
Proceedings of the Japan Academy. 30 (4): 266–272 (1954).
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