# Holt Mathematics 

## Course 3

# Ready to Go On? <br> Intervention and Enrichment <br> <br> with Answers 

 <br> <br> with Answers}

Copyright © by Holt, Rinehart and Winston
All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher.

Teachers using Holt Mathematics may photocopy complete pages in sufficient quantities for classroom use only and not for resale.

HOLT and the "Owl Design" are trademarks licensed to Holt, Rinehart and Winston, registered in the United States of America and/or other jurisdictions.

Printed in the United States of America

> If you have received these materials as examination copies free of charge, Holt, Rinehart and Winston retains title to the materials and they may not be resold. Resale of examination copies is strictly prohibited and is illegal.

Possession of this publication in print format does not entitle users to convert this publication, or any portion of it, into electronic format.

## CONTENTS

Using the Ready to Go On? Intervention and Enrichment in Your Class ..... vii
2-5 Skills Intervention: Dividing
Reportsix 2-6 Skills Intervention: Adding and Subtracting1-1 Skills Intervention: Variables and Expressions1
2 Section Quiz 2A ..... 30
1-2 Skills Intervention: Algebraic Expressions
1-3 Skills Intervention: Integers and Enrichment 2A: Guess the Operation ..... 32Absolute Value
1-4 Skills Intervention: Adding Integers 4 with Rational Numbers ..... 33$\begin{array}{lll}3 & \text { 2-7 Skills Intervention: Solving Equations }\end{array}$
1-4 Problem Solving Intervention: Adding Integers
2-7 Problem Solving Intervention: Solving
5 Equations with Rational Numbers ..... 34
1-5 Skills Intervention: Subtracting Integers 6 2-8 Skills Intervention: Solving Two-Step Equations ..... 35
1-5 Problem Solving Intervention: Subtracting Integers 7 2-8 Problem Solving Intervention:
Solving Two-Step Equations ..... 36
1-6 Skills Intervention: Multiplying and
1-6 Skills Intervention: Multiplying and Dividing Integers 8 Section Quiz 2B ..... 37
1-6 Problem Solving Intervention: Enrichment 2B: Combining Like Terms ..... 39
Multiplying and Dividing Integers 9 3-1 Skills Intervention: Ordered Pairs ..... 40
Section Quiz 1A 10 3-1 Problem Solving Intervention:
Enrichment 1A: Evaluating Algebraic Expressionswith More Than Two VariablesOrdered Pairs41
1-7 Skills Intervention: Solving Equationsby Adding or Subtracting13 3-3 Skills Intervention: Interpreting Graphs
and Tables ..... 43
1-7 Problem Solving Intervention: SolvingEquations by Adding or Subtracting14 Section Quiz 3A44
1-8 Skills Intervention: Solving Equations Enrichment 3A: Ordered Pairs ..... 46by Multiplying or Dividing1-8 Problem Solving Intervention: SolvingEquations by Multiplying or Dividing
3-4 Skills Intervention: Functions ..... 47 ..... 47
3-5 Skills Intervention: Equations, Tables, and Graphs ..... 4816
1-9 Skills Intervention: Introduction to Inequalities ..... 17
3-5 Problem Solving Intervention: Equations, Tables, and Graphs ..... 49
1-9 Problem Solving Intervention: Introduction to Inequalities
3-6 Skills Intervention: Arithmetic Sequences ..... 50
18
Section Quiz 1B ..... 19
Enrichment 1B: Completing Inequalities by Evaluating Algebraic Expressions ..... 21
2-1 Skills Intervention: Rational Numbers ..... 22
2-2 Skills Intervention: Comparing and Ordering Rational Numbers ..... 23
2-3 Skills Intervention: Adding and Subtracting Rational Numbers ..... 24
2-3 Problem Solving Intervention: Adding and Subtracting Rational Numbers ..... 25
2-4 Skills Intervention: Multiplying Rational Numbers
2-4 Problem Solving Intervention: Multiplying Rational Numbers ..... 27 ..... 61
3-6 Problem Solving Intervention: Arithmetic Sequences ..... 51
Section Quiz 3B ..... 52
Enrichment 3B: Graphing on a Coordinate Plane ..... 54
4-1 Skills Intervention: Exponents ..... 55
4-2 Skills Intervention: Look for Pattern in Integer Exponents ..... 56
4-3 Skills Intervention: Properties of Exponents ..... 57
4-3 Problem Solving Intervention: Properties of Exponents ..... 58
4-4 Skills Intervention: Scientific Notation ..... 59
26 4-4 Problem Solving Intervention: Scientific Notation Scientific Notation ..... 60 ..... 60
Enrichment 4A: Other Number Systems ..... 63

## CONTENTS, continued

4-5 Skills Intervention: Squares andSquare Roots64
4-5 Problem Solving Intervention:
Squares and Square Roots ..... 65
4-6 Skills Intervention: Estimating Square Roots66
4-6 Problem Solving Intervention:Estimating Square Roots67
4-7 Skills Intervention: The Real Numbers ..... 68
4-8 Skills Intervention: The Pythagorean Theorem69 6-4 Problem Solving Intervention: Finding a
4-8 Problem Solving Intervention:Number When the Percent is Known103
The Pythagorean Theorem 70 Section Quiz 6A ..... 104
Section Quiz 4B 71 Enrichment 6A: Cross-Percents ..... 106
Enrichment 4B: Proving the Pythagorean Theorem 73 6-5 Skills Intervention: Percent Increase ..... 74 and Decrease ..... 107
5-1 Skills Intervention: Ratios and Proportions6-5 Problem Solving Intervention:75 Percent Increase and Decrease108
5-1 Problem Solving Intervention:
Ratios and Proportions ..... 75
5-2 Skills Intervention: Ratios, Rates, 6-6 Skills Intervention: Applications of Percents ..... 109and Unit Rates
5-2 Problem Solving Intervention:
76 6-6 Problem Solving Intervention:
77 6-7 Skills Intervention: Simple Interest Ratios, Rates, and Unit Rates110
78 6-7 Problem Solving Intervention: Simple Interest ..... 112
5-3 Skills Intervention: Dimensional Analysis113
5-4 Skills Intervention: Solving Proportions ..... 115
80 Enrichment 6B: From Start to Finish79 Section Quiz 6B
5-4 Problem Solving Intervention: Solving Proportions ..... 116 ..... 81
7-1 Skills Intervention: Points, Lines, Planes, and Angles ..... 16
Section Quiz 5A ..... 82
Enrichment 5A: Acceleration ..... 847-2 Skills Intervention: Parallel and
5-5 Skills Intervention: Similar Figures ..... 85
5-5 Problem Solving Intervention:
Similar Figures117
7-3 Skills Intervention: Angles in Triangles ..... 118
7-4 Skills Intervention: Classifying Polygons ..... 119
86 7-5 Skills Intervention: Coordinate Geometry ..... 120
5-6 Skills Intervention: Dilations 87 Section Quiz 7A ..... 121
5-6 Problem Solving Intervention: Dilations 88 Enrichment 7A: Single Point Perspective ..... 123
5-7 Skills Intervention: Indirect Measurement 89 7-6 Skills Intervention: Congruence ..... 124
5-7 Problem Solving Intervention: 7-7 Skills Intervention: Transformations ..... 125
Indirect Measurement ..... 90
7-8 Skills Intervention: Symmetry ..... 126
5-8 Skills Intervention: Scale Drawings 7-9 Skills Intervention: Tessellations ..... 127
and Scale Models ..... 91
5-8 Problem Solving Intervention:
Scale Drawings and Scale Models ..... 92
Section Quiz 5B ..... 93
Enrichment 5B: Aspect Ratios ..... 95
6-1 Skills Intervention: Relating Decimals, Fractions, and Percents ..... 96
6-1 Problem Solving Intervention: Relating Decimals, Fractions, and Percents ..... 97
Section Quiz 7B ..... 128
Enrichment 7B: Frieze Designs ..... 130
8-1 Skills Intervention: Perimeter and Area of Rectangles and Parallelograms ..... 131
8-2 Skills Intervention: Perimeter and Area of Triangles and Trapezoids ..... 132
8-2 Problem Solving Intervention: Perimeter and Area of Triangles and Trapezoids ..... 133

## CONTENTS, continued

8-3 Skills Intervention: Circles ..... 134
Section Quiz 8A ..... 135
Enrichment 8A: Tangrams ..... 137
8-4 Skills Intervention: Drawing Three-Dimensional Figures ..... 138
8-5 Skills Intervention: Volume of Prisms and Cylinders ..... 139
8-6 Skills Intervention: Volume of Pyramids and Cones ..... 140
8-7 Skills Intervention: Surface Area of Prisms and Cylinders ..... 141
8-8 Skills Intervention: Surface Area of Pyramids and Cones ..... 142
8-9 Skills Intervention: Spheres ..... 143
8-10 Skills Intervention: Scaling Three-Dimensional Figures ..... 144
8-10 Problem Solving Intervention: Scaling Three-Dimensional Figures ..... 145
Section Quiz 8B ..... 146
Enrichment 8B: Giant Pyramids ..... 148
9-1 Skills Intervention: Samples and Surveys ..... 149
9-1 Problem Solving Intervention: Samples and Surveys ..... 150
9-2 Skills Intervention: Organizing Data ..... 151
9-2 Problem Solving Intervention: Organizing Data ..... 152
9-3 Skills Intervention: Measures of Central Tendency ..... 153
9-4 Skills Intervention: Variability ..... 154
Section Quiz 9A ..... 155
Enrichment 9A: Measures of Central Tendency ..... 157
9-5 Skills Intervention: Displaying Data ..... 158
9-5 Problem Solving Intervention: Displaying Data ..... 159
9-6 Skills Intervention: Misleading Graphs and Statistics ..... 160
9-6 Problem Solving Intervention: Misleading Graphs and Statistics ..... 161
9-7 Skills Intervention: Scatter Plots ..... 162
9-8 Skills Intervention: Choosing the Best Representation of Data ..... 163
9-8 Problem Solving Intervention: Choosing the Best Representation of Data ..... 164
Section Quiz 9B ..... 165
Enrichment 9B: Scatter Plots ..... 167
10-1 Skills Intervention: Probability ..... 168
10-1 Problem Solving Intervention: Probability ..... 169
10-2 Skills Intervention: Experimental Probability ..... 170
10-3 Skills Intervention: Use a Simulation ..... 171
10-3 Problem Solving Intervention: Use a Simulation ..... 172
Section Quiz 10A ..... 173
Enrichment 10A: Random Numbers and Circles ..... 175
10-4 Skills Intervention: Theoretical Probability ..... 176
10-5 Skills Intervention: Independent and Dependent Events ..... 177
10-5 Problem Solving Intervention: Independent and Dependent Events ..... 178
10-6 Skills Intervention: Making Decisions and Predictions ..... 179
10-6 Problem Solving Intervention: Making Decisions and Predictions ..... 180
10-7 Skills Intervention: Odds ..... 181
10-7 Problem Solving Intervention: Odds ..... 182
10-8 Skills Intervention: Counting Principles ..... 183
10-8 Problem Solving Intervention: Counting Principles ..... 184
10-9 Skills Intervention: Permutations and Combinations ..... 185
10-9 Problem Solving Intervention: Permutations and Combinations ..... 186
Section Quiz 10B ..... 187
Enrichment 10B: Combinations and Democracy ..... 189
11-1 Skills Intervention: Simplifying Algebraic Expressions ..... 190
11-2 Skills Intervention: Solving Multi-Step Equations ..... 191
11-2 Problem Solving Intervention: Solving Multi-Step Equations ..... 192
11-3 Skills Intervention: Solving Equations with Variables on Both Sides ..... 193
11-3 Problem Solving Intervention: Solving Equations with Variables on Both Sides ..... 194
Section Quiz 11A ..... 195
Enrichment 11A: Of Hippos and Chairs ..... 197
11-4 Skills Intervention: Solving Inequalities by Multiplying or Dividing ..... 198
11-4 Problem Solving Intervention: Solving Inequalities by Multiplying or Dividing ..... 199
11-5 Skills Intervention: Solving Two-Step Inequalities ..... 200

## CONTENTS, continued

11-5 Problem Solving Intervention: SolvingTwo-Step Inequalities201
11-6 Skills Intervention: Systems of Equations ..... 202
Section Quiz 11B ..... 203
Enrichment 11B: What Is It? ..... 205
12-1 Skills Intervention: Graphing Linear Equations ..... 206
12-1 Problem Solving Intervention: Graphing Linear Equations ..... 207
12-2 Skills Intervention: Slope of a Line ..... 208
12-2 Problem Solving Intervention: Slope of a Line ..... 209
12-3 Skills Intervention: Using Slopes and Intercepts ..... 210
12-3 Problem Solving Intervention: Using Slopes and Intercepts ..... 211
12-4 Skills Intervention: Point-Slope Form ..... 212
Section Quiz 12A ..... 213
Enrichment 12A: Clown Face ..... 215
12-5 Skills Intervention: Direct Variation ..... 216
12-5 Problem Solving Intervention: Direct Variation ..... 217
12-6 Skills Intervention: Graphing Inequalities ..... 218
12-6 Problem Solving Intervention: Graphing Inequalities and Two Variables ..... 219
12-7 Skills Intervention: Lines of Best Fit ..... 220
12-7 Problem Solving Intervention: Lines of Best Fit ..... 221
Section Quiz 12B ..... 222
Enrichment 12B: Line of Best Fit ..... 224
13-1 Skills Intervention: Terms of Arithmetic Sequences ..... 225
13-1 Problem Solving Intervention: Terms of Arithmetic Sequences ..... 226
13-2 Skills Intervention: Terms of Geometric Sequences ..... 227
13-2 Problem Solving Intervention: Terms of Geometric Sequences ..... 228
13-3 Skills Intervention: Other Sequences ..... 229
Section Quiz 13A ..... 230
Enrichment 13A: Hidden Sequences
Enrichment 13A: Hidden Sequences ..... 232 ..... 232
13-4 Skills Intervention: Linear Functions ..... 233
13-4 Problem Solving Intervention: Linear Functions ..... 234
13-5 Skills Intervention: Exponential Functions ..... 235
13-5 Problem Solving Intervention: Exponential Functions ..... 236
13-6 Skills Intervention: Quadratic Functions ..... 237
13-6 Problem Solving Intervention: Quadratic Functions ..... 238
13-7 Skills Intervention: Inverse Variation ..... 239
Section Quiz 13B ..... 240
Enrichment 13B: What You Are and What You Are Not ..... 242
14-1 Skills Intervention: Polynomials ..... 243
14-1 Problem Solving Intervention: Polynomials ..... 244
14-2 Skills Intervention: Simplifying Polynomials ..... 245
14-2 Problem Solving Intervention: Simplifying Polynomials ..... 246
Section Quiz 14A ..... 247
Enrichment 14A: Riddles ..... 249
14-3 Skills Intervention: Adding Polynomials ..... 250
14-3 Problem Solving Intervention: Adding Polynomials ..... 251
14-4 Skills Intervention: Subtracting Polynomials ..... 252
14-4 Problem Solving Intervention: Subtracting Polynomials ..... 253
14-5 Skills Intervention: Multiplying Polynomials by Monomials ..... 254
14-5 Problem Solving Intervention: Multiplying Polynomials by Monomials ..... 255
14-6 Skills Intervention: Multiplying Binomials ..... 256
14-6 Problem Solving Intervention: Multiplying Binomials ..... 257
Section Quiz 14B ..... 258
Enrichment 14B: Multiplying Binomials and Factoring Polynomials ..... 260
Ready to Go On? Answers ..... 261

## Using the Ready to Go On? Intervention and Enrichment in Your Class

The Ready to Go On? Intervention helps students to perform successfully by providing opportunities for you to address students' weaknesses before the students are given summative assessments. The Ready to Go On? Intervention provides skills and problem-solving intervention for students having difficulty mastering concepts taught in the lessons.

## Ready to Go On? Intervention

After teaching each section of lessons, have students complete the Ready to Go On? page in the student book. This page targets the lesson skills necessary for success in the chapter. For students requiring help, use the appropriate Skills Intervention or Problem Solving Intervention worksheets. Each worksheet provides step-by-step scaffolding prompts to help students understand the lesson concepts and skills.

A chart at the end of each section correlates the lessons with the appropriate intervention and enrichment materials. The chart appears in the Teacher Edition. A sample is shown below.


## Assessment

Use the Section Quizzes to assess the student's proficiency after you have provided Intervention, or use the Section Quizzes to assess the student's retention on the new concepts taught in the lessons.

## Enrichment

For those students who show proficiency on the Ready to Go On? Section Quizzes, provide them with the appropriate Enrichment worksheets. The worksheets extend the concepts taught in the lessons.

## Other Materials Available for Ready to Go On? Intervention and Enrichment

- Ready to Go On? Intervention and Enrichment is available in different formats:

Ready to Go On? Intervention and Enrichment [CD-ROM]-allows teachers to assign the Ready to Go On? Pre- and Post-Tests to whole classes or individual students. The Reports show which students are having difficulty on particular lesson skills. Teachers can choose to have Intervention materials automatically assigned to students requiring help.

Ready to Go On? Intervention and Enrichment Online—provides diagnostic assessment and intervention. The Ready to Go On? Pre-Test Reports show which students are having difficulty on particular lesson skills. Teachers can choose to have the Intervention materials automatically assigned to students requiring help. Once students have completed the Intervention, the system automatically assigns the appropriate Ready to Go On? Post-Tests. The Ready to Go On? PostTest Reports show which students are proficient and which students need more help.

## Individual Lesson Skills Checklist

| Chapter | Lesson | Prescription | Skill Mastered |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

$\qquad$ Date $\qquad$ Class $\qquad$

## Lessom Ready to Go On? Skills Intervention

## 1-1 Variables and Expressions

A variable represents a value that can change. A constant is a value that cannot change. The value of a variable can be substituted into an algebraic expression to evaluate the expression. A number multiplied by a variable is called a coefficient.

## Evaluating Algebraic Expressions with One Variable

 Evaluate the expression for the given value of the variable. $b+9$ for $b=5$$\qquad$ $+9$

What value do you substitute for $b$ ?
Add.

## Evaluating Algebraic Expressions with Two Variables

 Evaluate each expression for the given values of the variables.A. $a+4 b$ for $a=10$ and $b=2.5$


What values do you substitute for $a$ and $b$ ?
$\qquad$
$+$
What operation do you perform first? $\qquad$
Add.
B. $3.5 m-2 n$ for $m=8$ and $n=5$
$3.5 \_-2 \_$What values do you substitute for $m$ and $n$ ?
$\qquad$ Find each product.
Subtract.

## Geometry Application

If $m$ is the number of sides in a regular polygon, then $180(m-2)$
can be used to find the sum of the angle measures. Find the sum of the angle measures in an octagon.
180( $m-2$ ) How many sides does an octagon have?
180(_ - 2) Substitute the value for $m$.
180(__ )
What step do you complete next?
What is the product?
The sum of the angle measures in an octagon is $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 1-2 Algebraic Expressions

Word phrases can be written as algebraic expressions.

## Translating Word Phrases into Math Expressions

Write an algebraic expression for the phrase the product of 12 and a number $x$.

What operation does "the product" tell you to use?

What two numbers are being used?
Write a math expression.

## Translating Math Expressions into Word Phrases

Write a word phrase for the algebraic expression $8-6 b$.
Write $6 b$ in words. $\qquad$
Write $8-6 b$ in words. $\qquad$

## Writing and Evaluating Expressions in Word Problems

James is shopping at the fruit market. Each kiwi fruit costs 22 cents.
The total James pays for $k$ kiwi fruits is the product of $k$ and 22 cents. Write an expression to determine how much James paid. Then evaluate the expression if James buys 6 kiwi fruits.
What operation is needed? $\qquad$
Write an expression.
Evaluate the expression for $k=$ $\qquad$ . 22 $\qquad$ $=$ $\qquad$ James spends $\qquad$ cents or \$ $\qquad$ on kiwis.

## Writing a Word Problem from a Math Expression

Write a word problem that can be evaluated by the algebraic expression $64 \div p$, and evaluate the expression for $p=16$.

Write the word problem.

Evaluate the expression for $p=16.64 \div$ $\qquad$ $=$ $\qquad$ Each person will get $\qquad$ slices of pizza.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON <br> Ready to Go On? Skills Intervention

## 1-3 Integers and Absolute Value

Integers are the set of whole numbers and their opposites.
Opposites, or additive inverses, are numbers that are the same distance from 0 on opposite sides of the number line. The absolute value of a number is its distance from 0 . The absolute value of a number $x$, written as $|x|$, is always positive because distance is always positive.

| Vocabulary |
| :--- |
| integer |
| opposite |
| additive inverse |
| absolute value |

Comparing and Ordering Integers
A. Use $<,>$, or $=$ to compare integers.

3 $\square$ $-5$

Place the numbers on a number line.
$\qquad$ is to the left of $\qquad$ -

$-5$ $\qquad$ 3
B. Write the integers in order from least to greatest.
$-6,3,-9$
Compare each pair of integers.
$-6 \ldots \ldots$ 3, -6_- 9 , and 3 $\qquad$ $-9$

Write the integers from least to greatest. $\qquad$

Finding Additive Inverses
Find the additive inverse of each integer.
A. 4
B. -16
$\qquad$ is the same distance from 0 as 4 is on the number line.
___ is the same distance from 0
as -16 is on the number line.

## Evaluating Absolute-Value Expressions

Evaluate each expression.
A. $|5|+|-8|$
B. $|30-30|$

The absolute value of 5 is its
distance from 0 or $\qquad$
$30-30=$ $\qquad$
The absolute value of $\qquad$ is $\qquad$
The absolute value of -8 is its distance from 0 or $\qquad$ _.
$\qquad$ $+$ $\qquad$
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 1-4 Adding Integers

The set of whole numbers, including zero, and their opposites are called integers. Absolute value is the distance from 0 on a number line.

## Using a Number Line to Add Integers

Use a number line to find the sum.


From zero, you will move in which direction first? $\qquad$
How many units? $\qquad$ From there, you will move in which direction? $\qquad$ Why? $\qquad$

How many units? $\qquad$ You finish at $\qquad$
So, $3+(-8)=$ $\qquad$
When adding integers with the same sign, find the sum of the absolute values. The answer should have the same sign as the integers.

When adding integers with different signs, find the difference of the absolute values. The answer should have the sign of the integer with the greater absolute value.

## Using Absolute Value to Add Integers

Add.

| A. $-4+(-6)$ | What is the sum of 4 and $6 ?$ |
| :--- | :--- |
| $-4+(-6)$ | Are the signs the same or different? |
| B. $2+(-7)$ | The sign of the answer should be |
| $2+(-7)$ | What is the difference of 7 and $2 ?$ |

## Evaluating Expressions with Integers

Evaluate $t+17$ for $t=-6$.
$t+17$
+17
$-6+17=$

What do you substitute for $t$ ? $\qquad$
What is the difference of 17 and 6 ? $\qquad$
Is 17 greater than or less than 6 ? $\qquad$
So, the sign should be $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

Ready to Go On? Problem Solving Intervention

## 1-4 Adding Integers

You can use integers to keep track of changes when there are increases and decreases.

Check number 203 is missing from Rachel's records. She knows that she had $\$ 278$ in her account before check number 201. After check number 204 her balance was still $\$ 278$. What is the amount of the missing check?

| Number | Date | Description | Amount |
| :--- | :---: | :---: | :---: |
| 201 | $4 / 3$ | Oil change | $-\$ 23$ |
| 202 | $4 / 5$ | Donation | $-\$ 100$ |
| Deposit | $4 / 6$ | Deposit | $+\$ 385$ |
| 203 | $4 / 9$ | $?$ | $?$ |
| 204 | $4 / 10$ | Electric bill | $-\$ 76$ |

## Understand the Problem

1. What does balance mean in this situation?

## Make a Plan

2. By how much did Rachel's balance change from $4 / 3$ to $4 / 10$ ? $\qquad$
3. What must be the sum of the integers in the Amount column if you include check number 203?
4. How can adding the integers that are shown in the Amount column help you find the missing amount?
$\qquad$
$\qquad$
Solve
5. What is the sum of the known integers in the Amount column?
$\qquad$
6. What integer must be added to 186 to get 0 ?
7. What was the amount of check number 203?

## Check

8. Show that with check number 203 , the amounts add up to 0 .
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON <br> Ready to Go On? Skills Intervention

## 1-5 Subtracting Integers

Subtracting an integer is the same as adding its opposite.

$$
a-b=a+(-b) \quad a-(-b)=a+b
$$

## Subtracting Integers

A. $-7-9$
What is the opposite of 9 ? $\qquad$
$-7-9=-7+$ $\qquad$
$=$ $\qquad$
B. $3-(-5)$
$3-(-5)=3+$ $\qquad$
$=$ $\qquad$
What is $7+9$ ? $\qquad$
Are the signs the same or different? $\qquad$
Is the answer positive or negative? $\qquad$
What is the opposite of -5 ? $\qquad$
What is $3+5$ ? $\qquad$
The signs are the same, so the answer is $\qquad$ .

## Evaluating Expressions with Integers

Evaluate each expression for the given value of the variable.
A. $9-w$ for $w=-7$

## $9-w$ <br> 9 - <br> $\qquad$

$9+$ $\qquad$
$\qquad$
B. $-6-k$ for $k=-11$
$-6-k$
-6 - $\qquad$
$-6+$ $\qquad$

What do you substitute for $w$ ? $\qquad$
What is the opposite of -7 ? $\qquad$
What is $9+7$ ? $\qquad$
Is the answer positive or negative? $\qquad$

What do you substitute for $k$ ? $\qquad$
What is the opposite of -11 ? $\qquad$
Which is larger, 11 or 6 ? $\qquad$
Is the answer positive or negative? $\qquad$

## Sports Application

A diver dives from a 15-m platform into a pool. He descends a total of 18 m . How far does the diver go under water?

What is the platform height? $\qquad$ How far does the diver dive? $\qquad$
Subtract the dive distance from the height of the platform.
15 $\qquad$ $=$ $\qquad$ Is your answer "+" or "-"? $\qquad$
The diver goes $\qquad$ m under water.
$\qquad$ Date $\qquad$ Class $\qquad$

## ㄴum <br> Ready to Go On? Problem Solving Intervention

## 1-5 Subtracting Integers

When you subtract integers, be careful with signs.
What two integers have a sum of -35 and a difference of 13 ?

## Understand the Problem

1. If you add the two integers you are trying to find, what should you get?
2. If you subtract one of the integers from the other and take the absolute value, what should you get?

## Make a Plan

3. Why might guess and check be a good strategy to use?
4. Explain why the integers cannot both be positive and why one can't be negative and the other positive.

## Solve

5. Try two negative integers that add up to -35 and see if their difference is 13 . Try -30 and -5 .
6. Should you next try integers that are closer together or further apart than -30 and -5? Explain.
7. Keep using guess and check to solve the problem. What are the two integers?

## Check

8. Show that the two integers meet all the conditions stated in the problem.

## Solve.

9. Find two integers with a sum of -8 and a difference of 12 .
10. Make up your own integer puzzle and have a friend try it.
$\qquad$ Date $\qquad$ Class $\qquad$

## LEssom Ready to Go On? Skills Intervention

## 1-6 Multiplying and Dividing Integers

The product or quotient of two numbers with the same sign is positive.
$(+) \cdot(+)=(+)$ or $(-) \cdot(-)=(+)$
The product or quotient of two numbers with different signs is negative.
$(+) \cdot(-)=(-)$ or $(-) \cdot(+)=(-)$

## Multiplying and Dividing Integers

Multiply or divide.
A. $8(-5)$
Are the signs the same or different? $\qquad$ Multiply. Is the answer positive or negative? $\qquad$
B. $\frac{-54}{-6} \quad$ Are the signs the same or different? $\qquad$
Divide. Is the answer positive or negative? $\qquad$

## Using the Order of Operations with Integers

Simplify.
A. $-7(9-4) \quad$ What step do you perform first?
$-7(\ldots) \quad$ Are the signs the same or different?
$\qquad$ Multiply. Is the answer positive or negative? $\qquad$
B. $\frac{(19-100)}{-9}$ What step do you perform first? $\qquad$


Are the signs the same or different? $\qquad$
Divide. Is the answer positive or negative? $\qquad$

## Economics Application

Mandy makes and sells bracelets. She spends $\$ 3$ on materials for each bracelet and sells the bracelets for $\$ 5$ each. If she makes and sells 15 bracelets in a week, find her total net profit.
_(15) + $\qquad$

(15) Add the amount she spends and the amount she earns. Multiply.
Add.
Her total net profit is $\qquad$ _.
$\qquad$ Date $\qquad$ Class $\qquad$

## LEsson Ready to Go On? Problem Solving Intervention

## 1-6 Multiplying and Dividing Integers

You can multiply and divide integers to solve some problems.
Last week the daily high temperature in Chillburn was $-7^{\circ} \mathrm{F}$ for the first 3 days and $-4^{\circ} \mathrm{F}$ for next 2 days. On Saturday it was $0^{\circ} \mathrm{F}$ and on Sunday $1^{\circ} \mathrm{F}$. What was the mean daily high temperature for the week?

## Understand the Problem

1. How do you find the mean of a set of data values?
2. How many data values are in the set in the problem? $\qquad$

## Make a Plan

3. What two integers can you multiply to find the sum for the first 3 days?
4. Write an expression with multiplication for the sum of the 7 data values.

## Solve

5. Evaluate the expression you wrote in Exercise 4 to find the sum of the 7 daily high temperatures.
6. Write and evaluate a numerical expression to find the mean daily high temperature for the week.

## Check

7. Explain why your answer is reasonable.

## Solve

8. Suppose the temperature for Saturday was incorrect. If the mean daily high temperature for the week was actually $-3^{\circ} \mathrm{F}$, what was the correct high temperature on Saturday?
$\qquad$ Date $\qquad$ Class $\qquad$

SECTION

## Ready to Go On? Quiz

## $1 A$

1-1 Variables and Expressions
Evaluate each expression for the given values of the variables.

1. $9 x+2 y$ for $x=3$ and $y=1$
2. $7(a-3 b)$ for $a=23$ and $b=7$
3. $3(g-h)+3$ for $g=5$ and $h=4.5$
4. $8 m \div n$ for $m=9$ and $n=2$

## 1-2 Algebraic Expressions

Write an algebraic expression for each word phrase.
5. 5 minus the product of $x$ and 3
6. one-fourth the sum of 8 and $y$

Write a word phrase for each algebraic expression.
7. $6 a-4$
8. $8(p+9)$

## 1-3 Integers and Absolute Value

 Write the integers in order from least to greatest.9. $-35,4,-8,25$
10. 15, -9, -16, 2
11. $-27,31,0,-28$
12. $8,-6,-5,7$

Evaluate each expression.
13. $|-43|+|24|$
15. $|6+10|$ $\qquad$
14. $|-16|-|13|$
16. |63-55| $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> $1 A$

Ready to Go On? Quiz continued

## 1-4 Adding Integers

Evaluate each expression for the given value of the variable.
17. $p+7$ for $p=-12$
18. $w+(-2)$ for $w=2$
19. $t+(-25)$ for $t=-2$
20. $10+x$ for $x=-5$
21. One winter morning, the temperature was $-5^{\circ} \mathrm{F}$. By the afternoon, the temperature had increased $20^{\circ} \mathrm{F}$. What was the temperature in the afternoon?

## 1-5 Subtracting Integers

## Subtract.

22. $9-(-3)$
23. -6-1 $\qquad$
24. $-13-(-17)$ $\qquad$
25. $0-30$ $\qquad$
26. A submarine was traveling at a depth of -200 feet below sea level. It then rose to a depth of -100 feet below sea level. What is the difference of the two depths?

## 1-6 Multiplying and Dividing Integers Multiply or divide.

27. $\frac{-42}{7}$
$\qquad$
28. $8(-6)(2)$
$\qquad$
29. $\frac{-80}{-20}$
30. During eight plays in the game, Carlo's football team had 3 gains of 6 yards each and 5 losses of 4 yards each. What was his team's total yards for those eight plays?
$\qquad$ Date $\qquad$ Class $\qquad$

SECTION

## 14 Evaluating Algebraic Expressions with More Than

Two Variables
There is no limit to the number of variables in an algebraic expression. Follow the same steps you would use to solve an algebraic expression with only two variables. Substitute all the values for the variables first, then simplify the expression.

Evaluate the expression for the given values of the variables.
$4 x y z+2 x$
for $x=2, y=6$, and $z=3$
4(2)(6)(3) $+2(2)$
Substitute the values for the variables.
$144+4$
148

## Evaluate the expression for the given values of the variables

1. $w(8)+4 m e$
for $w=2, m=5$, and $e=-2$
$\qquad$
2. $\frac{1}{2}$ (time)
for $t=2, i=5, m=-3, e=-1$
$\qquad$
3. $u r+2 \mathrm{cool}$
for $u=-2, r=5, c=2$, $o=-10$, and $I=3$
4. 2 books/1book
for $b=2, o=4, k=-5$, and $s=-2$
$\qquad$
5. nine + one
for $n=-1, i=2, e=10$, and $o=1$
6. now $+u+$ try + it
for $n=2, o=5, w=-6, u=-4$, $t=-7, r=-2, y=-1$, and $i=9$
7. Make up your own algebraic expression with more than two variables. Assign each variable a value and give it to friend to solve.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON <br> Ready to Go On? Skills Intervention

## $1-1$ Solving Equations by Adding or Subtracting

An equation is a mathematical sentence that shows two expressions are equal. Addition and subtraction are inverse operations that are used to solve equations.

Vocabulary<br>equation<br>inverse operation

## Determining Whether a Number Is a Solution of an Equation

Determine which value of $n$ is a solution of the equation.
$14+n=25 ; n=5$ or 11
Substitute each value for $n$ into the equation.
$14+n=25$


Substitute the first value of $n, n=5$.
What is the sum?
Is the answer a true equation? $\qquad$
Is $n=5$ a solution of the equation? $\qquad$
$14+n=25$
$14+$ $\qquad$ $\stackrel{?}{=} 25$

Substitute the second value of $n, n=11$.
What is the sum?
Is $n=11$ a solution of the equation? $\qquad$
You can solve an equation by isolating the variable using the properties of equality.

## Solving Equations Using Addition and Subtraction Properties

 Solve.A. $y+9=5$
$\qquad$ = $\qquad$
What is the variable that you need to isolate? $\qquad$
$y=$ $\qquad$
To isolate the variable, add $\qquad$ to each side. Add. Is the value of $y$ positive or negative?
B. $-3+k=-27$
$\qquad$
What do you need to isolate? $\qquad$
What do you need to add to each side? $\qquad$
Add. Is the value of $k$ positive or negative?
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Problem Solving Intervention

## 17

 Solving Equations by Adding or SubtractingYou can solve some problems by writing an addition or subtraction equation to model the situation described in the problem.


Edgewood is 64 miles from Hadley. How far is it from Ferntown to Glenville?

## Understand the Problem

1. What distance are you asked to find?
2. What is the sum of the distances from Edgewood to Ferntown, from Ferntown to Glenville, and from Glenville to Hadley?

## Make a Plan

3. What relationship can you use to write an equation that can help you solve the problem?
$\qquad$
$\qquad$

## Solve

4. Write an equation relating the given distances and the distance $d$ that you need to find.
5. Solve your equation. How far is it from Ferntown to Glenville?

## Check

6. Do the three distances between adjacent towns add up to 64 miles?

## Solve a New Problem

7. You drive from Hadley to Ferntown, then back to Glenville. How many miles did you drive?
$\qquad$ Date $\qquad$ Class $\qquad$

## LEsson Ready to Go On? Skills Intervention

## 1-8 Solving Equations by Multiplying or Dividing

The Division Property of Equality states that you can divide both sides of an equation by the same nonzero number and the statement will still be true.

## Solving Equations Using Division

Solve. $8 n=64$

$$
\begin{array}{ll}
\frac{8 n}{-}=\frac{64}{-} & \text { What number do you divide both sides by? } \\
1 n=- & \text { What is the quotient? } \\
n=- & \text { Remember: } 1 \cdot n=
\end{array}
$$

Check: $8 n=64$
8-__ $\stackrel{?}{=} 64$
What value do you substitute into the equation to check your solution?
What is the product?
Is $n=8$ a solution of the equation? $\qquad$
The Multiplication Property of Equality states that you can multiply both sides of an equation by the same number and the statement will still be true.

## Solving Equations Using Multiplication

Solve. $\frac{m}{6}=9$
$\qquad$ - $\frac{m}{6}=9$ - $\qquad$
What is the inverse of dividing by 6 ? $\qquad$ Multiply.

Check: $\frac{m}{6}=9$
$\overline{6} \stackrel{?}{=} 9$
$\qquad$ $\stackrel{?}{=} 9$

What value do you substitute into the equation to check your solution?

What is the quotient?
Is $m=54$ a solution of the equation? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

# LESSON Ready to Go On? Problem Solving Intervention 

 $1-8$ Solving Equations by Multiplying or DividingYou can solve some problems by writing a multiplication or division equation to model the situation described in the problem.

If you divide the mystery number by 7 and then add 37 , the result is 121 . What is the mystery number?

## Understand the Problem

1. What do you know about the mystery number?

## Make a Plan

2. What operations will you use to write an equation for this problem?
3. What variable will you use to stand for the mystery number?

## Solve

4. Write an equation to show what is done to the mystery number and what the result is.
5. Solve your equation.

## Check

6. Check your solution by substituting it in your equation.

Find the mystery number by writing and using an equation.
7. If you divide the mystery number by -4 and then subtract 3 , the result is -14 .
8. If you multiply the mystery number by 8 and then add 80 , the result is 64 .
9. If you multiply the mystery number by 100 and then subtract 25 , the result is 2,075 .
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON Ready to Go On? Skills Intervention

## 1-9 Introduction to Inequalities

An inequality is a type of math sentence that uses the symbols $<,>, \leq$, or $\geq$. An algebraic inequality is an inequality containing a variable. The solution of an inequality is a solution set which can be shown on a number line.

## Completing an Inequality

## Vocabulary

inequality
algebraic inequality
solution set

Use $<$ or $>$ to complete the inequality.


What is the sum of 15 and $6 ?$
Insert the correct inequality sign.

## Solving and Graphing Inequalities

Solve and graph each inequality.


What number do you add to both sides?
What is the sum?
Should the graph have an open or closed circle? $\qquad$
Should you draw the arrow on the graph to the left or right? $\qquad$
B. $\frac{a}{4}<7$


By what number do you multiply by both sides?
What is the product?
Should the graph have an open or closed circle? $\qquad$ Should you draw the arrow on the graph to the left or right? $\qquad$
C. $b+18 \leq 32$
$b+18 \leq 32$

$b \leq$ $\qquad$


1011121314151617181920

What number do you subtract from both sides?
Subtract.
Should the graph have an open or closed circle? $\qquad$ Should you draw the arrow on the graph to the left or right? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## Insom Ready to Go On? Problem Solving Intervention

 1-9 Introduction to InequalitiesYou can solve some problems by writing an inequality to model the situation.
Paul used part of his gift money to buy an exercise machine. The sale advertisement stated that you make 4 payments of $\$ 20$ each plus a one-time shipping and handling fee of $\$ 7$. Write and solve an inequality to find the least amount of gift money that Paul could have had.

## Understand the Problem

1. What can you say about the cost of the exercise machine compared to Paul's gift money?

## Make a Plan

2. What information will you use to find the cost of the exercise machine?

## Solve

3. Write a numerical expression for the cost of the exercise machine.
4. Write an inequality to show the relationship between Paul's gift money $x$ and the cost of the exercise machine.
5. Solve your inequality. Use the solution to answer the question in the problem.

## Check

6. Check your solution by showing that a little more than $\$ 87$ is a solution to the inequality and that a little less than $\$ 87$ is not a solution.
$\qquad$ Date $\qquad$ Class $\qquad$

1-7 Solving Equations by Adding or Subtracting Solve.

1. $x+(-12)=-3$
2. $-42+p=7$ $\qquad$
3. $t-(-8)=16$ $\qquad$
4. $31+k=12$ $\qquad$ 6. $y-4=10$ $\qquad$
5. $h+(-7)=29$ $\qquad$
6. $z+21=-3$ $\qquad$
7. $-9+q=0$ $\qquad$ 10. $b-13=-14$ $\qquad$
8. $v-56=19$ $\qquad$ 12. $d-10=-20$ $\qquad$
9. Gabriela is saving money to buy a CD player that costs $\$ 42$. She already has $\$ 17$. How much more does she need to save to buy the CD player?
10. Lawrence was listening to a morning weather report on the radio, but he missed the first part of the forecast.
The announcer said that the temperature will drop
17 degrees by the afternoon to make it $-12^{\circ} \mathrm{F}$.
What was the temperature in the morning?

## 1-8 Solving Equations by Multiplying or Dividing

 Solve.15. $\frac{r}{12}=-3$
16. $\frac{8}{-20}=10$
$\qquad$
17. $32 c=-32$
$\qquad$
18. $-16 b=-48$
$\qquad$
19. $\frac{k}{-300}=-10$
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> Ready to Go On? Quiz continued <br> 1 B

1-8 Solving Equations by Multiplying or Dividing (continued)
25. Chelsea has 21 hair ribbons. This is 3 times as many hair ribbons as Gloria has. How many hair ribbons does Gloria have?
26. A baseball card shop has 212 rookie cards in a display case. The rookie cards make up $\frac{1}{3}$ of the total baseball cards on display. What is the total number of baseball cards the shop has on display?

## 1-9 Introduction to Inequalities

Solve.
27. $q+72 \geq 32$ $\qquad$
29. $30+r>-19$ $\qquad$
31. $c-9 \geq 6$ $\qquad$
33. $x+25>25$ $\qquad$
35. $z-480>1$ $\qquad$
37. $-37+v \geq 0$ $\qquad$
28. $y+8<10$ $\qquad$
30. $p-5 \leq 31$ $\qquad$
32. $-5+f \leq-6$
34. $98+b<39$ $\qquad$
36. $t-24 \leq 24$ $\qquad$
38. $k+8>3$
$\qquad$
39. To maintain her bowling average, Nola needs to bowl two games with a total score of at least 232 . She scored a 127 in the first game. What is the lowest score Nola could have in the second game and still maintain her average?
40. Vince can't charge more than $\$ 200$ on his credit card. He already charged $\$ 130$ on his credit card to get his car fixed. What is the most Vince can charge on his credit card now?
$\qquad$
$\qquad$ Class $\qquad$

## Ready to Go On? Enrichment

## 1 Completing Inequalities by Evaluating Algebraic Expressions

Algebraic expressions can be evaluated by substituting the given values of the variables. Once both sides of an inequality have been simplified, you can use the "more than" or "less than" symbols to complete the inequality.

Compare. Write < or >.
A. $x+4 \square 5-x$ for $x=1$


Substitute ___ for $x$.
Simplify both sides.
Complete the inequality.
B.


Substitute the values of the variables.
Simplify both sides.
Complete the inequality.
Compare. Write < or >. Use these values for the variables: $a=10, b=-2, c=3$, and $d=-4$.

1. $a-b \square 10$
2. $2 a-2 b \square 7 c$
3. $2 a b \square 5 b c$
4. $\frac{a}{b} \square d$
5. $a+b+c+d$ $\square$ $2 a+4 b+2 c+3 d$
6. $10 c-4 a \square \frac{(12 d)}{c}$
7. Complete the inequality $w+8 \square w+9$ for $w=-6,0$, and 2 .

What do you notice about your answers?
$\qquad$
8. Complete the inequality $2 k$ $\square$ $3 k$ for $k=-3,1$, and 3 . What do you notice about your answers?
$\qquad$
$\qquad$
9. Write an inequality with one variable and using at least one operation that will always be true. Test your inequality by substituting at least three values for the variable.
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON

## Ready to Go On? Skills Intervention

## 2-1 Rational Numbers

A rational number is any number that can be written as a fraction $\frac{n}{d}$, where $n$ and $d$ are integers and $d \neq 0$. Repeating and terminating decimals are rational numbers. When a fraction is in

Vocabulary rational number relatively prime simplest form, the numerator and denominator are relatively prime, they have no common factors other than 1.
$\frac{6}{24}=\frac{1}{4} \quad-0.55 \overline{5}=-\frac{5}{9} \quad 0.2=\frac{2}{10}$

## Simplifying Fractions

Write $\frac{8}{12}$ in simplest form.
$\frac{8}{12}$
$\frac{8}{12}$
$\frac{2}{3}$

What factor is common to 8 and $12 ?$ $\qquad$

How do you simplify the fraction? $\qquad$

How do you know your answer is in simplest form?
$\qquad$
Writing Decimals as Fractions
Write each decimal as a fraction in simplest form.
A. -0.125
-0.12
Which digit is farthest to the right? $\qquad$
What place value is the 5 in ? $\qquad$
$-0.125=\underline{=}$
Write the decimal as a fraction.
$\qquad$ is the greatest common factor of 125 and 1000.
B. $\frac{8}{3}$

Use long division to write $\frac{8}{3}$ as a decimal.
Which number is the dividend? $\qquad$ $3)=$. $-6$20
$-18$
$\frac{8}{3}=-\overline{6}$
$\qquad$ Date $\qquad$ Class $\qquad$

## Lessom Ready to Go On? Skills Intervention

## 2-2 Comparing and Ordering Rational Numbers

To compare and order rational numbers, you need to find a common denominator. When comparing fractions, you often find the least common denominator (LCD), which is the least common multiple of the denominators. When you order fractions

Vocabulary
least common denominator and decimals, first write them with the same denominator, then compare.

## Comparing Fractions by Finding a Least Common Denominator

 Compare. Write <, >, or =.A. Method 1: Multiply to find a common denominator.
$\frac{7}{9} \square \frac{4}{13}$
$9 \cdot \_=117$
Multiply 9 and $\qquad$ to find a common
$\frac{7}{9} \cdot \quad=\overline{\overline{117}}$ and $\frac{4}{13} \cdot \quad=\overline{\overline{117}}$
Multiply each fraction by a fraction equal to $\qquad$

91 $\square$ 36 , so $\frac{91}{117} \square \frac{36}{117}$ Compare the fractions.
$\frac{7}{9} \square \frac{4}{13}$
B. Method 2: Find the least common denominator.
$\frac{4}{5} \square \frac{2}{3}$
List multiples of $\qquad$ .

5: 5, 10, $\qquad$ 3: 3, 6, $\qquad$
$\qquad$ ... What multiple do the denominators have in common? $\qquad$
$\frac{4}{5} \cdot \ldots=\overline{\overline{15}}$ and $\frac{2}{3} \cdot \ldots \overline{\overline{15}} \quad$ Multiply each fraction by a fraction equal to $\qquad$
$\frac{12}{15} \square \frac{10}{15}$ so $\frac{4}{5} \square \frac{2}{3} \quad$ Compare the fractions.

## Compare Using Decimals

Compare. Write $<,>$, or $=$.
$2 \frac{3}{4} \square 2 \frac{4}{5}$
$2 \frac{3}{4}=\square$ and $2 \frac{4}{5}=$ $\qquad$ Write the fractions as decimals.
2.75 $\square$ 2.8, so $2 \frac{3}{4}$ $\square$ $2 \frac{4}{5}$

Compare the decimals.
$\qquad$ Date $\qquad$ Class $\qquad$

## 2-3 Adding and Subtracting Rational Numbers

Align the decimal points to add or subtract decimals.
not aligned
0.123
$+12.04$
aligned
0.123

| +12.040 |
| :--- |

## Application

Allen Johnson completed the 110-meter hurdles in 13.03 seconds. It took him 0.125 seconds to react to the starter pistol. How long did it take him to run the actual $110-\mathrm{m}$ hurdles?
To solve this problem, should you add or subtract? $\qquad$
13.03- How many zeros do you need to add so the decimals align? $\qquad$
$-0.125$
Subtract.
It took Allen Johnson $\qquad$ to run the actual hurdles.

## Adding and Subtracting Fractions with Like Denominators

To add or subtract fractions with like denominators, add the numerators and keep the denominator the same.
Subtract $\left(\frac{-3}{5}\right)-\frac{4}{5}$.
$\left(\frac{-3}{5}\right)-\frac{4}{5}=\frac{-3}{5}-\frac{4}{5} \quad \begin{aligned} & \text { Rewrite the problem to show that you are adding the } \\ & \text { opposite. }\end{aligned}$
$=\frac{-3+(-4)}{-}$ What value goes in the denominator?
$=$
Add. Is your answer positive or negative? Why? $\qquad$

## Evaluating Expressions with Rational Numbers

Evaluate the expression for the given value of the variable.
$8.4+x$ for $x=-21.7$
$8.4+(-$ $\qquad$ )

What do you substitute for $x$ ? $\qquad$
Add. How do you find the sum? $\qquad$
Is your answer positive or negative? $\qquad$
How do you know? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

You can use rational numbers to keep track of increases and decreases.

The graph shows the daily change in the price of Seedy CD stock for one week. If the stock began the week at a price of \$6.30, what was its price at the end of the week?

## Understand the Problem



1. What does the bar for Monday tell you?
2. What do you need to find out?

## Make a Plan

3. If you added the 5 daily changes, what would that sum tell you?
4. If you knew the sum of the changes, how could you find the price at the end of the week?

## Solve

5. What were the daily changes for the week?
6. Look for shortcuts to add the changes. What is $-0.60+0.60 ?$ What is $0.40+(-0.40) ?$ $\qquad$
7. How much did the stock price change for the week? $\qquad$
8. What was the price at the end of the week? How did you get your answer?

## Check

9. Show that your answer is reasonable.
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 2-4 Multiplying Rational Numbers

When multiplying fractions, you multiply the numerators and the denominators.

The product of two numbers with the same sign is positive.
$(+) \cdot(+)=(+)$ or $(-) \cdot(-)=(+)$
The product of two numbers with different signs is negative.

$$
(+) \cdot(-)=(-) \text { or }(-) \cdot(+)=(-)
$$

## Multiplying a Fraction and an Integer

Multiply. Write the answer as a mixed number in simplest form.
$-5\left(2 \frac{3}{4}\right)$
$=-5(\square)$
To change a mixed number to an improper fraction,
$\qquad$ the denominator by the whole number and
$\qquad$ the numerator.
$=-\quad$ To multiply a fraction and integer, ___ the numerator by the integer and $\qquad$ the denominator by $\qquad$ .
$=\quad$ Write the answer as a mixed number. Is the answer positive or negative? $\qquad$ How do you know? $\qquad$
$\qquad$

## Multiplying Fractions

Multiply. Write the answer in simplest form.

$$
\frac{-3}{5}\left(\frac{-2}{3}\right)
$$

$=\frac{-3 \cdot}{-3}$
To multiply fractions, $\qquad$ the numerators and
$\qquad$ the denominators.
$=\frac{(-)(-2)}{(5)(\square)}$
$=\quad$ Simplify. Is the answer positive or negative? $\qquad$
How do you know? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$
Lual
Ready to Go On? Problem Solving Intervention
2-4 Multiplying Rational Numbers
You can estimate to compare products of rational numbers. You can use fractions or decimals, whichever makes the comparison simpler.
Which product is greater, $-11.89 \cdot 0.247$ or $\frac{21}{99} \cdot\left(-15 \frac{3}{16}\right)$ ?

## Understand the Problem

1. Are you asked to find the exact products? What does the problem ask?
2. Without calculating, what can you tell about the sign of both products?

## Make a Plan

3. What simple fraction is close to 0.247 ? $\qquad$
4. What simple decimal is close to $\frac{21}{99}$ ? $\qquad$

## Solve

5. Round -11.89 and $-15 \frac{3}{16}$ to the nearest integers.
6. Write the two products with rounded factors. Which is greater?
7. Without calculating either $-11.89 \cdot 0.247$ or $\frac{21}{99} \cdot\left(-15 \frac{3}{16}\right)$, tell whether each product is greater than -3 or less than -3 .
8. Which product is greater, $-11.89 \cdot 0.247$ or $\frac{21}{99} \cdot\left(-15 \frac{3}{16}\right)$ ?

## Check

9. On the number line, show the approximate location of the two products.

$\qquad$ Date $\qquad$ Class $\qquad$

LESSON

## Ready to Go On? Skills Intervention

## 2-5 Dividing Rational Numbers

To divide a number by a fraction multiply by the reciprocal. The reciprocal of a number is found by exchanging the numerator and denominator.

Vocabulary
reciprocal

| Number | Reciprocal | Product |
| :--- | :--- | :--- |
| $\frac{7}{8}$ | $\frac{8}{7}$ | $\frac{7}{8} \cdot \frac{8}{7}=1$ |
| -2 | $\frac{-1}{2}$ | $-2 \cdot \frac{-1}{2}=1$ |

## Dividing Fractions

Divide. Write each answer in simplest form.
A. $\frac{7}{18} \div \frac{1}{2}$

$$
\begin{aligned}
\frac{7}{18} \div \frac{1}{2} & =\frac{7}{18} \cdot= & & \text { What is the reciprocal of } \frac{1}{2} ? \\
& =\frac{7 \cdot 2}{18 \cdot 1} & & \text { How many times does } 2 \text { go into } 18 ? \\
& = & & \text { Simplify. }
\end{aligned}
$$

B. $3 \frac{1}{6} \div \frac{2}{3}$
$3 \frac{1}{6} \div \frac{2}{3}=\ldots \div \frac{2}{3} \quad$ To write $3 \frac{1}{6}$ as an improper fraction, multiply $\qquad$ by
$\qquad$ and add the numerator 1.
$\frac{19}{6} \div \frac{2}{3}=\frac{19}{6} \cdot \quad$ Multiply by the reciprocal of $\frac{2}{3}$.
$=\frac{19 \cdot 3}{6 \cdot 2} \quad$ What is the common factor?
$=\frac{19}{4}=\quad$ Multiply and write as a mixed number.
$\qquad$ Date $\qquad$ Class $\qquad$

## LEsson Ready to Go On? Skills Intervention

## 2:6 Adding and Subtracting with Unlike Denominators

You can add or subtract fractions with unlike denominators by first finding a common denominator. There are two methods you can use to find the common denominator.

Method 1: Multiply one denominator by the other denominator.
Method 2: Find the least common denominator (LCD) by finding the least common multiple of the denominators.

## Adding Fractions with Unlike Denominators

Add. $\frac{3}{5}+\frac{1}{7}$
To add two fractions, you need to have a $\qquad$ .

Multiply $5 \times 7$ to get a common denominator of $\qquad$ .
$=\frac{3}{5}(\quad$ Multiply by fractions equal to $\qquad$ .
$=$ $\qquad$ $+$ $\qquad$ Rewrite with common denominators.
$=$ $\qquad$ Add the $\qquad$ and keep the
$\qquad$ the same.

## Evaluating Expressions with Rational Numbers

Evaluate $n-\frac{3}{5}$ for $n=-\frac{1}{7}$.
$n-\frac{3}{5}$
$=-\frac{3}{5}$
Substitute $\qquad$ for $n$.
$=\left(-\frac{1}{7}\right)\left(=-\frac{3}{5}(=) \quad\right.$ Multiply by fractions equal to $\qquad$ .
$=-\frac{5}{-}-\frac{21}{-} \quad$ Rewrite with a common denominator.
$=\overline{\overline{35}} \quad$ Subtract. Is the answer positive or negative?
$\qquad$ Date $\qquad$ Class $\qquad$

SECTION Ready to Go On? Quiz

## $2 A$

## 2-1 Rational Numbers

Simplify.

1. $\frac{10}{24}$
2. $\frac{21}{48}$
3. $\frac{22}{77}$
4. $\frac{13}{117}$

## 2-2 Comparing and Ordering Rational Numbers

 Write the numbers in order from least to greatest.5. $4 \frac{3}{4}, 0.3,3 \frac{2}{5}, 0.27$
6. $-1.3, \frac{2}{3}, 0.5,-\frac{3}{4}$
7. $3.53,2 \frac{11}{12}, \frac{33}{8}, 2.7$
8. $2.6, \frac{27}{100}, 0.028$

Write the numbers in order from greatest to least.
9. $0.275,2 \frac{5}{8}, 0.15,3 \frac{6}{7}$
10. $2 \frac{18}{25}, 2.45, \frac{7}{15}, 3.2$
11. $\frac{25}{6}, 3.75,3 \frac{8}{9}, 3.3$
12. $\frac{3}{4}, \frac{4}{5}, \frac{7}{8}, 0.79$

## 2-3 Adding and Subtracting Rational Numbers

Evaluate each expression for the given value of the variable.
13. $75.8+x$ for $x=32.35$
14. $-\frac{4}{7}+y$ for $y=4 \frac{2}{7}$
15. $2 \frac{4}{5}+z$ for $z=-1 \frac{3}{5}$
$\qquad$
$\qquad$ Class $\qquad$

## SECTION <br> Ready to Go On? Quiz continued <br> $2 A$

## 2-4 Multiplying Rational Numbers

Multiply. Write each answer in simplest form.
16. $2\left(3 \frac{3}{4}\right)$
17. $-3 \frac{2}{5}\left(1 \frac{7}{10}\right)$
18. $-4 \frac{3}{5}\left(-3 \frac{1}{7}\right)$
19. $\frac{8}{35}\left(-5 \frac{4}{9}\right)$
20. Devon is making 8 loaves of bread. Each loaf of bread needs $3 \frac{3}{4}$ cups of flour. How much flour does Devon need to make the bread?

## 2-5 Dividing Rational Numbers

Divide. Write each answer in simplest form.
21. $\frac{4}{5} \div \frac{7}{10}$
22. $3.2 \div 0.8$
23. $-\frac{5}{11} \div 3$
24. $45.62 \div 0.02$

## 2-6 Adding and Subtracting with Unlike Denominators

 Add or subtract.25. $\frac{3}{5}+\frac{1}{4}$
26. $2 \frac{3}{7}-1 \frac{1}{2}$
27. $\frac{22}{9}+3 \frac{5}{6}$
28. $7 \frac{2}{5}-4 \frac{1}{3}$
29. $1 \frac{7}{10}+2 \frac{1}{8}$
30. $3 \frac{8}{9}-\frac{2}{3}$
31. $3 \frac{5}{8}+\frac{1}{2}$
32. $2 \frac{7}{8}-\frac{2}{3}$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

 Ready to Go On? Enrichment
## 2A Guess the Operation

If you are given a problem without the operation symbol, you can use number sense to help you figure out what operation was used.
A. $\frac{1}{2} \square \frac{1}{3}=1 \frac{1}{2}$

The answer is $\qquad$ than the first number.

The second number is $\qquad$ —.

So, it is not subtraction because the answer would have to be $\qquad$ than the first number.
What is $1 \frac{1}{2}$ as an improper fraction? $\qquad$
What is the reciprocal of the second number? $\qquad$
What operation uses reciprocals? $\qquad$
$\frac{1}{2} \square \frac{1}{3}=1 \frac{1}{2}$
B. 0.08 $\square$ $0.007=0.00056$

The answer is $\qquad$ than the first number.

The second number is $\qquad$ .

So, it is not addition because the sum of two positives is $\qquad$ than either number.

How many decimal places are in the answer? $\qquad$
How many in the first number? $\qquad$ The second? $\qquad$
What operation has you add the number of decimal places in each number?
$\qquad$
0.08 $\square$ $0.007=0.00056$

## Use number sense to figure out what operation is being

 performed in each problem.1. 0.25 $\square$ $0.5=-0.25$
2. 1.5 $0.3=5$
3. $0.7 \square 0.9=1.6$
4. $2.7 \square 1.11=2.997$
5. $\frac{2}{5} \square \frac{8}{5}=2$
6. $\frac{2}{3} \square \frac{1}{4}=\frac{1}{6}$
7. $\frac{3}{8} \square \frac{1}{2}=\frac{3}{4}$
8. $\frac{9}{10} \square \frac{2}{5}=\frac{1}{2}$
9. -0.6 $\square$ $0.95=0.35$
10. $\frac{4}{7} \square \frac{3}{4}=\frac{16}{21}$
11. $\frac{7}{8} \square \frac{1}{4}=\frac{5}{8}$
12. $0.06 \square$ $0.03=0.0018$
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 2-7 Solving Equations with Rational Numbers

You solve an equation by isolating the variable. Use inverse operations to isolate the variable.

## Solving Equations with Decimals

Solve.
A. $w-6.5=31$

$$
w=
$$ ) To isolate $x$, multiply both sides of the equation by

What number should you add to both sides?
What does $w$ equal?
B. $\frac{x}{4.6}=8$

$\qquad$ .

$$
x=
$$

What does $x$ equal?

What can you do to check your answer? $\qquad$
C. $-3.7 x=22.2$

$$
\begin{aligned}
\frac{-3.7}{-\_} x=\frac{22.2}{-} & \begin{array}{l}
\text { What number should you divide both sides of the } \\
\text { equation by? }
\end{array} \\
x= & \text { What does } x \text { equal? Does the solution check? }
\end{aligned}
$$

## Solving Equations with Fractions

Solve.
$x+\frac{3}{5}=\frac{6}{7}$
$x+\frac{3}{5}-\quad=\frac{6}{7}-$

$$
x=\frac{30}{-\frac{21}{} \quad \text { What is the common denominator? }}
$$

$x=\frac{6}{7}-\frac{3}{5} \quad$ To subtract fractions you must first find
What number should you subtract from both sides of the equation?
$\qquad$

$$
x=\quad \text { What does } x \text { equal? Does the solution check? }
$$

$\qquad$ Date $\qquad$ Class $\qquad$

LESSON Ready to Go On? Problem Solving Intervention 2-7 Solving Equations with Rational Numbers
You can use equations with rational numbers to model situations and solve problems.
Kim worked from 3:30 P.m. to 7:15 P.м. on Friday and from 8:45 A.м. to 1:30 P.M. on Saturday. She earned $\$ 55.25$ for the two days. How much did she earn per hour?

## Understand the Problem

1. Do you have enough information to figure out how many hours Kim worked?
2. What are you trying to find out?

## Make a Plan

3. Let $t$ stand for the total number of hours Kim worked on Friday and Saturday. If you know that she earned $\$ 55.25$, what equation can you use to find $r$, her hourly rate?

## Solve

4. How many hours did Kim work on Friday? On Saturday? On both days together?
5. Find Kim's hourly rate $r$ by solving the equation you wrote for Exercise 3. (Hint: Use the value of $t$ you found in Exercise 4.)

## Check

6. Use the value you found for $r$ and see if Kim earned $\$ 55.25$.

## Solve

7. How much more would Kim have had to earn for the two days in order for her hourly rate to be $\$ 7.50$ per hour? Explain.
$\qquad$ Date $\qquad$ Class $\qquad$
waw
Ready to Go On? Skills Intervention

## 2-8 Solving Two-Step Equations

You solve an equation by isolating the variable. To isolate the variable, you may have to use more than one operation.

## Solving Two-Step Equations

Solve.
A. $\frac{a}{3}+7=15$
$\frac{a}{3}+7=15$

$\qquad$ - $\frac{a}{3}=8$ - $\qquad$ $a=$ $\qquad$
Check:

$$
\begin{array}{r}
\frac{a}{3}+7=15 \\
\overline{3}+7 \stackrel{?}{=} 15 \\
+7 \stackrel{?}{=} 15
\end{array}
$$

What value do you substitute into the equation for $a$ ? $\qquad$
Does the solution check? $\qquad$
B. $-13.6=-3.5 f-4.5$
$-13.6=-3.5 f-4.5$
How do you undo -4.5 ? $\qquad$

$$
\begin{aligned}
-9.1 & =-3.5 f \\
-9.1 & =\frac{-3.5 f}{-} \\
- & =f
\end{aligned}
$$

C. $\quad \frac{w+7}{8}=11$

$$
\begin{aligned}
\frac{w+7}{8} & =11 \\
w+7 & =
\end{aligned}
$$

What is the opposite of adding 7 ?

Simplify.
To undo division, multiply both sides of the equation by $\qquad$ Solve for $a$.
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$
Lesson Ready to Go On? Problem Solving Intervention 2.8 Solving Two-Step Equations

You can write equations to help solve some problems involving plane figures.
A farmer plans to build a square chicken pen from the 114 yards of fencing she has. She needs to save 20 feet of the fencing for another project. What is the longest that each side of the chicken pen can be?

## Understand the Problem

1. Complete to show what you know and what you need to find.

There are $\qquad$ yards of fencing in all. The farmer can use all but $\qquad$ feet.

The shape of the pen is $\qquad$ . Find $\qquad$

## Make a Plan

2. Why does it make sense to convert 114 yards to feet?
3. Complete the equation to show how the quantities in the problem are related. Use $s$ for the longest length in feet of each side of the pen.
$\qquad$ $+$ $\qquad$ $=3$ - $\qquad$

## Solve

4. Solve the equation you wrote in Exercise 3.
5. What is the longest that each side of the chicken pen can be?

## Check

6. Use your answer to calculate how much fencing is used for the pen and the other project. See if you get 114 yards.
$\qquad$
$\qquad$

## Solve

7. Suppose the pen were hexagonal, the farmer had 150 yd of fencing, and she needed 40 ft for another project. What would the answer be?
$\qquad$ Date $\qquad$ Class $\qquad$

## 2-7 Solving Equations with Rational Numbers

 Solve.1. $x-3.5=1.2$
2. $y+\frac{4}{5}=\frac{2}{8}$
3. $2 t=-5.7$

## 4. $\frac{9}{24} h=-\frac{36}{8}$ <br> $\qquad$

7. $\frac{s}{5.3}=2.6$
8. $4.5+p=-6.4$
9. $k-\frac{3}{8}=\frac{13}{22}$
$\qquad$
10. $-9=\frac{m}{2.7}$
$\qquad$
11. $\frac{12}{15}=w-\frac{3}{5}$
12. Joe just moved into his new apartment. It takes him $5 \frac{1}{4}$ hours to paint one bedroom. His apartment has 4 bedrooms. How many hours will Joe need to paint all the bedrooms of his new apartment?
13. Katie and Ann are going to make cornbread for the bake sale at school. The recipe calls for $2 \frac{3}{4}$ cups of cornmeal for 1 loaf of cornbread. How many cups of cornmeal will they need to make 12 loaves of cornbread?
$\qquad$
14. A bag of dried cherries had 387.9 total calories. There are 4.5 servings per bag. How many calories are in each serving of dried cherries?
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## section Ready to Go On? Quiz continued

23

## 2-8 Solving Two-Step Equations

Solve.
13. $4 w-7.5=2.7$
14. $\frac{x-2}{4}=-3.75$
15. $5 t+5.7=9.2$
16. $\frac{s+8}{25}=-\frac{12}{5}$
17. $-11=\frac{m}{0.3}-18.3$
18. $8 h-\frac{6}{7}=\frac{2}{3}$
19. $65.3-\frac{k}{12.7}=25.3$
20. $6.9+8 p=-12.3$
21. $\frac{11}{15}=\frac{8}{35} y+\frac{3}{7}$
22. Judy sells stamps for her grandmother. She earns $\$ 27$ per week, plus $\$ 2.25$ for each stamp that she sells. Last week, Judy earned $\$ 60.75$. How many stamps did Judy sell that week?
$\qquad$
23. The local ice skating rink charges $\$ 8$ for admission. Skate rental costs $\$ 5.50$ per pair. On Friday night, one half of the people who paid for admission also rented skates. The rink made $\$ 1,333$ that night. How many people went to the skating rink Friday night?
$\qquad$
24. A digital cable company charges $\$ 56.65$ per month for cable and high-speed Internet service. After the first 100 minutes of Internet use, the cable company charges $\$ 0.11$ for each additional minute. A family's cable bill was $\$ 128.37$ last month. How many total minutes did the family use high-speed Internet?
$\qquad$ Date $\qquad$ Class $\qquad$

## 2: Combining Like Terms

When an equation has multiple terms that include a variable, you must get all the variables on one side of the equation and all the numbers on the other side.

$$
\begin{array}{rlrl}
8 x+5 & =6 x-7 & & \text { First, get all the numbers on one side of the equation. } \\
\frac{-5}{8 x} & =6 x \frac{-5}{-12} & & \text { Subtract } 5 \text { from both sides. } \\
\frac{-6 x}{2 x} & =-6 x & & \text { Now subtract } 6 x \text { from both sides. } \\
x & =-6 & & \text { Divide both sides by } 2 . \\
8(-6)+5 & =6(-6)-7 & & \text { Check your answer by substituting the } x \text {-value into the } \\
-48+5 & =-36-7 & & \text { original equation. } \\
-43 & =-43 & & \text { Simplify. } \\
\text { The equation is true when } x=-6 .
\end{array}
$$

## Simplify each equation so that all the variables are on one side.

$\qquad$

1. $7 x+4=2 x-8$
2. $2 a+6=3 a+2$ $\qquad$
3. $6 f-3=12 f+4$ $\qquad$ 4. $4 t+9=6 t+7$ $\qquad$
4. $3 m-2=4 m+1$ $\qquad$ 6. $8 r-4=12 r+6$ $\qquad$
5. $5 j+2=4 j-7$ $\qquad$ 8. $6 w+3=2 w-8$ $\qquad$
Solve.
6. $3 y+5=4 y+8$ $\qquad$ 10. $4 b-1=-3 b+6$ $\qquad$
7. $5 g-4=3 g+9$ $\qquad$ 12. $2 s+3=8 s-2$ $\qquad$
8. $2 m-2=4 m+1$ $\qquad$ 14. $3 s+6=s-2$ $\qquad$
9. $3 k-10=7 k+3$
10. $10 z+5=7 z-9$
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 3-1 Ordered Pairs

An ordered pair is one way to express a solution to an equation.

## Deciding Whether an Ordered Pair Is a Solution of an Equation

Determine whether this ordered pair is a solution of $y=6 x-4$.

| $y=6 x-4$ | What number do you substitute for $x ?$ |
| :---: | :--- |
| $\stackrel{?}{=} 6\left(\_\right)-4$ | What number do you substitute for $y ?$ |
| $\stackrel{?}{=}$ | Evaluate the right side of the equation. |

Is $(3,14)$ a solution of the equation? Why?

## Creating a Table of Ordered Pair Solutions

Use the given values to make a table of solutions. $y=2 x+2$ for $x=0,1,2,3$
Substitute each value of $x$ into the equation.
Fill in the missing values to complete the table.

| $\boldsymbol{x}$ | $\mathbf{2 x}+\mathbf{2}$ | $\boldsymbol{y}$ | $(\boldsymbol{x}, \boldsymbol{y})$ |
| :--- | :--- | :--- | :--- |
| 0 | $2(0)+2$ | 2 | $(0,2)$ |
| 1 | $2\left(\_\right)+2$ | - | $\left(1, \_\right)$ |
| 2 | $2\left(\_\right)+2$ | - | $\left(\_, \_\right)$ |
| 3 | $2\left(\_\right)+2$ | - | $\left(\_, \_\right)$ |

## Recreation Application

When renting a bike at City Park, Joe must first pay a deposit and then pay a charge per hour. If the per hour fee is $\$ 5$ and the deposit is $\$ 15$, then the cost $c$ of renting the bike for $h$ hours can be determined using the equation: $c=5 h+15$.
A. How much will it cost Joe to rent the bike for 4 hours?

$$
\begin{array}{ll}
c=5 h+15 & \\
c=5\left(\_\right)+15 & \text { What number do you substitute for } h ? \\
c=\square & \text { Evaluate } .
\end{array}
$$

It will cost Joe \$ $\qquad$ to rent the bike for 4 hours.

The solution can be written as (4, $\qquad$ _).
B. How much will it cost Joe to rent the bike for 6 hours?

$$
\begin{array}{ll}
c=5 h+15 & \\
c=5\left(\_\right)+15 & \text { What number do you substitute for } h ? \\
c= & \text { Evaluate } .
\end{array}
$$

It will cost Joe \$ $\qquad$ to rent the bike for 6 hours.

The solution can be written as $\qquad$ _.
$\qquad$ Date $\qquad$ Class $\qquad$

When you use an equation to solve a problem, you can often use ordered pairs to show the solution.

The first story of a new skyscraper will be 25 feet high. Each of the other stories will be 12 feet high. The tower at the top will be 25 feet tall. If the building can be no taller than 800 feet, how many stories can there be?

## Understand the Problem

1. What are the requirements for the skyscraper?

## Make a Plan

2. If you write an equation relating all the given information, what variables will you use and what will they stand for?
$\qquad$
$\qquad$
3. What value will you set $h$ equal to? $\qquad$

## Solve

4. Using $n$ to stand for the number of stories above the first, write an expression for the height of all the stories above the first.
5. Write an equation relating $h$, the maximum height in feet of the skyscraper, to the height of the three sections you listed in question 1.
$\qquad$
6. Solve the equation if $h=800$, the maximum height allowed.

## Check

7. If $n$ is 62.5 , how many stories can there be? Explain.
8. Solve the equation for $n=62$ and show the solution as an ordered pair.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 3-2 Graphing on a Coordinate Plane

A coordinate plane contains a horizontal number line called the $\boldsymbol{x}$-axis and a vertical number line called the $\boldsymbol{y}$-axis. The axes divide the coordinate plane into four quadrants. The point where the two axes intersect is the origin. The $\boldsymbol{x}$-coordinate indicates movement left or right, and the $\boldsymbol{y}$-coordinate indicates movement up or down.

Finding the Coordinates and Quadrants of Points on a Plane Give the coordinates of each point.
A. point $E$

Is the point left or right of the origin? $\qquad$
How many spaces? $\qquad$
Is the $x$-coordinate positive or negative? $\qquad$
Is the point above or below the origin? $\qquad$
How many spaces? $\qquad$
Is the $y$-coordinate positive or negative? $\qquad$

## Vocabulary

coordinate plane
$x$-axis
$y$-axis
quadrant
origin
$x$-coordinate
$y$-coordinate


What are the coordinates of point $E$ ? $\qquad$ What quadrant is it in? $\qquad$
B. point $F \quad$ The point is $\qquad$ of the origin $\qquad$ spaces. The sign is $\qquad$ .
The point is how many units below the origin? $\qquad$
What are the coordinates of the point? $\qquad$ What quadrant is it in? $\qquad$

## Graphing an Equation

Complete the table of ordered pairs.
Graph the equation on a coordinate plane.
$y=2 x+5$

| $\boldsymbol{x}$ | $\mathbf{2 x}+\mathbf{5}$ | $\boldsymbol{y}$ | $(\boldsymbol{x}, \boldsymbol{y})$ |
| :---: | :---: | :---: | :---: |
| 0 | $2(0)+5$ | - | $\left(0, \_\right)$ |
| 1 | $2(1)+5$ | - | $\left(1, \_\right)$ |
| 2 | $2\left(\_\right)+5$ | - | $\left(\_, \_\right)$ |
| 3 | $2\left(\_\right)+5$ | - | $\left(\_, \_\right)$ |



Plot the points on the coordinate plane.
The first point is $(0,5)$. Look at the 0 first. What does this tell you?

Now look at the 5. Does this tell you to move up or down? $\qquad$
Plot the remaining points and connect them with a straight line.
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON
Ready to Go On? Skills Intervention
3-3 Interpreting Graphs and Tables

## Matching Situations to Tables

Marcy, Susie, and Brian all work at a package delivery company. The table below shows how many packages each person handled in four days at work. Tell which person corresponds to each situation described below.

| Day | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :--- | :---: | :---: | :---: | :---: |
| Person 1 | 100 | 140 | 0 | 100 |
| Person 2 | 150 | 130 | 150 | 0 |
| Person 3 | 80 | 85 | 100 | 90 |

A. Brian had a busier second day than his first day and called in sick on the third day.
Who had an increase from Day 1 to Day 2?
How many packages would be handled by someone on a day they called in sick? $\qquad$
According to the table, which person probably called in sick on Day 3?

Brian corresponds to which person on the table? $\qquad$
B. Marcy is new on the job. She handles fewer packages than her coworkers on Days 1 and 2.
Which person shows the lowest number of packages on Days
1 and 2?
Marcy corresponds to which person on the table?
C. Susie is the busiest employee on the first day. She had a slight decrease in package numbers for the second day and took a vacation day on Day 4.
Which person is the busiest on Day 1?
How many packages would be handled by someone on vacation?

Which person handled this number on Day 4?

Susie corresponds to which person on the table? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

## Ready to Go On? Quiz

## $3 A$

## 3-1 Ordered Pairs

Determine whether each ordered pair is a solution of $\boldsymbol{y}=3 x-4$.

1. $(12,32)$ $\qquad$ 2. $(-4,8)$ $\qquad$
2. (1.4, 0.2) $\qquad$ 4. $(1.5,1.5)$ $\qquad$

Acme Auto Rental charges $\mathbf{\$ 2 2 . 5 0}$ per day plus $\mathbf{\$ 0 . 1 5}$ per mile to rent a compact car. The equation for the total cost $c$ of the car, including mileage and gas, is $c=22.5+0.15 m$, where $m$ is the number of miles driven. Calculate the total cost to rent the car for each of the number of miles driven.
5. $m=80$ miles $\qquad$ 6. $m=300$ miles $\qquad$
7. $m=240$ miles $\qquad$ 8. $m=148$ miles $\qquad$
9. The Total Design T-Shirt Company has a one-time charge of $\$ 32.00$ for a design and an additional $\$ 3.00$ to print the design on each t-shirt. Let $t$ represent the number of $t$-shirts and $c$ represent the total cost. Write an equation that can be used to find the total cost to pick a design and have it printed on $t \mathrm{t}$-shirts.

## 3-2 Graphing on a Coordinate Plane

Give the coordinates and quadrant number of each point.

10. $A$ $\qquad$
11. $B$ $\qquad$
12. $C$ $\qquad$
13. $D$ $\qquad$
14. $E$ $\qquad$
15. $F$ $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> $3 A$

Ready to Go On? Quiz continued

## 3-3 Interpreting Graphs and Tables <br> Tell which graph corresponds to each situation below.


16. Rosita walks from her home to town and then rides with a friend in her car to the other side of town.
17. Reynaldo rides his bicycle from his home to the beginning of a path where he leaves his bike and takes a walking trip along a river.
18. Simon rides his bicycle to the market where he stops to buy some snacks. He then continues on his bicycle at the same pace to his grandmother's house.
19. Create a graph that would most likely represent the speed of an airplane as it taxis down the runway, takes off and reaches its cruising altitude.
$\qquad$ Date $\qquad$ Class $\qquad$

## 3A Coordinate Plane Puzzles

Fill in the letter that names each point for the given coordinates to complete the riddle.


What did the zero say to the eight?
$\overline{(4,-2)} \overline{(0,1)} \overline{(-3,2)} \overline{(1,1)} \overline{(3,0)} \overline{(1,1)} \overline{(2,4)} \overline{(1,-5)}$
Plot the points below. Then, connect them in the order they are listed and name the shape you form.


1. $(0,4)$
2. $(1,2)$
3. $(3,2)$
4. $(1,0)$
5. $(3,-3)$
6. $(0,-1)$
7. $(-3,-3)$
8. $(-1,0)$
9. $(-3,2)$
10. $(-1,2)$
$\qquad$ Date $\qquad$ Class $\qquad$

## Lesson Ready to Go On? Skills Intervention

## 3-4 Functions

A function is a rule that relates two quantities so that only one input or $x$-value gives only one output or $y$-value. The domain of a function is all its possible input values and its range is all its possible output values.

Finding Different Representations of a Function
Make a table and graph of $y=x^{2}-1$.

## Vocabulary

function input output domain range

Complete the table and then plot each point.

| $\boldsymbol{x}$ | $\boldsymbol{x}^{2}-1$ | $\boldsymbol{y}$ | $(\boldsymbol{x}, \boldsymbol{y})$ |
| :---: | :---: | :---: | :---: |
| -2 | $(-2)^{2}-1$ | 3 | $(-2,3)$ |
| -1 | $(-)^{2}-1$ |  | $(\quad)$ |
| 0 | $(-)^{2}-1$ |  | $(\quad)$ |
| 1 | $(\ldots)^{2}-1$ |  | $(\quad)$ |
| 2 | $(-)^{2}-1$ |  | $(\quad)$ |



Connect the points with a smooth curve.
Does each input value have one output value? $\qquad$

## Identifying Functions

Determine if each relationship represents a function.
A.

| $x$ | $y$ |
| :---: | :---: |
| 2 | 4 |
| 6 | 8 |
| 10 | 12 |
| 14 | 16 |

Does each input $(x)$ have only one output ( $y$ )? $\qquad$
Does the relationship represent a function? $\qquad$
B.


What are the output values for an input ( $x$ ) value of 1 ? $\qquad$
Does the relationship represent a function? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## Lessom Ready to Go On? Skills Intervention

## 3-5 Equations, Graphs, and Tables

You can use an equation to represent data in different ways.

## Using Equations to Generate Different Representations of Data

The distance a car has traveled is represented by the equation $d=45 h$, where $d$ is the distance traveled and $h$ is the number of hours. Make a table and a graph of the equation.

| $h$ | $45 h$ | $d$ |
| :---: | :---: | :---: |
| 0 | $45(0)$ | 0 |
| 1 | $45\left(\_\right)$ | - |
| 2 | $45(\ldots)$ | - |
| 3 | $45(\ldots)$ |  |

To find $d$, multiply $h$ by 45 .
What is the distance after 0 hours? $\qquad$
After 1 hour? $\qquad$ After 3 hours? $\qquad$
Complete the table.

Use the information in the table to make a graph.
$h$ represents the $\qquad$ and $d$ represents the $\qquad$
What is the $x$-coordinate of the first point? $\qquad$
What is the $y$-coordinate of the first point? $\qquad$
Make the graph.


## Using Tables to Generate Different Representations of Data

Use the table to make a graph and write an equation.

| $x$ | 2 | 4 | 6 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 1 | 2 | 3 | 4 |

Use the data in the graph to plot points on the graph.


What are the coordinates of the first point? $\qquad$
Complete the graph.
Look for a pattern in the values.
2 $\qquad$ $=1$

4 $\qquad$ $=2$

6 $\qquad$ $=3$
$8 \ldots=4$
Each value of $x$ is $\qquad$ to get each value of $y$.

Write the equation. $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## 3-5 Equations, Tables, and Graphs

You can make a table and a graph to answer a word problem.
The amount of calories burned by swimming laps is represented by the equation $c=12 s$ where $c$ is the number of calories and $s$ is the number of laps. Use a table and a graph to find out how many calories Matilda burns when she swims 8 laps.

## Understand the Problem

1. What quantity are you asked to find? $\qquad$
2. What do we know? $\qquad$

## Make a Plan

3. How can a table help?
4. Complete the table.
5. What is the first ordered pair from the table?
$\qquad$ The second? $\qquad$
6. How can you make a graph from the data in the table?
7. How will the graph help you answer the question?

| $s$ | $12 s$ | $c$ |
| :---: | :---: | :---: |
| 1 | $12(1)$ | 12 |
| 2 | $12(2)$ |  |
| 3 | $12(\ldots)$ | - |
| 4 | $12(\ldots)$ |  |

## Solve

8. Make a graph for the data in the table.
9. Extend the graph. What is the value of $c$ when $s=8$ ? $\qquad$
10. Answer the question.

## Check

11. How can you show that your answer is reasonable?

$\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 3-6 Arithmetic Sequences

A sequence is an ordered list of items called terms. When the difference between each term is the same, it is called an arithmetic sequence. The difference between the terms in an arithmetic sequence is called the common difference.

Finding the Common Difference in an Arithmetic Sequence
Find the common difference in each arithmetic sequence.
A. $16,13,10,7,4 \ldots$

Vocabulary
sequence
term
arithmetic sequence
common difference

What is the difference between the first and second terms? $\qquad$
Is this the same difference between the second and third terms? $\qquad$
Between the third and fourth terms? $\qquad$ Common difference: $\qquad$
B. $0.9,1.4,1.9,2.4,2.9 .$.

What is the difference between the first and second terms? $\qquad$
Is this the same difference between the second and third terms? $\qquad$
Between the third and fourth terms? $\qquad$ Common difference: $\qquad$
Finding Missing Terms in an Arithmetic Sequence
Find the next three terms in the arithmetic sequence $-6,-2,2,6, \ldots$
$-6+$ $\qquad$ $=-2 \quad-2+$ $\qquad$ $=2 \quad 2+$ $\qquad$ $=6$

Common difference: $\qquad$
Add $\qquad$ to the last term to get the next term. $\qquad$
Add $\qquad$ to that. $\qquad$ Add $\qquad$ to that. $\qquad$
The next three terms are $\qquad$ .

## Identifying Functions in Arithmetic Sequences

Find a function that describes the arithmetic sequence. Use $y$ to identify each term in the sequence and $n$ to identify the term's position.

3, 6, 9, 12

| $n$ | $n$ | $y$ |
| :---: | :--- | :---: |
| 1 | 1 | 3 |
| 2 | 2 | 6 |
| 3 | 3 | 9 |
| 4 | 4 | 12 |

Make a table.
What can you add to 1 to get the first term? $\qquad$
Does this work to get the second term? $\qquad$
What is another way to get the first term from 1 ? $\qquad$
Complete the table to see if this works for the other terms.
The rule is to $\qquad$
The function for this arithmetic sequence is $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON
Ready to Go On? Problem Solving Intervention
3-6 Arithmetic Sequences
Finding a sequence can help you solve a word problem.
Tickets to a high school football game cost $\$ 4$ each. The equipment manager and the concession stand manager each get $\$ 75$ each game to replenish their supplies. Find a function to describe the sequence. Then find the profit if 127 tickets are sold.

## Understand the Problem

1. What information do you have?
2. What are you trying to find?

## Make a Plan

3. How much money does the school make from the sale of one ticket? Two tickets?
4. Write the first ten terms in the sequence for ticket sales.
5. What is the common difference?
6. How can you find a function for the profit?

## Solve

7. What is the function that describes the profit from ticket sales?
8. What is $f(127)$ ?

## Check

9. Substitute 358 for $p$ in your function. Is the function true?
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Quiz

3B

## 3-4 Functions

Make a table and a graph for the function.

1. $y=3 x-2$

| $x$ | $3 x-2$ | $y$ |
| :---: | :---: | :---: |
| -2 | $3(\ldots)-2$ | - |
| -1 | $3(\ldots)-2$ | - |
| 0 | $3(\ldots)-2$ | - |
| 1 | $3(\ldots)-2$ | - |
| 2 | $3(\ldots)-2$ | - |



Determine if each relationship represents a function.
2.

3.

| $x$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 8 | 12 | 15 | 16 |

5. $y=x^{2}+2$
$\qquad$ 6. $y=3 x+2$ $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## 3-5 Equations, Tables, and Graphs

Use each table to make a graph and write an equation.
7.

| $x$ | 1 | 3 | 5 | 7 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 3 | 11 | 19 | 27 |

8. 

| $x$ | 2 | 5 | 8 | 11 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 7 | 13 | 19 | 25 |

Use each graph to write an equation.
9.

10.


## 3-6 Arithmetic Sequences

Find the missing term in each sequence.
11. $4,7,10,13$, $\qquad$ 19
12. $-3,-9,-15, \ldots,-27,-33$
13. 4.7, 5.6, 6.5, 7.4, $\qquad$ 9.2
14. 2, 4, 8 , $\qquad$ 32, 64
15. The swim team is selling tickets for $\$ 5$ for admission to a swim party. The cost to rent the pool is $\$ 130$. Find a function that describes the profit. What is the profit if they sell 200 tickets?
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> Ready to Go On? Enrichment

## 3B Using a Graph to Solve Word Problems

You can use a graph to help you answer word problems. Look at the graph below.


Does it show a positive or negative relationship? $\qquad$
For every unit to the right, how much does the line rise?

This amount of vertical change divided by the amount of horizontal change is called slope. It tells you what the variable in the equation of the line is multiplied by.
When $x=0$, what does $y$ equal? $\qquad$
This means that there is no number added to the variable in the equation of the line.
What is the equation of this line? $\qquad$
Jaqueline made this graph of her rate for doing yard work. Answer the questions below based on her graph.

1. Jaqueline has an initial charge to cover supplies for each client. What is it? $\qquad$
2. What is Jaqueline's hourly rate? $\qquad$
3. Write an equation to describe Jaqueline's rate. Use $h$ for the number of hours and $t$ for the total amount of
 money she makes.
4. Explain why the number multiplied by the variable is not 1 , even though the graph looks like the line rises at a 1 to 1 ratio.
5. Jaqueline spent 2 hours weeding Mrs. Olsen's garden. Use the equation from Exercise 3 to find her pay.
6. Jaqueline spent 3 hours working in her mother's yard. As a familiy discount, she took off the supply charge. How much did Jaqueline earn from her mother?
7. Saturday, Jaqueline spent 2 hours mowing Mr. Harrison's lawn. Then she spent 1 hour pruning Mrs. Peterson's shrubs. Finally, she spent $1 \frac{1}{2}$ hours raking leaves at Miss Ryder's house. How much did Jaqueline make on Saturday? (Each get a supply charge.)
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

Ready to Go On? Skills Intervention

## $4-1$ Exponents

A power is a term such as $3^{2}$ where the base is 3 and the exponent is 2 . The exponent tells how many times the base is to be used as a factor. A number written with an exponent and a base is written in exponential form.

## Writing Exponents

Vocabulary
power base exponent exponential form

Write using exponents.
A. 5-5•5•5
B. $(-6) \cdot(-6) \cdot(-6)$

How many times is 5 a factor? $\qquad$
$5 \cdot 5 \cdot 5 \cdot 5=$ $\qquad$
The base is $\qquad$ The exponent is $\qquad$ .
C. $x \cdot x \cdot x \cdot x \cdot x \cdot x$

How many times is $x$ a factor? $\qquad$
$x \cdot x \cdot x \cdot x \cdot x \cdot x=$ $\qquad$
The base is $\qquad$ The exponent is $\qquad$ -

How many times is -6 a factor? $\qquad$ $(-6) \cdot(-6) \cdot(-6)=$ $\qquad$ The base is $\qquad$ . The exponent is $\qquad$ .
D. 4

How many times is 4 a factor? $\qquad$
4 = $\qquad$
The base is $\qquad$ The exponent is $\qquad$ .

## Evaluating Powers

Evaluate.
A. $3^{5}$
B. $(-4)^{3}$

How many times is 3 multiplied? $\qquad$ How many times is -4 multiplied? $\qquad$ $3^{5}=$ $\qquad$
Find the product of five 3's. $\qquad$ $(-4)^{3}=$ $\qquad$ $3^{5}=$ $\qquad$
Find the product of three -4 's. $\qquad$

$$
(-4)^{3}=
$$

## Using the Order of Operations

Evaluate.
$x\left(y+z^{x}\right)$ for $x=2, y=10$, and $z=5$

$2(10+\ldots)$
2 $\qquad$ _)

What operation do you do first? $\qquad$
What do you do next? $\qquad$
Multiply.
$\qquad$ Date $\qquad$ Class $\qquad$

## 4-2 Look for a Pattern in Integer Exponents

A number raised to a negative exponent equals one divided by that number raised to the opposite of the exponent.

## Using a Pattern to Evaluate Negative Exponents

Evaluate the powers of 10.
$10^{-2}$
$10^{-2}=\frac{1}{1} \quad$ Write the reciprocal and extend the pattern.
$10^{-2}=\frac{1}{}=\quad$ Simplify and write the fraction as a decimal.
Is the exponent positive or negative?
$\qquad$

Evaluating Negative Exponents
Evaluate.

What is the exponent? $\qquad$
When an exponent is negative, write the reciprocal.
What is the sign of the exponent, now? $\qquad$
Write the product of $-\frac{1}{-3}$.

Simplify.

## Using the Order of Operations

Evaluate.
$4-5^{0}+(7-5)^{-4}$
$4-5^{0}+(\ldots)^{-4} \quad$ What operation do you do first?

What operation do you do next?
$4-\ldots+$
$\qquad$

4 $\qquad$ $+$ $\qquad$
$\qquad$

A number with 0 as an exponent equals $\qquad$ .

To change the sign of an exponent, write the $\qquad$ .

Simplify.
$\qquad$ from left to right.
$\qquad$ Date $\qquad$ Class $\qquad$

## Lesson Ready to Go On? Skills Intervention

## 4-3 Properties of Exponents

Factors of a power can be grouped in different ways giving the same product. When the powers have the same base, keep these rules in mind:
Multiply: add exponents Divide: subtract exponents

## Multiplying Powers with the Same Base

Multiply. Write the product as one power.
A. $6^{4} \cdot 6^{7}$
Are the bases the same? $\qquad$ 6- What do you do to the exponents when multiplying? $\qquad$
Does the base change? $\qquad$ What is the exponent? $\qquad$
B. $t \cdot t^{8}$
Are the bases the same? $\qquad$
$t-\cdot t^{8} \quad$ What is the exponent of the first $t$ ? $\qquad$
$t$ _ To multiply powers with the same base, what do you do with the exponents? $\qquad$
$\qquad$ What is the exponent? $\qquad$

## Dividing Powers with the Same Base

Divide. Write the quotient as one power.
$\frac{10^{12}}{10^{9}}$
Are the bases the same? $\qquad$
10 What do you do to the exponents when dividing?
What is the base? __ What is the exponent?
$\qquad$
$\qquad$
When a power is raised to a power, multiply the exponents.
Raising a Power to a Power
Simplify.
A. $\left(6^{3}\right)^{4}$

6- What do you do to the exponents? $\qquad$
6-
What power is 6 raised to? $\qquad$
B. $\left(9^{5}\right)^{-2}$

What do you do to the exponents? $\qquad$
9
What power is 9 raised to? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

You can use exponents to work with very large numbers-even in your head.
It takes sunlight about 8 minutes to reach Earth. Light travels at about 186,000 miles per second. Earth is about 93 million miles from the sun. Is 8 minutes a reasonable figure?

## Understand the Problem

1. How are distance, speed, and time related?
2. How can you figure out how far something travels if you know its speed and how long it travels?

## Make a Plan

3. Why might you use powers of ten to help solve this problem?

## Solve

4. The speed of light in $\mathrm{mi} / \mathrm{sec}$ is closest to what power of ten?
5. How many seconds are there in 8 minutes?
6. Since you rounded down the speed of light, you can round up the time. What is your answer to Exercise 5 rounded up to the next highest power of ten?
7. Use properties of exponents to multiply the speed of light (Exercise 4) by the time in seconds it takes to reach Earth (Exercise 6). What did you just calculate?

## Check

8. Make sure you answer the question being asked.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON <br> Ready to Go On? Skills Intervention

## 4-4 Scientific Notation

A shorthand way of writing large numbers as the product of a number and a power of ten is known as scientific notation.

Vocabulary
scientific notation

## Translating Scientific Notation to Standard Notation

Write each number in standard notation.
A. $3.72 \times 10^{6}$
$3.72 \times 10^{6} \quad$ Is the exponent on 10 positive or negative? $\qquad$
$3.72 \times$ $\qquad$ $10^{6}$ has $\qquad$ zeroes.

Move the decimal point $\qquad$ places to the $\qquad$ .
B. $2.46 \times 10^{-3}$
$2.46 \times 10^{-3}$
$2.46 \times$ $\qquad$
$2.46 \div$ $\qquad$
$\qquad$
C. $-8.9 \times 10^{5}$
$-8.9 \times 10^{5}$
$-8.9 \times$ $\qquad$

Is the exponent on 10 positive or negative?

What does $10^{-3}$ equal?
Divide by the reciprocal.
Move the decimal point $\qquad$ places to the $\qquad$ .

Is the exponent on 10 positive or negative? $\qquad$ $10^{5}$ has $\qquad$ zeroes.

Move the decimal point $\qquad$ places to the $\qquad$ .

## Translating Standard Notation to Scientific Notation

Write 0.0000378 in scientific notation.
0.0000378
3.78

How many places do you move the decimal point to get a number between 1 and 10 ? $\qquad$
Set up scientific notation.
The decimal point needs to be moved which direction to change 3.78 to 0.0000378 ? $\qquad$
Will the exponent be positive or negative? $\qquad$
$3.78 \times 10-\quad$ What is the exponent?
Check: Does $3.78 \times 10^{-5}=3.78 \times 0.00001=0.0000378 ?$ $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## 4-4 Scientific Notation

You can use scientific notation to make it easier to compare and order very small numbers.

Put the speeds in the table in order from fastest to slowest.

| Event | Speed |
| :--- | :---: |
| Fingernail growth | $3 \times 10^{-4} \mathrm{~cm} / \mathrm{h}$ |
| Growth of some lichen | $10^{-10} \mathrm{~km} / \mathrm{h}$ |
| Garden snail crawling | $8 \times 10^{-3} \mathrm{~km} / \mathrm{h}$ |

## Understand the Problem

1. Can you conclude that fingernail growth is faster than lichen growth just because $3 \times 10^{-4}>10^{-10}$ ? Explain.

## Make a Plan

2. Fill in the blanks with a power of ten to convert centimeters to kilometers and then centimeters per hour to kilometers per hour.
$1 \mathrm{~cm}=\ldots \mathrm{m} \longrightarrow 1 \mathrm{~m}=\ldots \mathrm{km}$
So, $1 \mathrm{~cm}=$ $\qquad$ $\bullet$ $\qquad$ or $\qquad$ km
$3 \times 10^{-4} \mathrm{~cm} / \mathrm{h}=3 \times 10^{-4} \mathrm{~cm} / \mathrm{h} \cdot$ $\qquad$ $\mathrm{km} / \mathrm{cm}=3 \times$ $\qquad$ km/h

## Solve

3. Which is faster, $3 \cdot 10^{-9} \mathrm{~km} / \mathrm{h}$ or $1 \cdot 10^{-10} \mathrm{~km} / \mathrm{h}$ ? $\qquad$
4. Which is faster, $8 \cdot 10^{-3} \mathrm{~km} / \mathrm{h}$ or $1 \cdot 10^{-10} \mathrm{~km} / \mathrm{h}$ ?
5. List the 3 speeds in order from fastest to slowest.

## Check

6. Why does it make sense that when you convert from centimeters per hour to kilometers per hour, you get a smaller number?
$\qquad$
$\qquad$
$\qquad$ Date $\qquad$
$\qquad$

## SECTION

Ready to Go On? Quiz
4 A

## 4-1 Exponents

## Evaluate.

1. $7^{3}$
2. $(-5)^{4}$
3. $9^{1}$
4. $(-2)^{7}$
5. Write $6 \times 6 \times 6 \times 6 \times 6$ in exponential form. $\qquad$
6. Evaluate $r^{4}-5 s$ for $r=4$ and $s=-2$. $\qquad$

## 4-2 Look for a Pattern in Integer Exponents

 Evaluate.7. $10^{-7}$ $\qquad$
8. $(-4)^{-3}$ $\qquad$
9. $(-3)^{-4}$ $\qquad$ 10. $8^{-1}$ $\qquad$
10. $6+10^{-2}(-3)$ $\qquad$ 12. $4^{-1}+6(4)^{-2}$ $\qquad$
11. $-5^{-2}+9^{0}$ $\qquad$
12. $8^{-2}-\left(2^{0}-2^{-3}\right)$ $\qquad$

## 4-3 Properties of Exponents

Evaluate each expression. Write your answer as a power.
15. $7^{6} \cdot 7^{5}$
16. $\frac{12^{3}}{12^{3}}$
17. $\frac{t^{8}}{t^{4}}$
18. $6^{5} \cdot 6^{-2}$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Simplify.
19. $\left(9^{4}\right)^{-3}$
20. $\left(5^{6}\right)^{0}$
21. $\left(-w^{6}\right)^{2}$
22. $\left(7^{-3}\right)^{5}$
23. The hard drive on a computer holds $2^{35}$ bytes of data, which is $2^{5}$ gigabytes. How many bytes is one gigabyte? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$
24. 0.000027
26. 0.6412
$\qquad$
Write each number in standard notation.
28. $7.29 \times 10^{5}$
$\qquad$
30. $4.5 \times 10^{-4}$
32. In 2004, California had the greatest population of all the states. Its population was approximately $3.589 \times 10^{7}$ people. The population of the United States was about 8.18 times as large as California's population. What was the approximate population of the United States in 2004? Write your answer in scientific notation.
$\qquad$
33. The diameter of a rhinovirus, which causes the common cold, is 0.00000002 meter. The diameter of a human hair is 10,000 times as large as a rhinovirus. What is the diameter of a human hair? Write your answer in scientific notation.
$\qquad$
34. An adult human may have as many as $30,000,000,000,000$ red blood cells. Write $30,000,000,000,000$ in scientific notation.
$\qquad$ Date $\qquad$ Class $\qquad$

## 4A Other Number Systems

The number system used by computers is the base 2 , or binary number system.

- Place values are powers of 2.
- Digits are 0, 1.
$1011_{\text {binary }}=1$ eight +0 fours +1 two +1 one

| $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{0}$ |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 |
| $\times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$ |  |  |  |
| $8+0$+ <br> 11 |  |  |  |

$$
1011_{\text {binary }}=11_{\text {decimal }}
$$

To change a number in base 10 to a number in base 2, divide by powers of 2 .
Change $28_{\text {decimal }}$ to base 2 .
28 is between $2^{4}$, or 16 , and $2^{5}$, or 32 .
Divide by $2^{4}, 2^{3}, 2^{2}, 2^{1}$, and $2^{0}$.
$28 \div 2^{4}=28 \div 16=1$ R12
$12 \div 2^{3}=12 \div 8=1$ R 4
$4 \div 2^{2}=4 \div 4=1 \mathrm{RO}$
$0 \div 2^{1}=0 \div 2=0$ RO
$0 \div 2^{0}=0 \div 1=0$ RO
$28_{\text {decimal }}=11100_{\text {binary }}$
Change each number in base 2 to base 10.

1. $11_{\text {binary }}$
2. $1010_{\text {binary }}$
3. $111010_{\text {binary }}$

## Change each number in base 10 to base 2.

4. $13_{\text {decimal }}$
5. $222_{\text {decimal }}$
6. $1024_{\text {decimal }}$
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON <br> Ready to Go On? Skills Intervention

## 4-5 Squares and Square Roots

Every positive number has two square roots, one positive and one negative. The positive square root is called the principal square root. A perfect square is a number that has integers as its square roots.

## Vocabulary

principal square root
perfect square

## Perfect squares Not perfect squares

25; 36; 196
12; 37; 186
The opposite of squaring a number is taking the square root.
$10^{2}=100 \quad \sqrt{100}=10 \quad(-10)^{2}=100 \quad-\sqrt{100}=-10$

## Finding the Positive and Negative Square Roots of a Number

Find the two square roots of 49.
49

$$
\begin{array}{rlrl}
\sqrt{49} & = & \text { What two numbers multiplied together equal } 49 ? \\
-\sqrt{49} & =\_\quad \text { What other two numbers multiplied together equal } 49 ?
\end{array}
$$

$\qquad$

## Geometry Application

The area of a square rug is 1,024 square feet. What is the length of its side?

$$
\begin{aligned}
A & =s^{2} & & \text { Use the formula for area of a square to find the side length, } s . \\
1,024 & =s^{2} & & \begin{array}{l}
\text { Taking the square root of a number is the __of } \\
\text { squaring a number. }
\end{array} \\
\sqrt{1,024} & =\sqrt{s^{2}} & & \text { Find the square root of both sides. } \\
& =s & & \text { What is the length of the square rug? What are the units? }
\end{aligned}
$$

Can the length of a side of the rug be negative? Explain.

## Evaluating Expressions

Evaluate the expression $3 \sqrt{36}+5$ using the principal square root.
$3 \sqrt{36}+5$
$3\left(\_\right.$What is the square root of 36 ?
$\ldots+5 \quad$ Following the order of operations what should you do first?

Add.
$\qquad$ Date $\qquad$ Class $\qquad$
LEssom Ready to Go On? Problem Solving Intervention

## 4-5 Squares and Square Roots

You can solve some problems by finding square roots.
Each side of a small square gym is 17 meters long. A square classroom has half the area of the gym. How long is each side of the classroom? Round to the nearest whole number of meters.

## Understand the Problem

1. If the area of the gym were 100 square meters, what would be the area of the classroom?
2. If the area of the classroom were 50 square meters, about what would be the length of each side? (Hint: 50 is close to 49.)

## Make a Plan

3. How can you find the area of the gym?
4. How can you find the area of the classroom if you know the area of the gym?
5. How can you find the length of a side of the classroom if you know its area?

## Solve

6. What is the area of the gym? Of the classroom?
7. Round the area of the classroom to the nearest perfect square.
8. How long is each side of the classroom rounded to the nearest whole number? $\qquad$

## Check

9. Starting with your answer, show that the area of the gym is twice the area of the classroom.
$\qquad$
$\qquad$

## Solve

10. The area of a square cafeteria is twice the area of the gym. About how long is each side of the cafeteria?
$\qquad$ Date $\qquad$ Class $\qquad$
Lisson

## Ready to Go On? Skills Intervention

## 4-6 Estimating Square Roots

If a number is not a perfect square, you still can estimate its square root by using one of two methods:

Method 1: Use two perfect square integers that the number lies between.
Method 2: Use a calculator and round the square root to a given place.

## Estimating Square Roots of Numbers

Each square root is between two integers. Name the integers.
A. $\sqrt{40}$
What perfect squares are close to 40 ? $\qquad$ and $\qquad$
$6^{2}=$ $\qquad$
$7^{2}=$ $\qquad$
Which perfect square is less than 40 ? $\qquad$
Which perfect square is greater than 40 ? $\qquad$
$\sqrt{40}$ is between the integers $\qquad$ and $\qquad$ -.
B. $-\sqrt{130} \quad$ Which perfect squares are close to 130 ?
$\qquad$ and $\qquad$
$(-11)^{2}=$ $\qquad$

Which perfect square is less than 130 ? $\qquad$
$(-12)^{2}=\quad$ Which perfect square is greater than $130 ?$ $\qquad$
$-\sqrt{130}$ is between the integers $\qquad$ and $\qquad$ .

Using a Calculator to Estimate the Value of a Square Root
Use a calculator to find $\sqrt{475}$. Round to the nearest tenth.

Using a calculator, $\sqrt{475} \approx 21.7$ $\qquad$ . .

What is 21.794494 rounded to the nearest tenth? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

Ready to Go On? Problem Solving Intervention

## 4-6 Estimating Square Roots

If you drop a penny, the time it takes to hit the ground depends on the height from which you drop it. If you know $h$, the height in feet, and if you ignore the effect of air, you can use a formula to find $t$, the number of seconds it takes to fall.

$$
t=\sqrt{\frac{2 h}{32}}
$$

How many times longer will it take a penny to drop from 576 feet than from 144 feet?

## Understand the Problem

1. How long would it take a penny to drop from a height of 16 feet? $\qquad$
2. What are you being asked to compare?

## Make a Plan

3. How can you find the two times?
4. Will you subtract or divide to compare? Why?
$\qquad$
$\qquad$
Solve
5. How long will it take the penny to fall from 576 feet? From 144 feet?
6. How many times longer will it take? $\qquad$

## Check

7. If you square both sides of the formula, you get $t^{2}=\frac{2 d}{32}$. Use that to check your values of $t$ and $h$.

## Solve

8. How many times higher than 144 feet would you need to drop the penny from in order for it to take 3 times as long to fall?
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 4-7 The Real Numbers

Real numbers consist of the set of rational numbers and irrational numbers. Irrational numbers are non-terminating, non-repeating decimals.

Vocabulary
real number irrational number

## Real Numbers

| Rational Numbers | Irrational Numbers <br> $\frac{-4}{9}, \frac{7}{8}, \frac{11}{7}$ <br> $-\sqrt{8}$ |
| :--- | :--- |

## Classifying Real Numbers

Write all names that apply to each number.
A. $\sqrt{13}$
B. -21.78

Is 13 a perfect square?

Classify $\sqrt{13}$.

Is -21.78 a terminating or repeating decimal? $\qquad$
Is -21.78 a rational number or irrational number? $\qquad$
Classify -21.78. $\qquad$

## Determining the Classification of all Numbers

State if the number is rational, irrational, or not a real number.
A. $\sqrt{11}$ Classify the number 11. $\qquad$
Is 11 a perfect square? $\qquad$
What is the classification of $\sqrt{11}$ ? $\qquad$
B. $\frac{15}{0}$ Can you divide a number by zero? $\qquad$
What is the classification of the number? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## Lessom Ready to Go On? Skills Intervention

## 488 The Pythagorean Theorem

The Pythagorean Theorem states that in a right triangle, the sum of the squares of the lengths of the two legs is equal to the square of the length of the hypotenuse. $a^{2}+b^{2}=c^{2}$


## Vocabulary

Pythagorean
Theorem
hypotenuse

Finding the Length of a Hypotenuse
Find the length of the hypotenuse.

$$
\begin{aligned}
& =c^{2} \\
2^{2}+2^{2} & =c^{2} \\
4+4 & =c^{2} \\
\sqrt{8} & =c
\end{aligned}
$$

$\qquad$ $\approx c$

Write the Pythagorean Theorem.
Substitute ___ for $a$ and ___ for $b$.
Simplify.
How do you isolate $c$ ?


## 

Use a calculator.
Finding the Length of a Leg in a Right Triangle
Solve for the unknown side in the right triangle.

$$
\begin{array}{rlrl}
2^{2}+b^{2} & =2^{2} & & \text { Substitute values for } a \text { and } c . \\
36+b^{2} & =\overline{100} & & \text { Simplify. } \\
b^{2} & =\overline{\sqrt{64}} & & \text { Isolate the variable. } \\
b & \text { Take the square root of both sides. } \\
b & =- & & \text { The length of the unknown leg is } .
\end{array}
$$



Using the Pythagorean Theorem for Measurement Sam and Julia go to the same school. Sam lives 3 miles south of the school. Julia lives 6 miles west of the school. How far apart do Sam and Julia live from each other?
The distance Sam and Julia live from each other is the hypotenuse of a right triangle.


Sam's Home

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { State the Pythagorean Theorem. } \\
-^{2}+{ }^{2} & =c^{2} & & \text { Substitute values for } a \text { and } b . \\
-+\ldots & =c^{2} & & \text { Simplify. } \\
-\ldots & =c^{2} & & \text { Add. } \\
& =c & & \text { Take the square root of both sides. } \\
& \approx c & & \text { Use a calculator. Round to the nearest tenth. }
\end{aligned}
$$

Sam and Julia live $\qquad$ miles apart from each other.
$\qquad$ Date $\qquad$ Class $\qquad$
Lisson Ready to Go On? Problem Solving Intervention

## 4:8 The Pythagorean Theorem

You can use the Pythagorean Theorem to help you find an unknown measurement.

A rectangular park is 240 feet long and 180 feet wide. What is the length of a diagonal path that connects two corners of the park?

## Understand the Problem

1. Draw a diagram of the park. Label the side lengths. Show the diagonal path on your diagram.
2. What kind of triangles are formed by the diagonal and the sides of the park? $\qquad$

## Make a Plan

3. How does the Pythagorean Theorem relate the sides lengths of a right triangle?
$\qquad$
4. What equation states the Pythagorean Theorem?
5. How can you use this equation to solve the problem?

## Solve

6. Substitute the values into in the Pythagorean Theorem.
7. Solve for c. Use your calculator.
8. How long is the diagonal path?

## Check

9. Is your answer reasonable? Explain.
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

Ready to Go On? Quiz
4B

## 4-5 Squares and Square Roots

Find the two square roots of each number.

1. 64
2. 6,084
3. $1,000,000$
4. 324
$\qquad$
$\qquad$
$\qquad$
$\qquad$
5. Amy wants to put together a jigsaw puzzle that will be 24 in. $\times 20$ in. when finished. Will the puzzle fit on a square board with an area of 529 square inches? Explain your answer.
$\qquad$
6. How many 6 in. $\times 6$ in. square tiles will fit around the edges of a square hallway that has an area of 1,296 square inches?

## 4-6 Estimating Square Roots

Each square root is between two integers. Name the integers.
Explain your answer.
7. $-\sqrt{56}$
8. $\sqrt{300}$
$\qquad$
$\qquad$
9. $-\sqrt{250}$
10. $\sqrt{860}$
$\qquad$
$\qquad$
11. A square quilt has an area of 28 square feet. To the nearest hundredth, what length of edging is needed to go around all the edges of the quilt?
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

Ready to Go On? Quiz continued
4B

## 4-6 Estimating Square Roots (continued)

12. The area of a square painting is 120 square inches.

Find the length of one side of the painting to the nearest hundredth.

## 4-7 The Real Numbers

Write all the names that apply to each number.
13. 0.26
14. $\sqrt{35}$
15. $\sqrt{400}$
16. $\frac{-\sqrt{100}}{5}$
17. Give an example of an irrational number that is less than -8 .
18. Find a real number between $\sqrt{49}$ and 8 .

## 4-8 The Pythagorean Theorem

Find the missing length for each right triangle. Round your answer to the nearest tenth.
19. $a=6, b=10, c=$ ?
$\qquad$
21. $a=?, b=15, c=17$
$\qquad$
23. $a=10, b=?, c=25$
$\qquad$
20. $a=4, b=$ ?, $c=12$
22. $a=36, b=48, c=$ ?
$\qquad$
24. $a=?, b=8, c=18$
$\qquad$
25. Jason is putting a fence around a garden. The measures of two sides that meet at a corner are 25 feet and 38 feet. For the corner to be a right angle, what would the length of the diagonal have to be?
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

Ready to Go On? Enrichment

## 48. Proving the Pythagorean Theorem

It has been said that the Pythagorean Theorem has been proven to be true in more ways than any other theorem in mathematics. Use the diagram and complete the steps to complete one of these proofs.

## Find the area of the large square in one way.

1. Use the variables $a$ and $b$ to represent the length of one side of the large square.

2. Use Step 1 to write the area of the large square.
3. Apply the Distributive Property to the expression in Step 2. Use exponents.
$(a+b)(a+b)=a^{2}+\ldots+\ldots+$
4. Simplify the expression in Step 3. Remember that $a b$ and ba represent the same quantity.

Find the area of the large square in another way.
5. The area of the large square equals the area of $\qquad$
$\qquad$ plus the area of $\qquad$
6. Use the variable $c$ to represent the area of the small square.
7. Use the formula for the area of a triangle and the variables $a$ and $b$ to write the area of one triangle.
8. Use Steps 6 and 7 to write the area of the large square. $\qquad$
9. Simplify the expression in Step 8. $\qquad$
10. Use Steps 4 and 9. Write an equation to show that the two expressions for the area of the large square are equal. $\qquad$
11. Subtract the quantity that is the same from both sides of the equation in Step 10.
12. How does the equation in Step 11 compare to the Pythagorean Theorem?
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 5-1 Ratios and Proportions

A comparison of two quantities by division is called a ratio.
Equivalent ratios are ratios that make the same comparison.
A proportion is an equation that states that two ratios are equivalent.

Vocabulary
ratio
equivalent ratio
proportion

## Finding Equivalent Ratios

Finding Equivalent Ratios
Find two ratios that are equivalent to the given ratio of $\frac{4}{6}$.
$\frac{4}{6}=\frac{4 \cdot 2}{6 \cdot} \quad$ If you multiply the numerator by 2 , by what do you need to multiply the denominator?
$=\quad$ What is the new fraction?
$\frac{4}{6}=\frac{4 \div 2}{6 \div-} \quad$ When dividing the numerator by 2 , you must also divide the $\qquad$ by 2.

$$
=\quad \text { What is the new fraction? }
$$

Two ratios equivalent to $\frac{4}{6}$ are $\qquad$
Determining Whether Two Ratios are in Proportion
Simplify to tell whether the ratios form a proportion.
A. $\frac{20}{45}$ and $\frac{8}{18}$
$\frac{20}{45}$
$\frac{20 \div-}{45 \div-}$
Divide the numerator and the denominator by the GCF.

## $=\quad$ What is the simplified fraction?

$\frac{4}{9}-\frac{4}{9} \quad$ Are the fractions equivalent? $\qquad$ Are the ratios in proportion?
B. $\frac{16}{20}$ and $\frac{10}{15}$
$\frac{16}{20}$ simplified $=$ $\qquad$
Are the fractions equivalent? $\qquad$ Are the ratios in proportion? $\qquad$
$\frac{10}{15}$ simplified $=$ $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON
Ready to Go On? Problem Solving Intervention 5-1 Ratios and Proportions
The Cougars have won 21 games and lost 9 . If they win 3 of the next 5 games, will their winning ratio increase, decrease, or stay the same?

## Understand the Problem

1. How many games have the Cougars played so far?
2. What is the Cougars winning ratio now?

## Make a Plan

3. What will their winning ratio be if they win 3 of the next 5 games?
4. Can you compare the two winning ratios in Exercises 2 and 3 by simplifying? Explain.
5. Solve without simplifying. Compare the Cougars' winning ratio in the next 5 games to their current ratio $\left(\frac{3}{5}\right)$. What will happen to the winning ratio if $\frac{3}{5}$ turns out to be
a. greater than the current winning ratio?
b. less than the current winning ratio?
c. the same as the current winning ratio?

## Solve

6. Is $\frac{3}{5}$ greater than, equal to, or less than $\frac{21}{30}$ ? Explain.
7. If they win 3 of their next 5 games, will the Cougar's winning ratio increase, decrease, or stay the same?

## Check

8. Check your reasoning by starting with a winning ratio of $\frac{1}{2}$. According to your reasoning, that ratio should decrease if you win 1 of the next 4 , stay the same if you win 2 of the next 4 , and increase if you win 3 of the next 4 ? Does it?
$\qquad$ Date $\qquad$ Class $\qquad$

## Lesson Ready to Go On? Skills Intervention

## 5-2 Ratios, Rates, and Unit Rates

A comparison of two quantities that have different units is a rate. Unit rates are simplified rates in which the second quantity is one. Unit price is a unit rate that compares the cost of item units.

## Application

## Vocabulary

 rate unit rate unit priceA. Gold weighing 193 kg has a volume of $0.01 \mathrm{~m}^{3}$. What is the density of gold?
$=\frac{\mathrm{kg}}{\mathrm{m}^{3}}$
Write the rate.
$\overline{\mathrm{K}^{\mathrm{mg} \times} \mathrm{m}^{3} \times=}=\frac{\mathrm{kg}}{1 \mathrm{~m}^{3}} \quad$ Multiply to find kilograms per $1 \mathrm{~m}^{3}$.
Gold has a density of $\qquad$ $\mathrm{kg} / \mathrm{m}^{3}$.
B. Jessie drives 203 miles in 3.5 hours. What is his average rate of speed?
$\begin{array}{r}\text { miles } \\ \hline\end{array}$
Write the rate.
$\overline{\text { miles } \div}==\frac{\text { miles }}{1 \text { hour }} \quad$ Divide to find miles per 1 hour.
Jessie's rate of speed is $\qquad$ per $\qquad$ .

## Finding Proportional Rates

Alison can read 6 pages in 15 minutes. How many pages can she read in 3 hours?
$\qquad$
__minutes
$\frac{\ldots \text { pages } \times \ldots}{\text { minutes } \times \ldots}=\frac{\text { pages }}{\text { minutes }}$
$\square$

$$
=\frac{\text { pages }}{- \text { hours }}
$$

Write the information as a rate.
How many minutes do you want in the proportional rate? $\qquad$

Alison can read $\qquad$ pages in 3 hours.

## Finding Unit Prices to Compare Costs

A 14-oz box of cereal cost $\$ 3.29$ and a $20-0 z$ box of the same
cereal cost $\$ 4.19$. Which is the better buy?
To find the unit rate, divide the $\qquad$ by the $\qquad$ .
$\frac{\text { price of box \#1 }}{\text { number of ounces }}=\quad=\quad \frac{\text { price of box \#2 }}{\text { number of ounces }}=$ $\qquad$
In which box are you paying less per ounce? $\qquad$
Is the smaller or the larger box a better buy? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON
Ready to Go On? Problem Solving Intervention 5-2 Ratios, Rates, and Unit Rates
For $\$ 7.29$ you can buy a pack of 8 AA batteries that comes with an additional free battery. Or you can buy a pack of 4 AA batteries for $\$ 2.89$. Which costs less per battery? Explain.

## Understand the Problem

1. How many batteries do you get in the package that costs $\$ 7.29$ ?

## Make a Plan

2. What two ratios can you compare to solve the problem?
3. Suppose you knew the cost of 36 batteries when purchased in the 8-packs. Suppose you also knew the cost of 36 batteries when purchased in the 4 -packs. How would that help you? Why is 36 a convenient number to use for this comparison?
$\qquad$
$\qquad$
$\qquad$
Solve
4. How many of the $\$ 7.29$ packs would you need in order to get 36 batteries? What would you multiply to find how much that would cost?
5. How many of the $\$ 2.89$ packs would you need in order to get 36 batteries? What would you multiply to find how much that would cost?
6. Estimate. Is $4 \cdot \$ 7.29$ greater than or less than $\$ 28$ ? Is $9 \cdot \$ 2.89$ greater than or less than $\$ 28$ ? Explain.
$\qquad$
$\qquad$

## Check

7. Make sure you answer the question and explain your answer.
$\qquad$ Date $\qquad$ Class $\qquad$
Lissoun
Ready to Go On? Skills Intervention

## 5-3 Dimensional Analysis

To convert units, multiply by one or more ratios of equal quantities called conversion factors. Multiplying by a conversion factor is like multiplying by a fraction that reduces to one.

Vocabulary
conversion factor

Finding Conversion Factors
Find the appropriate factor for each conversion.
A. minutes to hours

How many minutes are there in one hour? $\qquad$
To convert minutes to hours, multiply the number of minutes by 1 hour
B. liters to milliliters

How many milliliters are in a liter? $\qquad$
To convert liters to milliliters, multiply the number of liters by

## Using Conversion Factors to Solve Problems

A movie theater sells an average of 18,000 ounces of popcorn per month. Use conversion factors to find the number of pounds of popcorn the movie theater sells in an average month.

How many ounces are in a pound? $\qquad$

What is the conversion factor? $\qquad$
$\frac{18,000 \mathrm{oz}}{1 \text { month }} \quad$ Multiply by the conversion factor.

$=\quad$ Divide. What units are left?
The movie theater sells $\qquad$ of popcorn.
$\qquad$ Date $\qquad$ Class $\qquad$

## Lessom Ready to Go On? Problem Solving Intervention <br> 5-3 Dimensional Analysis

You can use dimensional analysis to help keep track when you convert units.
The recommended daily allowance of potassium is about 3,600 milligrams. How many pounds is that per year? (Hint: There are 454 grams in a pound.)

## Understand the Problem

1. How many milligrams are in one gram?
2. Complete the equation with the units given in the problem.

$$
\text { Recommended allowance }=\frac{280}{1}
$$

## Make a Plan

3. If you use unit analysis for this problem, to what unit will you convert?

## Solve

4. Complete. Cross out to cancel units.


## Check

5. Complete to show that your answer is reasonable.
3.6 g per day $\approx 4 \mathrm{~g} \cdot 300$ days per year, or __ g per year
$\qquad$ g per year $\approx \frac{1,200 \mathrm{~g}}{400 \mathrm{~g}}$ per lb, or $\qquad$
$\qquad$ $\mathrm{lb} / \mathrm{yr}$ is reasonably close to my answer of $\qquad$ lb/yr

## Solve

6. If you consume the recommended allowance for potassium each day in April, how many kilograms of potassium will you consume that month?
7. For a 2,000-calorie diet, the recommended daily allowance of dietary fiber is 25 g . How many pounds is that in a year?
8. What is the recommended allowance for potassium in grams per hour?
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 5-4 Solving Proportions

Cross products in proportions are equal. If the cross products are not equal then the ratios are not in proportion.

Vocabulary
cross products

## Using Cross Products to Identify Proportions

Tell whether the ratios are proportional.
A. $\frac{10}{32}=\frac{8}{28}$
B. $\frac{15}{25}=\frac{6}{10}$
$\frac{10}{32}=\frac{8}{28}$
Find cross products.
$10 \times 28=$ $\qquad$ $15 \times 10=$ $\qquad$
$32 \times 8=$ $\qquad$
Are the cross products equal? $\qquad$ $25 \times 6=$ $\qquad$
Are the cross products equal? $\qquad$
Are the ratios proportional? $\qquad$
Are the ratios proportional? $\qquad$
C. A bottle of liquid lawn fertilizer instructs you to mix one part fertilizer and 16 parts water. Is a mixture of 68 oz of water and 4 oz of fertilizer proportional to this ratio?

What is the fertilizer to water ratio given on the bottle?
What is the fertilizer to water ratio of the mixture?
$\frac{1}{16}=\frac{4}{68} \quad$ What are the cross products? $\qquad$
Are they equal? $\qquad$
Is this a correct mixture of fertilizer? $\qquad$

## Using Equivalent Fractions

Solve each proportion.
A. $\frac{12}{20}=\frac{n}{25}$
B. $\frac{9}{x}=\frac{57}{19}$

What are the cross products? $\qquad$ What are the cross products? $\qquad$
Divide to isolate $n$.
$n=$ $\qquad$ Divide to isolate $x$.
$x=$ $\qquad$
Check:
Does $\frac{12}{20}=\frac{15}{25}$ ? $\qquad$
Check:
Does $\frac{9}{3}=\frac{57}{19}$ ? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$
nem 5-4 Solving Proportions
You can write and solve proportions to see what will happen if a rate continues.
At 2:10 P.M., your family began a 58 -mile car trip to Grandma's. At 2:50 P.M., you have gone 23 miles. At this rate, will you get there by $3: 30$ P.M.?

## Understand the Problem

1. How many miles is the whole trip to Grandma's? How many miles have you driven so far?
2. Do you have to find the exact time of arrival?
3. If you arrive at $3: 30$, how long will the whole trip have taken?

## Make a Plan

4. Let $x$ be the number of minutes it takes for the whole trip. What must $x$ be less than or equal to for you to arrive in time? $\qquad$
5. Complete the proportion to show how you could find $x$.
$\frac{\text { miles }}{\text { minutes }}=\frac{\text { miles }}{x \text { minutes }}$
6. Why can you estimate or use mental math to solve the problem?

## Solve

7. Is 58 miles greater than or less than 2 times 23 miles?
8. Why must $x$ be more than 80 ?

## Check

9. Make sure you answer the question that the problem asks.
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> $5 A$

## Ready to Go On? Quiz

## 5-1 Ratios and Proportions

Simplify to tell whether the ratios form a proportion.

1. $\frac{4}{9}$ and $\frac{28}{63}$
2. $\frac{35}{56}$ and $\frac{45}{70}$
3. $\frac{21}{96}$ and $\frac{7}{32}$ $\qquad$ 4. $\frac{5}{6}$ and $\frac{15}{22}$ $\qquad$
4. Kara found a recipe that called for 0.5 cup of blueberries to make 30 blueberry pancakes. She created the table shown here to make 24 or 36 pancakes. Is she following the

| Blueberries (c) | Number of Pancakes |
| :---: | :---: |
| 0.3 | 24 |
| 0.6 | 36 | recipe?

The specifications from a cement manufacturer for making concrete call for 1 part cement, 4 parts gravel, and 2.5 parts sand, all by volume.
6. How many cubic yards of cement and sand should be mixed with 18.4 cubic yards of gravel?
7. How many cubic yards each of cement, gravel, and sand are needed to produce 165 cubic yards of concrete?

## 5-2 Ratios, Rates, and Unit Rates

8. The mass of a chunk of titanium is 55 g . The volume is $12.5 \mathrm{~cm}^{3}$. What is the density of the chunk of titanium?
9. Bixbyite is a rare mineral with a density of $4.95 \mathrm{~g} / \mathrm{cm}^{3}$. What is the volume of a piece of bixbyite with a mass of 101.97 g ?
10. Maria's St. Bernard, Arfy, is fed the same amount of food every day. If Arfy gets fed 36.75 cups of dog food per week, how many cups of dog food does he get fed per day? $\qquad$
Determine the better buy.
11. 40 lb of potatoes for $\$ 11.20$ or 60 lb of potatoes for $\$ 16.20$ $\qquad$
12. $\$ 35.70$ for 15 gallons of gas or $\$ 64.80$ for 27 gallons of gas
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> $5 A$

Ready to Go On? Quiz continued

## 5-3 Dimensional Analysis

Find the appropriate factor for each conversion.
13. miles to feet $\qquad$
14. seconds to minutes $\qquad$
15. cups to quarts $\qquad$
Use conversion factors to find each unit to the nearest hundredth.
16. 16 yards to feet $\qquad$
17. 88 gallons to quarts $\qquad$
18. 2,890 meters to kilometers $\qquad$
19. 620 seconds to minutes $\qquad$
20. 4.5 tons to pounds $\qquad$
21. 200 inches per year to yards per year $\qquad$
22. Driving at a constant rate, Joanne traveled 225 kilometers in 3.5 hours. Express her driving rate in meters per minute.

## 5-4 Solving Proportions

Solve each proportion to the nearest hundredth.
23. $\frac{12,000 \text { tons }}{8 \text { weeks }}=\frac{t \text { tons }}{22 \text { weeks }}$
24. $\frac{440 \text { meters }}{32 \text { seconds }}=\frac{200 \text { meters }}{s \text { seconds }}$
25. $\frac{464 \text { feet }}{8 \text { days }}=\frac{522 \text { feet }}{d \text { days }}$
26. $\frac{\$ 178.50}{17 \text { hours }}=\frac{\$ d}{28 \text { hours }}$
27. Jonathan conducted 24 telephone surveys in 6 hours.

At this rate, how long will it take him to conduct 15 more telephone surveys?
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> Ready to Go On? Enrichment

## 5A Acceleration

Velocity is a ratio of distance to time. Acceleration is a ratio of change in velocity to time. If a car accelerates from 50 miles/hour to 60 miles/ hour in 5 seconds, the acceleration is 2 miles per hour per second.

These three equations can be used to solve problems involving acceleration:
(a) $d=v_{o} t+\frac{1}{2} a t^{2}$
(b) $v_{f}=v_{o}+a t$
(c) $v_{f}^{2}-v_{o}^{2}=2 a d$

| $\boldsymbol{d}$ | Distance |
| :---: | :--- |
| $\boldsymbol{v}_{\boldsymbol{o}}$ | Original velocity, the velocity at the beginning of <br> acceleration |
| $\boldsymbol{v}_{\boldsymbol{f}}$ | Final velocity, the velocity at the end of <br> acceleration |
| $\boldsymbol{a}$ | Acceleration that is constant |
| $\boldsymbol{t}$ | Time, the time during which acceleration occurs |

Suppose a car is traveling at 35 miles per hour and accelerates for 15 seconds at a rate of 1 mile per hour per second. How many feet does the car travel in that 15 seconds?
$d=v_{0} t+\frac{1}{2} a t^{2}$
$v_{o}=35 \mathrm{miles} /$ hour $=35 \cdot \frac{5,280}{3,600}$ feet $/ \mathrm{sec}$ $=\left(35 \cdot \frac{5,280}{3,600}\right)$
$(15)+\frac{1}{2}\left(\frac{5,280}{3,600}\right)(15)^{2}$
$a=1 \mathrm{mile} / \mathrm{hour} / \mathrm{sec}=1 \cdot \frac{5,280}{3,600} \mathrm{feet} / \mathrm{sec}^{2}=$
$=770+165=935 \mathrm{ft}$
$\frac{5,280}{3,600}$ feet/sec ${ }^{2}$
$t=15$ seconds

The car travels 935 feet.

1. A car is traveling at 45 miles per hour and accelerates for 10 seconds at a rate of 2 miles per hour per second. About how many feet does the car travel in that 10 seconds?
2. A motorcycle accelerates from 0 to 40 miles/hour in 8 seconds.
a) What it its approximate rate of acceleration in feet per seconds? Hint: Use equation (b).
b) How many feet does it travel in that period of time?
3. A truck accelerates from 0 to 60 miles/hour with a constant acceleration of 1.5 miles/hour/sec. How many feet does it travel in the time it takes to reach 60 miles/hour. Hint: Use equation (c).
4. Form three different formulas for acceleration, each one based on one of the equations given above.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON Ready to Go On? Skills Intervention <br> 5-5 Similar Figures

Congruent figures have the same size and the same shape, whereas similar figures have the same shape but not always the same size. In similar polygons corresponding angles must be

Vocabulary
similar congruent and corresponding sides must have lengths that form equivalent ratios.

## Using Scale Factors to Find Missing Dimensions

A standard 4 inch long by 6 inch wide photo is scaled down to 1.5 inch long to fit in a photo key chain. How wide should the picture be in the key chain for the two pictures to be similar?
What is the known length of the scaled picture? $\qquad$
What is the corresponding length of the original picture? $\qquad$
Divide the known length by the corresponding length.
This is the $\qquad$ .

6 in. $\times$ $\qquad$ = $\qquad$ Multiply the width of the original picture by the scale factor.
What is the width of the new picture? $\qquad$

## Using Equivalent Ratios to Find Missing Dimensions

An architect draws a blueprint of a house. He draws the length of the house 15 inches and the width 6 inches. If the actual length is 60 feet, what is the width?

What is the length of the house on the blueprint? $\qquad$
What is the width of the house on the blueprint? $\qquad$
What is the length of the actual house? $\qquad$
What is the unknown? $\qquad$
Set up a proportion as shown.
$\frac{\text { blueprint length }}{\text { blueprint width }}=\frac{\text { actual length }}{\text { actual width }}$
What are the cross products? $\qquad$ - $x \mathrm{ft}=$ $\qquad$ - 6 in.

Are the same units on both sides of the equal sign? $\qquad$ Cancel them.

Multiply each side. $\qquad$ $=$ $\qquad$
Divide to isolate $x$.
$x=$ $\qquad$
What is the width of the actual house? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON <br> Ready to Go On? Problem Solving Intervention

## 5-5 Similar Figures

Similar figures have the same shape, but not necessarily the same size. The ratio formed by corresponding sides is the scale factor.

A photo of a candidate for mayor is 6 inches tall and 4.5 inches wide. It is being enlarged to become a campaign poster that will be 2.5 feet tall. How wide will the poster be, if the pictures are similar?

## Understand the Problem

1. What is true about the sides and angles of similar figures?
2. Identify the corresponding sides of the photo and poster.

## Make a Plan

3. Using the ratio of the scale factor on one side of an equation, what can you form with another ratio to help you find the unknown width of the poster?
4. In order to compare equivalent units, what dimension should you use in the equation for the height of the poster?

## Solve

5. Form a proportion using $x$ for the unknown width of the poster.
6. Cross multiply then simplify to isolate $x$. What will be the width of the poster?

## Check

7. The photo and poster are similar figures, so the ratio of height to width for each should be the same. Show whether this is true.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON Ready to Go On? Skills Intervention

## 5-6 Dilations

A dilation is an enlargement or reduction of a figure without changing its shape. A scale factor describes how much a figure is enlarged or reduced. The center of dilation is a fixed point that connects each pair of corresponding vertices.

## Identifying Dilations

Tell whether each transformation is a dilation.
A.


B.

3.25 in.

13 in.

Is the transformation a dilation? $\qquad$ Is the transformation a dilation? $\qquad$

## Dilating a Figure

Dilate the figure by a scale factor of 1.5 and with $P$ as the center of dilation.
What will each side be multiplied by? $\qquad$
What is the length of side $A^{\prime} B^{\prime}$ ? $\qquad$
What is the length of side $B^{\prime} C^{\prime}$ ? $\qquad$

## Using the Origin as the Center of Dilation



Dilate the figure by a scale factor of $\frac{3}{4}$. What are the coordinates of the image?
What do you need to multiply each coordinate by? $\qquad$
$\triangle A B C$
$\triangle A^{\prime} B^{\prime} C^{\prime}$
$A(2,6) \rightarrow A^{\prime}\left(2 \cdot \frac{3}{4}, 6 \cdot \frac{3}{4}\right) \rightarrow A^{\prime}$ $\qquad$
$\mathrm{B}(4,6) \rightarrow B^{\prime}\left(4 \cdot \frac{3}{4}, 6 \cdot \frac{3}{4}\right) \rightarrow B^{\prime}$ $\qquad$
$C(4,8) \rightarrow C^{\prime}\left(4 \cdot \frac{3}{4}, 8 \cdot \frac{3}{4}\right) \rightarrow C^{\prime}$ $\qquad$
Sketch the dilated figure on the same coordinate plane.

$\qquad$ Date $\qquad$ Class $\qquad$

LESSON
Ready to Go On? Problem Solving Intervention
5-6 Dilations
For some problems, you can choose coordinates that will be easy to work with.
A square with an area of $16 \mathrm{~cm}^{2}$ is dilated with a scale factor of 2.5 .
What is the area of the dilated square?

## Understand the Problem

1. Will the area of the dilated square be greater than $16 \mathrm{~cm}^{2}$ ?

Explain.
2. By what number would you multiply the coordinates of a vertex on the square to find its new coordinates after the dilation?

## Make a Plan

3. How would it help draw the original square on a coordinate plane?
4. Why would it make sense to use $(0,0)$ as one corner?
5. What is the length of the original square? Explain.

## Solve

6. On the grid, draw the original square with the lower left corner at ( 0,0 ). Label the coordinates of each corner of the square.
7. Multiply to find the coordinates of the corners of the dilated square. Draw it and label the coordinates of each corner.
8. What is the area of the dilated square?

## Check


9. Make sure your multiplication and your diagram are accurate.
$\qquad$ Date $\qquad$ Class $\qquad$

## Lessom Ready to Go On? Skills Intervention

## 5-7 Indirect Measurement

Indirect measurement is a way of using similar figures and proportions to find a measure when a distance cannot be measured directly.

```
Vocabulary
indirect
    measurement
```


## Geography Application

Benjamin is planning to run a pipeline across a canal. $\overline{B E}$ represents the width of the canal. How wide is the canal where the pipeline will pass over it?

Triangles $A B E$ and $C D E$ are similar.

$\frac{C D}{A B}=\underline{D E}$, so $\frac{200}{300}=\overline{x+100}$
$200\left(\_\quad\right.$ _ $)=$ __( 100 )
$200 x+\ldots=30,000$
$200 x=$
$x=$ $\qquad$
$50+$ $\qquad$ $=$

Corresponding sides of similar figures are
$\qquad$ .

Find the cross products.
Apply the Distributive Property.
Subtract from both sides of the equation to isolate $x$ on the left side.
Divide both sides of the equation by the same number to solve for $x$.

Add 50 to the length of $D E$.

The distance across the canal is $\qquad$ feet.

## Problem Solving Application

A building casts a shadow that is 23 feet long. A boy walking past the building is 5 feet tall and casts a shadow that is 3 feet long.
What is the height, $h$, of the building?
$\underline{h}=\underline{5}$

-     - 

_h $=$
$h=$ $\qquad$

Form a proportion using corresponding sides.
Find the cross products
Divide both sides of the equation by the same number to solve for $h$.

The height of the building is approximately $\qquad$ feet.
$\qquad$ Date $\qquad$ Class $\qquad$
Ready to Go On? Problem Solving Intervention

## $5-7$ Indirect Measurement

Indirect measurement is a way of using similar figures and proportions to find a measure.

A trash can is 3 feet tall and casts a shadow 2.4 feet long. Near the trash can is a telephone pole that casts a shadow that is 20 feet long. What is the height of the telephone pole?

## Understand the Problem

1. Draw a diagram and label it with all the information given in the problem.
2. What shapes do the telephone pole with its shadow and the trash can with its shadow form?
3. What are you asked to find?
$\qquad$

## Make a Plan

4. Form a proportion showing the ratio of shadow lengths equal to the ratio of heights. Use $h$ for the height of the telephone pole.

Solve
5. $\qquad$ $h=$ $\qquad$ Find the cross products.

$$
h=
$$

$$
\text { Divide both sides by the same number to isolate } h \text {. }
$$

6. What is the height of the telephone pole? $\qquad$

## Check

7. Since the two triangles are similar, the ratio $\frac{\text { shadow }}{\text { height }}$ should be the same for both triangles. Does this check out?
$\qquad$ Date $\qquad$ Class $\qquad$

## Lessom Ready to Go On? Skills Intervention

## 5-8 Scale Drawings and Scale Models

A scale drawing is a two-dimensional drawing that accurately represents and is mathematically similar to an object. A scale model is a three-dimensional representation that is mathematically similar to the object. A scale gives the ratio of the dimensions in the drawing to the object. A scale drawing or model that is smaller than the actual object is a reduction. A scale drawing or model that is larger is an enlargement.

Vocabulary<br>scale drawing<br>scale model<br>scale<br>reduction<br>enlargement

## Using Proportions to Find Unknown Scales

The length of an object on a scale drawing is 3 in . and its actual length is 18 ft . The scale is $1 \mathrm{in} .:$ ? ft . What is the scale?

What is the proportion using $\frac{\text { scale length }}{\text { actual length }}$ ?
What are the cross products?
$1 \cdot \ldots=$ $\qquad$ -3

Solve the proportion.
$x=$ $\qquad$
What is the scale? 1 in.: $\qquad$ ft

## Finding Unknown Dimensions Given Scale Factor

The length of a chimney on a scale of a factory is 5.5 cm . The scale is $1 \mathrm{~cm}: 3 \mathrm{~m}$. What is the actual length of the chimney?

What is the proportion using $\frac{\text { scale length }}{\text { actual length }}$ ?
What are the cross products?

$$
\ldots x=5.5 \cdot \ldots
$$

$x=$ $\qquad$
What is the actual length of the chimney? $\qquad$

## Life Science Application

A model of a molecule chain was made using the scale of $3 \mathrm{~cm}: 0.0000001 \mathrm{~mm}$. If the model of the chain is 15 cm long, what is the length of the actual chain? What is the scale factor?

Scale factor $=\frac{3 \mathrm{~cm}}{0.0000001 \mathrm{~mm}}=\frac{\mathrm{mm}}{0.0000001 \mathrm{~mm}}=$ $\qquad$

$x=$ $\qquad$
$x=$ $\qquad$

Set up a proportion using $x$ for the length of the actual molecule chain.

Cross multiply.
Solve for the length of the actual chain.

The length of the molecule chain is $5 \times 10-\mathrm{cm}$.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON Ready to Go On? Problem Solving Intervention

## 5-8 Scale Drawings and Scale Models

Because most maps are scale drawings, you can use them to determine times and distances.

You can travel at $25 \mathrm{mi} / \mathrm{h}$ on Country Road or $45 \mathrm{mi} / \mathrm{h}$ on Oak Street and on Maple Street. Which route from Pawville to Growler will take less time? How much less?


## Understand the Problem

1. What are the two routes you will compare?

Scale: $1 \mathrm{~cm}=5 \mathrm{mi}$

## Make a Plan

2. How could you find the time each route would take?
3. How could you find the actual distances?

## Solve

4. Fill in each map distance.

Long Route:
Pawville to Catty Corners is $\qquad$ cm; Catty Corners to Growler is $\qquad$ cm.

Total for long route is $\qquad$ cm

Short Route: Pawville to Growler is $\qquad$ cm
5. What is the actual distance of each route?
6. Fill in to find the time for each route in hours and in minutes.

Long: $\frac{\mathrm{mi}}{\mathrm{mi} / \mathrm{h}}$ $\qquad$ hr, or $\qquad$ min

Short: $\frac{\mathrm{mi}}{\mathrm{mi} / \mathrm{h}}$ $\qquad$ hr, or $\qquad$ $\min$

## Check

7. Make sure you answer the question that the problem asks.
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> Ready to Go On? Quiz

$5 B$

## 5-5 Similar Figures

1. Which rectangles are similar?

2. Jaime found a picture that he wanted to fit into a collage he was making. The picture was 5 inches wide and 4 inches tall. He enlarged the picture to a width of 12.5 inches. How tall was the enlarged picture?
3. Laura had a photo of her dog that she wanted to enlarge to fill a frame. The original photo was 5 inches wide and 8 inches tall. The enlargement was 9.6 inches tall. How wide was the enlargement? $\qquad$
4. A computer screen contained the picture of an office building. The measurement of the building on the screen was 14 cm tall by 2.6 cm wide. The image was projected onto a wall where the height of the building measured 91 cm . What was the width of the building as measured on the wall?

## 5-6 Dilations

Tell whether the transformation is a dilation.
5.

6. $\qquad$

7. A triangle has vertices with coordinates $(0,0),(-3,4)$, and $(5,-1)$. If the triangle is dilated by a scale factor of 2 with the origin as the center of dilation, what are the coordinates of the vertices of the image?
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> Ready to Go On? Quiz continued

## $5 B$

## 5-7 Indirect Measurement

8. Maureen is walking past a tree. Maureen's height is 5 ft and her shadow at that moment is 5.5 ft . The tree's shadow is 44 ft . How tall is the tree?
9. A blimp is positioned over a field. The shadow of the blimp strikes the ground 1,200 feet from a point directly under the blimp. A meter stick stuck in the ground directly under the blimp casts a shadow of 120 cm . What is the height of the blimp?
10. A street lamp is 20 feet tall and casts a shadow 14 feet long. Attached part way up the street lamp is a parking sign. The shadow of the upper edge of the parking sign is 5.6 feet from the base of the street lamp. How high off the ground is the upper edge of the parking sign?
11. A professional basketball player is talking on the sidewalk with her coach. The player is 6.4 feet tall and casts a shadow 3.5 feet long. The shadow cast by the coach is 3.1 feet long. Approximately how tall is the coach?

## 5-8 Scale Drawings and Scale Models

12. The model of rocket was built using a scale of 2 inches: 5 feet. If the length of the model was 22 inches, what was the length of the actual rocket?
13. Eric was examining a dust particle under a microscope using the 400:1 setting. The dust particle appeared to have a length of 80 mm . What was the actual length of the dust particle?
14. The length of an object on a scale drawing is 6 cm . The actual length of the object is 54 cm . What is the scale of the drawing?
15. Sam is going to build a scale model of sailboat with a length of 75 ft . He has decided upon the scale 3 inches: 10 feet. How long will Sam's model be?
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

Ready to Go On? Enrichment

## 5B Aspect Ratios

Aspect ratio is the ratio of the width of a picture to the height of a picture. The screens of traditional television sets have an aspect ratio of $4: 3$, or $1.33: 1$. One common aspect ratio used for films today is the widescreen format of 1.85:1.

1. The diagram on the right shows what happens when the full height of a movie with an aspect ratio of $1.85: 1$ is shown on a standard TV screen. About what percent of the original image appears to get cut off?

Width of Original Film


The situation gets a little more interesting when the full width of a movie with an aspect ratio of $1.85: 1$ is shown centered on a standard TV screen.
1.33

2. In the diagram, the width of the $1.85: 1$ film is shown conforming to the width of the 1.33:1 TV screen. Write and solve a proportion to find the relative height $h$ of the displayed film. Fill in that dimension on the diagram, leaving it as a fraction.
3. The unused areas of the TV screen, shown in gray, are equal in size. Use the dimension you found for $h$ to determine relative dimensions for $t$ and $b$. Fill in those dimensions on the diagram leaving them as fractions.
4. About what percent of the TV screen is used by the film image?

How does that compare with your answer to question 1?
$\qquad$
$\qquad$
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## IIssor <br> Ready to Go On? Skills Intervention

## 6-1 Relating Decimals, Fractions, and Percents

Percents are ratios that compare a number to 100.
Finding Equivalent Ratios and Percents

Find the missing ratio or percent equivalent for each letter $A-C$ on the number line.

A. $5 \%$

5
Write the percent as a fraction. What number is the denominator?

Divide both the numerator and denominator by the GCF: $\qquad$ .
B. $\frac{3}{8}$

$$
\ldots \div=\square \quad \begin{aligned}
& \text { Divide the numerator by the denominator. } \\
& \text { Multiply the quotient by } 100 .
\end{aligned}
$$

Insert a percent sign. What is the percent equivalent of $\frac{3}{8}$ ? $\qquad$
C. $40 \%$
$\qquad$ Write as a fraction. What is the denominator? $\qquad$

Divide both the numerator and denominator by the GCF: $\qquad$

## Comparing and Ordering Fractions, Decimals, and Percents

Write $\frac{1}{4}, 0.26$, and $15 \%$ in order from least to greatest.
Write each number as a percent.
$\frac{1}{4}=$ $\qquad$
$0.26=\ldots \quad \%$
$\qquad$ $=$ $\qquad$ \%
15\% $\square$ $\square$ $\% \square$ -\%

Convert the fraction to a decimal.
Convert the decimals to percents by moving the decimal point and inserting a percent symbol.
Order the percents.
$\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

You can change fractions to decimals to solve some problems.
A flag is $\frac{3}{8}$ blue, $\frac{1}{5}$ red, $\frac{1}{8}$ green, and the rest is white. What percent of the flag is white?

## Understand the Problem

1. If you converted the 3 given fractions to percents, what would those percents and the answer to the problem add up to? Explain.

## Make a Plan

2. If you converted the 3 given fractions to percents, how could you use those percents to solve the problem?
3. Why might it make sense to add the fractions for blue and green before converting to a percent?
$\qquad$
$\qquad$
Solve
4. What percent of the flag is red?
5. Together, what percent do the blue and green sections cover?
6. What percent of the flag is white? Explain.

## Check

7. Change your answer to a fraction and then add the four fractions to see if the sum is 1 .

## Solve

8. If the green part of the flag were white instead, what percent of the flag would be white?
9. If $\frac{7}{8}$ of a flag is gray, what percent is not gray? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 6-2 Estimating with Percents

An estimate can be given for a problem when an exact answer is not required. To estimate with percents, compatible numbers are used. Benchmarks are a kind of compatible number that are common and often used as references.

## Estimating with Percents

## Vocabulary

estimate
compatible
numbers
benchmark

Estimate.
A. $48 \%$ of 64

What compatible numbers can be used in place of $48 \%$ or $\frac{48}{100}$ ?
$\frac{48}{100} \approx \quad$ and $\quad=\frac{1}{2}$
Use the compatible numbers to estimate.
$\frac{1}{2} \cdot 64=$ $\qquad$ Remember multiplying by $\frac{1}{2}$ is the same as $\qquad$ by 2.
$48 \%$ of 64 is about $\qquad$ .
B. $16 \%$ of 856

What percent can $16 \%$ be rounded to for easier calculations? $\qquad$
Remember $\qquad$ $=10 \%+$ $\qquad$ .

$16 \%$ of 856 is about $\qquad$ .

## Geography Application

Texas is the second largest state in the United States. Its area is $43 \%$ of the area of Alaska, the largest state in the country. If Alaska's area is 615,230 square miles, then approximately what is the area of Texas?

Round numbers for easier estimating:
$43 \%$ rounds to $\qquad$ .

615,230 square miles rounds to $\qquad$ .
Think: What number is $40 \%$ of 600,000 ?
$n=$ $\qquad$ Write an equation.
$n=$ $\qquad$ Multiply.

The area of Texas is approximately $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON
Ready to Go On? Problem Solving Intervention

## 6-2 Estimating with Percents

You can solve many problems without calculating exact amounts.
The graphs show the weight of 3 pieces of jewelry and the percent of gold in each. Which piece has the most gold? Which has the least?


Chain 134 grams


Bracelet 23.6 grams


## Understand the Problem

1. Why can't you just choose the highest percent and the lowest percent as the answers?

## Make a Plan

2. What 2 numbers can you multiply to find the number of grams of gold in the ring? In the bracelet? In the chain?
3. Why might estimation or number sense be useful for solving this problem?

## Solve

4. Use number sense to compare the amounts of gold in the ring ( $0.63 \cdot 12.4$ ) and in the bracelet $(0.31 \cdot 23.6)$. Write $<$ or $>$. $0.63 \square$ double $0.31 \quad 12.4 \square$ half of 23.6 So, $0.63 \cdot 12.4 \square 0.31 \cdot 23.6$
5. Now compare the ring $(0.63 \cdot 12.4)$ and the chain $(0.068 \cdot 134)$.
$134 \square 10 \cdot 12.4 \quad 0.068 \square \frac{1}{10}$ of 0.63 So, $0.068 \cdot 134 \square 0.63 \cdot 12.4$
6. Write the 3 products in the correct order.
$\qquad$ - $\qquad$ $>$ $\qquad$ - $\qquad$ $>$ $\qquad$ - $\qquad$

## Check

7. Answer the question that is asked in the problem.
$\qquad$ Date $\qquad$ Class $\qquad$

## LEsson Ready to Go On? Skills Intervention

## 6-3 Finding Percents

Finding the Percent One Number Is of Another
A. What percent of 180 is 54 ?

The word "of" tells you to $\qquad$ The word "is" tells you to use the $\qquad$ sign.
$p \_180 \_54 \quad$ Set up an equation to find the percent.
$\frac{p \cdot 180}{180}-\frac{54}{180}$ To solve the equation, ___ both sides by 180.

$$
\begin{aligned}
p & =\quad \text { Simplify and change to a percent. } \\
& =
\end{aligned}
$$

54 is $\qquad$ of 180.
B. The area of the state of Hawaii is 6,425 square miles. The area of the island of Hawaii, often called the Big Island, is 4,035 square miles. Find the percent of Hawaii's area that is on the Big Island.
Set up a proportion to find the percent.
Answer the question: What number is to 100 as 4,035 is to 6,425 ?
$\frac{\text { number }}{100}=\frac{\text { part }}{\text { whole }} \rightarrow$ Substitute into the proportion. $\rightarrow \frac{n}{100}=\frac{4,035}{6,425}$
$n \cdot \_=100$ • $\qquad$ Find the cross products.
$n=$ $\qquad$ Solve for $n$. $n \approx 62.8$

The area of the island of Hawaii is $\qquad$ of the area of the state of Hawaii.

## Health Application

A brand of ice cream has 11 grams of fat per serving. This is $17 \%$ of the recommended daily value for a person. To the nearest gram, find the total recommended daily value of fat for a person.
Set up an equation to solve the problem.
Think: $17 \%$ of what number is 11 ?

| $\bullet n$ | $=11$ |  | Use the decimal equivalent of $17 \%$. |
| ---: | :--- | ---: | :--- |
| $n$ | $=\square$ |  |  |
| $n$ | $\approx$ |  | both sides by |

The total recommended daily value of fat is about $\qquad$ grams.
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON
Ready to Go On? Problem Solving Intervention 6-3 Finding Percents

Organizing information can help you solve many problems.
Scott consumes 2500 calories per day, and $28 \%$ of the calories come from fat. Mandy consumes 2000 calories per day. If Mandy eats the same number of fat calories as Scott, what percent of her calories will come from fat?

## Understand the Problem

1. Complete the table to organize what you know. Use $x$ for the number you need to find.

| Name | Daily Calories | Percent from Fat |
| :--- | :--- | :--- |
| Scott |  |  |
| Mandy |  |  |

## Make a Plan

2. If you knew how many fat calories Mandy consumes per day, how could you find $x$ ?
3. If you knew how many fat calories Scott consumes per day, how could you tell how many Mandy consumes per day?
4. How can you find the number of fat calories Scott consumes per day?

## Solve

5. Complete to find out how many fat calories Scott consumes per day.
$\qquad$ \% of $\qquad$ $=0.28$ - $\qquad$ $=$ $\qquad$
6. If Mandy ate the same number of fat calories as Scott, what percent of her daily calories would that be? Complete and solve for $x$ to find out.
$\qquad$ is $x \%$ of $\qquad$ $\rightarrow \frac{x}{100}=\longrightarrow x=\longrightarrow \cdot$ $\qquad$

## Check

7. Is Mandy's percent greater than Scott's? Why does that make sense?
$\qquad$ Date $\qquad$ Class $\qquad$

## LEsson Ready to Go On? Skills Intervention

## 6-4 Finding a Number When the Percent Is Known

A known percent can be used to find a missing number when solving problems.

## Finding a Number When the Percent is Known

A. 56 is $40 \%$ of what number?

Write an equation to solve the problem.
The word "is" tells you to use the $\qquad$ sign and "of" tells you to $\qquad$ .
Remember to use the decimal equivalent of $40 \% .40 \%=$ $\qquad$

$$
\begin{aligned}
56 & =0.40 \cdot n & & \text { Write the equation. } \\
\boxed{56} & =\frac{0.40 n}{\square} & & \text { Divide both sides by ___ to isolate the variable. } \\
& =n & & \text { Solve for } n .
\end{aligned}
$$

56 is $40 \%$ of $\qquad$ .
B. 12 is $60 \%$ of what number?

Think: 60 is to 100 as 12 is to what number?

$$
\frac{60}{100}=
$$

$\qquad$
60 •__ $=100 \cdot$ $60 n=1200$ $\underline{60 n}=\underline{1200}$ $n=$ $\qquad$

Set up a proportion to solve the problem.
Find the cross products.
Simplify and solve the equation.
Divide both sides by __ to isolate $n$.
$\qquad$ is

12 is $60 \%$ of $\qquad$ .

## Technology Application

A CD-ROM has a storage capacity of 673 Mega-bytes (MB). This is $269 \%$ of the storage capacity of a Zip ${ }^{\circledR}$ disk. To the nearest Megabyte, find the storage capacity of a Zip ${ }^{\circledR}$ disk.
Think: 673 is $269 \%$ of what number?
What does "is" represent? $\qquad$ Write $269 \%$ as a decimal. $\qquad$
$\qquad$ $=$ $\qquad$ - $n$

$$
\frac{673}{}=\frac{2.69 n}{}
$$

$\approx n$
$\qquad$ Date $\qquad$ Class $\qquad$

In a garden, the tomato section is 20 ft by 6 ft and takes up $60 \%$ of the total area. The zucchini section takes up $18 \%$ of the area.
How many square feet is the zucchini section?

## Understand the Problem

1. Make a sketch to show what you know.

## Make a Plan

2. If you knew $G$, the area of the whole garden, how could you find $Z$, the area of the zucchini section?
3. Suppose you knew $T$, the area of the tomato section. Write a percent statement you could use to find $G$ (the area of the garden).
4. How can you calculate $T$ ?

## Solve

5. Find $T$, the area of the tomato section.
6. Find G, the area of the garden.
7. Now find $Z$ and then answer the question in the problem.

## Check

8. Compare your answers with the sketch from Exercise 1. Are your numbers reasonable?

## Solve

9. A 15 ft by 5 ft section of roses makes up $30 \%$ of a flower garden. What is the area of the tulip section that takes up 16\% of the garden?
$\qquad$ Date $\qquad$ Class $\qquad$

## section Ready to Go On? Quiz

$6 A$

## 6-1 Relating Decimals, Fractions, and Percents

Compare. Write $<,>$, or $=$.

1. $\frac{5}{9} \square 56 \%$
2. $0.86 \square \frac{6}{7}$
3. $8 \% \quad \square 0.08$
4. $\frac{3}{7} \square 0.43$
5. $2.3 \square 23 \%$
6. $37 \% \square \frac{3}{8}$

Order the numbers from least to greatest.
7. $\frac{7}{8}, 0.9, \frac{6}{7}, 85 \%$
8. $\frac{3}{14}, 9.9 \%, 0.16, \frac{1}{6}$
9. $30 \%, \frac{2}{5}, 7.4 \%, 0.297$
10. $0.011, \frac{1}{11}, 0.1,6 \%$
11. Exactly $60 \%$ of the animals in the local animal shelter are dogs. What fraction of the animals is this?

## 6-2 Estimating with Percents

Estimate.
12. $67 \%$ of 87 $\qquad$ 13. $15 \%$ of 79 $\qquad$ 14. $55 \%$ of 81 $\qquad$
15. $17 \%$ of 54 $\qquad$ 16. $40 \%$ of 42 $\qquad$ 17. $5 \%$ of 115 $\qquad$
Estimate the tip for each bill.
18. $12 \%$ on a $\$ 16.15$ bill $\qquad$ 19. $15 \%$ on a $\$ 33.90$ bill $\qquad$ 20. $10 \%$ on a $\$ 28.98$ bill $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> <br> 6 A

 <br> <br> 6 A}Ready to Go On? Quiz continued

## 6-2 Estimating with Percents (continued)

21. About $21.1 \%$ of the riders pay half-fare on the local bus system.

Douglas estimates that if 124,800 people ride the buses in a day, about 10,000 of them will pay half-fare. Estimate to determine whether Douglas' number is reasonable. Explain.

## 6-3 Finding Percents

22. What is $44 \%$ of 4 ? $\qquad$ 23. What is $85 \%$ of 6 ? $\qquad$
23. What is $11 \%$ of 11 ? $\qquad$ 25. What is $52 \%$ of 5 ? $\qquad$
24. What is $34 \%$ of 7 ? $\qquad$ 27. What is $15 \%$ of 13 ? $\qquad$
25. An estimated 293.6 million people were Americans in 2004. An estimated 41.3 million of these Americans were Hispanic or Latino. To the nearest tenth of a percent, what percent of the American population was Hispanic or Latino in 2004?
26. Minnesota is called the Land of 10,000 Lakes. The total surface area of the state is about 86,940 square miles. The water area is approximately 7,330 square miles. To the nearest tenth of a percent, what percent of Minnesota is water?

## 6-4 Finding a Number When the Percent is Known

30. 18 is $22.5 \%$ of what number?
31. 161 is $230 \%$ of what number?
$\qquad$
$\qquad$
32. 77 is $55 \%$ of what number? $\qquad$
33. 5 is $4 \%$ of what number? $\qquad$
34. The normal highway speed limit of 65 mph is only about $34.95 \%$ of the highest speed ever achieved for an entire 500-mile race at the Indianapolis 500. To the nearest hundredth of a mile per hour, what would this record speed be?
35. A highway speed limit is only 55 mph . However, this is $240 \%$ of the speed of a bicycle that is traveling along the side of the road. To the nearest tenth of a mile per hour, how fast is the bicycle moving?
$\qquad$ Date $\qquad$ Class $\qquad$

SECTION
Ready to Go On? Enrichment

## $6 A$ Cross-Percents

These puzzles are worked the same way as crossword puzzles.
Solve the problems in the clues and write the answers in the boxes across and down, one digit only per box. Round to whatever place is necessary to make the answer fit.
If there is a decimal point in the answer, put it in the box with the digit that follows it, with the decimal point preceding the digit. A decimal point, just like a digit, must always be valid for both the across answer and the down answer. Decimals less than 1, contrary to the customary convention, should be written without a zero in the ones place.

## Puzzle I

| 1 | 2 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $3-$ | - | 4 |  |  |  |
|  |  | 5 |  |  | 6 |
|  |  |  |  | 7 |  |
|  |  |  |  |  |  |

## ACROSS

1. $8 \%$ of 150

## DOWN

1. $22 \%$ of 60
2. $420 \%$ of 75
3. $32 \%$ of 66
4. $7 \%$ of 15
5. $330 \%$ of 15.4
6. $6.3 \%$ of 927

## Puzzle II

|  |  | 1 | 2 |
| :--- | :--- | :--- | :--- |
|  | 3 |  |  |
| $4-$ | - | - |  |
| $5-$ | - |  |  |
|  | 6 | 7 | 8 |
|  | 9 |  |  |

## ACROSS

1. $72 \%$ of 25
2. $216 \%$ of 50
3. $57 \%$ of 96
4. $27 \%$ of 85
5. $0.5 \%$ of 143
6. $850 \%$ of 66

## DOWN

1. $89 \%$ of 12
2. $116 \%$ of 76
3. $25 \%$ of 575
4. $7 \%$ of 743
5. $19 \%$ of 84
6. $119 \%$ of 43
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON

Ready to Go On? Skills Intervention

## 6-5 Percent Increase and Decrease

Percent change is the ratio of change to the original amount.
Percent increase represents an increase in the original amount.
Percent decrease represents a decrease in the original amount.

## Finding Percent Increase or Decrease

Vocabulary
percent change percent increase percent decrease

Find the percent increase or decrease from 65 to 50, to the nearest percent.

The number gets smaller, so this is a percent $\qquad$ _.

| $65-50$ | $=-$ |  | Find the amount of change of the two numbers. |
| ---: | :--- | ---: | :--- |
| 15 | $=p \cdot 65$ |  | Write an equation. Think: 15 is what percent of $65 ?$ |
| $\underline{15}$ | $=\frac{p \cdot 65}{-}$ |  | Solve for $p$ by dividing both sides by |
| - |  | $=p$ |  |

What is the percent equivalent of your answer? $\qquad$
So, from 65 to 50 there is a $\qquad$ \% decrease.

## School Application

Javier scored a 72 and then an 85 on his last two math tests. What is the percent increase in his scores?

| $85-72$ | $=$ |  | Find the amount of change between the two scores. |
| ---: | :--- | ---: | :--- |
|  | $=p \cdot$ |  | Write an equation. Think: 13 is what percent of $72 ?$ |
|  | $=\frac{p \cdot}{\square}$ |  | Solve for $p$ by dividing both sides by |
|  | $=p$ |  | Solve for $p$. |

How do you change a decimal to a percent? $\qquad$

Write 0.18 as a percent. $\qquad$
Javier had an $\qquad$ \% increase in his test scores.

## Using Percent Increase or Decrease to Find Prices

Kaylee buys a CD collection priced at $\$ 60$. She received a $15 \%$ discount. How much did Kaylee pay for her CDs?

Kaylee received a discount so this is an example of a percent $\qquad$ .
$d=$ $\qquad$ - $60=$ $\qquad$ Find $15 \%$ of the original price to determine the discount.

60 $\qquad$ $9=$ $\qquad$
$\qquad$ the discount from the original price.

Kaylee paid $\qquad$ for the CD collection.
$\qquad$ Date $\qquad$ Class $\qquad$

A store owner changes the regular price of a camera by $50 \%$ each day. She raises the price $50 \%$ the first day, lowers it $50 \%$ the second day, then raises it $50 \%$ the third day, and so on. When will the price of the camera be less than half its regular price?

## Understand the Problem

1. What happens to the price on the first day? On the second day?
2. Does the problem ask for when the price will reach a certain dollar amount? What does it ask for?

## Make a Plan

3. Choose an amount for the regular price. Why does it make sense to pick an amount like $\$ 100$ rather than an amount like $\$ 67.98$ ?
4. If the regular price is $\$ 100$, what will the price be on the first day? Explain.
5. When you compute the price on the second day, what amount will you take $50 \%$ of to find the discount? Why?

## Solve

6. Fill in the table and then extend it to solve the problem.
7. When will the price fall below half the regular price?

|  | 1st | 2nd | 3rd | 4th |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Starting Price | 100.00 | 150.00 |  |  |  |  |
| Change in Price | +50.00 | -75.00 |  |  |  |  |
| New Price | 150.00 |  |  |  |  |  |

## Check

8. Try a different starting price and see if you get the same answer.
$\qquad$ Date $\qquad$ Class $\qquad$
LLsson Ready to Go On? Skills Intervention

## 6-6 Applications of Percents

## Multiplying by Percents to Find Commission Amounts

A sales person in an electronics store earns a sales commission of $2 \%$. If he sells a large screen television for $\$ 945$ and a set of speakers for $\$ 580$, what commission does he earn?

Find the total sales. \$945 + $\qquad$ $=$ $\qquad$
Write the commission rate as a percent and a decimal. $\qquad$
Think: commission rate $\cdot$ sales $=$ commission
$\qquad$

$$
1,525=c
$$

Write an equation.

$$
=c
$$

Multiply.

The sales person earned a commission of $\qquad$ .

## Multiplying by Percents to Find Sales Tax Amounts

If the sales tax rate is $6.5 \%$, how much tax will Ariel pay if she buys a skirt for $\$ 28.70$ and a blouse for $\$ 16.98$ ?

Find the total sales amount. $\qquad$
Write the sales tax rate as a percent and a decimal. $\qquad$
Think: sales tax rate $\cdot$ total sales amount $=$ amount of tax

$$
\begin{aligned}
45.68 & =t \\
& =t \\
& \approx t
\end{aligned}
$$

Write an equation.
Multiply.
Round to the nearest cent.
Ariel will pay $\qquad$ in sales tax.

## Using Proportions to Find the Percent of Tax Withheld

Seth earns $\$ 6,600$ per month. Of that, $\$ 792$ is withheld for taxes.
What percent of Seth's earnings is withheld?
Think: What percent of \$6,600 is \$792?
Let $p$ represent the unknown percent.
$p \cdot$ $\qquad$
$\qquad$ Write an equation.

$$
\begin{array}{ll}
p=\frac{792}{} & \text { Divide to isolate } p . \\
p= & \text { Solve for } p .
\end{array}
$$

How do you change a decimal to a percent? $\qquad$ of Seth's earnings are withheld for taxes.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON Ready to Go On? Problem Solving Intervention

 6-6 Applications of PercentsYou can use equations to solve many problems with percents.
Including the 5\% sales tax, you would have to pay $\$ 189.00$ for a bicycle. What is the price of the bicycle?

## Understand the Problem

1. What percent of the price is added on for tax?
2. What are you asked to find?

## Make a Plan

3. If $x$ is the price before tax, write an expression for how many dollars the tax comes to.
4. Use your answer to Exercise 3 to write an expression for what you pay for the bike, including tax. What amount is that equal to?
5. Use your answers to Exercise 4 to write an equation you can use to find $x$, the price of the bike.

## Solve

6. Use your equation from Exercise 5 to solve the problem.

## Check

7. Check by starting with your answer and finding the cost after tax.

## Find the price before tax.

8. For a jacket, you pay $\$ 107$, including $7 \%$ sales tax.
9. For a video game, you pay $\$ 64.80$, including $8 \%$ sales tax.
10. For a guitar, you pay $\$ 213$, including $6.5 \%$ sales tax.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON Ready to Go On? Skills Intervention <br> 6-7 Simple Interest

Simple interest is one kind of interest paid for the use of money. The formula $I=P r t$ is used to calculate the amount of interest, where $P$ is the principal, $r$ is the rate of interest, or percent, and $t$ is the time.

## Finding Interest and Total Payment on a Loan

Maryanne borrowed $\$ 32,000$ from the bank to remodel her house.

## Vocabulary

simple interest
interest
principal
rate of interest

She plans to pay back the money in 7 years. The bank is lending the money at a simple interest rate of $7.5 \%$.
A. How much interest will Maryanne pay if she pays off the loan in 7 years?

What is the principal amount of the loan? $\qquad$
Write the interest rate, as a decimal. $\qquad$
What is the time length of the loan? $\qquad$
$I=P \cdot r \cdot t$
Use the formula.
$I=$ $\qquad$ - $\qquad$ Substitute known values.
I = $\qquad$ Multiply.

Maryanne will pay $\qquad$ in interest on the loan.
B. What is the total amount of money, A, Maryanne will pay the bank?

Use the formula: $P+I=A$
Substitute the value for the principal, $P$, from the original problem and the value for the interest, $I$, from Exercise A.
$\qquad$ $+$ $\qquad$ $=A$
$\qquad$ $=A$

Maryanne will repay a total of $\qquad$ .

## Finding the Rate of Interest

Martin borrowed \$6,500 for 4 years to buy a car. If Martin repaid a total of $\$ 7,865$, at what simple interest rate did he borrow the money?

$$
P+I=A \quad \text { What is the amount of interest paid? }
$$

$\qquad$ $+I=$ $\qquad$
$I=$ $\qquad$

Solve for 1 .
$\qquad$
$\qquad$ $=$ $\qquad$ -r
$\qquad$ $=r$ Solve for $r$.

Martin borrowed the money at an annual rate of $\qquad$ \%.
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON Ready to Go On? Problem Solving Intervention

## 6-7 Simple Interest

You can use mental math to solve some percent problems even when the numbers look complicated at first.

You borrow \$2,500 with simple interest. Two years later you pay off the loan by paying $\$ 2,980$. What was the annual simple interest rate?

## Understand the Problem

1. Complete to show what you know.

Borrowed: \$ $\qquad$ Paid back: \$ $\qquad$ Time: $\qquad$ years
2. What are you asked to find?

## Make a Plan

3. If you knew the number of dollars in interest you paid per year, how could you solve the problem?
4. If you knew the total amount of interest you paid, how could you find the amount of interest you paid per year?
5. How can you find the total amount of interest you paid?

## Solve

6. Use mental math to find the total amount of interest and the amount of interest per year.
7. Complete to compare the interest to the loan and to convert to a denominator of 100 .

Interest paid $\rightarrow$ : \$
Amount borrowed $\rightarrow: \overline{\$}=\overline{10,000}=\frac{}{100}$
8. What was the annual simple interest rate?

## Check

9. Round your answer to a whole percent and estimate to check.
$\qquad$
$\qquad$ Class $\qquad$

## SECTION

## Ready to Go On? Quiz

## $6 B$

## 6-5 Percent Increase and Decrease

 Find each percent increase or decrease to the nearest percent.1. from 30 to 41 $\qquad$ 2. from 90 to 73 $\qquad$
2. 125 to 59 $\qquad$ 4. from 87 to 100 $\qquad$
3. Playing on the school baseball team, Jake got 46 hits last year and only 37 hits this year. What is the percent decrease to the nearest tenth of a percent?
4. Suppose gasoline cost $\$ 2.89$ per gallon six months ago and it costs $\$ 3.19$ per gallon now. What would the percent increase be to the nearest tenth of a percent? $\qquad$
5. A pair of jeans that costs $\$ 89.59$ is on sale for $25 \%$ off. What is the sale price of the jeans?

## 6-6 Applications of Percents

Find the commission or sales tax to the nearest cent.
8. total sales: $\$ 16,000.00$
commission rate: $5.5 \%$ $\qquad$
10. total sales: $\$ 117.89$
sales-tax rate: 7.5\% $\qquad$
12. total sales: $\$ 359.01$
commission rate: 6\% $\qquad$
9. total sales: $\$ 9,500.00$ commission rate: $3.75 \%$ $\qquad$
11. total sales: $\$ 22.50$
sales-tax rate: 9.25\% $\qquad$
13. total sales: $\$ 3599.50$
sales-tax rate: 4.5\% $\qquad$
14. Jonvil sold $\$ 4,400$ worth of clothing last month and received a commission of $\$ 341$. What was her commission rate?

## 6-7 Simple Interest

Find the interest and the total amount, both to the nearest cent.
15. $\$ 1,450$ at $6 \%$ for 2 years interest:
total amount: $\qquad$
16. $\$ 899$ at $4 \%$ for 5 years interest:
total amount: $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> $6 B$

## Ready to Go On? Quiz continued

## 6-7 Simple Interest (continued)

17. $\$ 71$ at $2.5 \%$ for 10 years
interest: $\qquad$
total amount: $\qquad$
18. $\$ 520$ at $3.55 \%$ for 4 years
interest: $\qquad$ total amount: $\qquad$
19. $\$ 21,600$ at $9 \%$ for 12 years
interest: $\qquad$
total amount: $\qquad$
20. $\$ 2,130$ at $7 \%$ for 6.5 years
interest: $\qquad$
total amount: $\qquad$
21. Wilma puts $\$ 315$ into a savings account at her neighborhood bank. The interest rate is fixed at $4.5 \%$. After 2 years, how much interest will Wilma have earned? What will the total amount in her account be?
22. Jordon borrows $\$ 88$ at $12.5 \%$ annual interest. She pays off her debt after six months. What was the amount of her interest?
What was the total amount she had to pay back?
23. Abdul borrows $\$ 10,500$ for 5 years to buy a car. The annual interest rate is $8.25 \%$. What is the interest that he must pay? What is the total amount he has to pay back?
24. Gigi loans someone $\$ 225$ at $5.4 \%$ annual interest for four months. What interest will she earn? How much money will she be paid back in all?
25. The Happy Hammer Lumber Company borrowed $\$ 120,000$ at 3.5\% annual interest for 2.5 years. What interest did they have to pay? What was the total amount they had to pay back?
$\qquad$ Class $\qquad$

## SECTION

## Ready to Go On? Enrichment

## $6 B$ From Start to Finish

## Part I

Begin at START. Your goal is to reach FINISH. Each turn, find the percent increase ( + ) or decrease ( - ), using the two numbers in the square where you are located. Find the correct answer to the nearest percent one square up, down, left, or right (never diagonally) from where you are. Draw a line from your old square to the new square, which is now where you will be located. Continue until you reach FINISH. Always mark your path as you progress. You may use a calculator.

| START <br> from 70 to 103 | $+48 \%$ <br> from 115 to 19 | $-83 \%$ <br> from 75 to 58 | $-23 \%$ <br> from 29 to 99 | $+71 \%$ <br> from 84 to 65 |
| :---: | :---: | :---: | :---: | :---: |
| $+47 \%$ <br> from 65 to 29 | $-55 \%$ <br> from 44 to 65 | $-5 \%$ <br> from 77 to 62 | $+241 \%$ <br> from 37 to 39 | $+5 \%$ <br> from 470 to 62 |
| $+55 \%$ <br> from 6 to 0 | $+5 \%$ <br> from 19 to 123 | $-19 \%$ <br> from 41 to 43 | $+111 \%$ <br> from 97 to 79 | $-87 \%$ <br> from 150 to 317 |
| $-100 \%$ <br> from 200 to 166 | $+547 \%$ <br> from 258 to 3 | $-99 \%$ <br> from 18 to 19 | $-18 \%$ <br> from 31 to 259 | $+211 \%$ <br> from 64 to 11 |
| $-17 \%$ <br> from 1,440 to 0 | $-97 \%$ <br> from 320 to 266 | $+6 \%$ <br> from 99 to 827 | $+735 \%$ <br> from 350 to 60 | $-83 \%$ <br> FINISH |

## Part II

Now let's do a check on your work. Identify all the squares your path did not touch. Add the positive percents located at the top of these squares and subtract the negative ones. The result will be $100 \%$ if all your work is correct, and you will have solved the puzzle.
$\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 7-1 Points, Lines, Planes, and Angles

The building blocks of geometry are the point, line, and plane.
A right angle measures $90^{\circ}$, an obtuse angle measures greater than $90^{\circ}$ but less than $180^{\circ}$, and an acute angle measures less than $90^{\circ}$. Two acute angles are said to be complementary if their measures add to $90^{\circ}$.

Use the figure to the right to answer each question.
Naming Points, Lines, and Planes
A. Name five points in the figure.

Vocabulary
point
line
plane
right angle obtuse angle acute angle complementary angles

How many letters name a point? $\qquad$
Name 3 points. $\qquad$
B. Name a line in the figure.


How many points name a line? $\qquad$
Name a line in the figure. $\qquad$
C. Name a plane in the figure.

How many points name a plane?
What figure do three points in a plane form? $\qquad$
Name a plane. $\qquad$

## Classifying Angles

A. Name a right angle in the figure.
How many degrees are in a right angle?
What is the measure of an acute angle?

Name a right angle. $\qquad$ Name two acute angles.
D. Name a pair of complementary angles in the figure.

The sum of the measures of complementary angles total $\qquad$ .

Name two complementary angles.
$\qquad$ Date $\qquad$ Class $\qquad$

Parallel lines are two lines in a plane that never meet and perpendicular lines intersect at $90^{\circ}$ angles. A line that intersects two or more lines is called a transversal. When two parallel lines are intersected by a transversal, the acute angles and obtuse angles that are formed are congruent and any acute angle is

## Vocabulary

parallel lines perpendicular lines transversal supplementary to any obtuse angle.

## Identifying Congruent Angles Formed by a Transversal

Lines $m$ and $n$ are parallel. Use a protractor to measure the angles formed when the transversal intersects the parallel lines. Which angles seem to be congruent?

Find the measure of:
$\angle 1$ $\qquad$ $\angle 2$ $\qquad$ $\angle 3$ $\qquad$ $\angle 4$ $\qquad$
$\angle 5$ $\qquad$ $\angle 6$ $\qquad$ $\angle 7$ $\qquad$ $\angle 8$ $\qquad$
Which angles are congruent to $\angle 2$ ? $\qquad$ and $\qquad$
Which angles are congruent to $\angle 1$ ? $\qquad$ and $\qquad$


## Finding Angle Measures of Parallel Lines Cut by Transversals

 In the figure, line $p \|$ line $q$. Find the measure of each angle.A. $\angle 7$

What type of angle is $\angle 7$ ? $\qquad$
What is the measure of the angle opposite $\angle 7$ ? $\qquad$
When parallel lines are cut by a transversal, all obtuse angles are $\qquad$ —.

So, $\mathrm{m} \angle 7=$ $\qquad$ .
B. $\angle 5$

When parallel lines are cut by a transversal, any $\qquad$ angle formed is supplementary to any $\qquad$ angle formed.

What is the sum of two supplementary angles? $\qquad$
$\angle 5$ is $\qquad$ to $118^{\circ}$.
$m \angle 5+118^{\circ}=$ $\qquad$ Write an equation to find $\mathrm{m} \angle 5$.
$m \angle 5 \stackrel{-118^{\circ}}{=}$
Subtract.
$\qquad$ Date $\qquad$ Class $\qquad$

## Lessom Ready to Go On? Skills Intervention

## 7-3 Angles in Triangles

The Triangle Sum Theorem states that the angle measures of any triangle in a plane add up to $180^{\circ}$.

## Finding Angles in Acute and Right Triangles

Vocabulary
Triangle Sum
Theorem
A. Find $x$ in the acute triangle.

What is the sum of the angles in an acute triangle? $\qquad$

$$
\begin{aligned}
55^{\circ}+75^{\circ}+x^{\circ} & = \\
130^{\circ}+x^{\circ} & =180^{\circ}
\end{aligned}
$$

Add.


What should you subtract from each side to isolate $x$ ?

$$
x^{\circ}=
$$

$\qquad$
$\qquad$ What is the measure of $x$ ?
B. Find $y$ in the right triangle.

What is the measure of a right angle? $\qquad$
What is the sum of the angles in a right triangle? $\qquad$
$50^{\circ}+\frac{}{+y^{\circ}=180^{\circ}} \begin{array}{r}140^{\circ}+y^{\circ}=180^{\circ}\end{array}$

## Add


$\qquad$
$\qquad$ What do you subtract from each side?

$$
y^{\circ}=
$$

Finding Angles in an Isosceles Triangle
Find the angle measures in the isosceles triangle.
In an isosceles triangle two angles have
$82^{\circ}+\ldots$

Fill in the missing information.
Combine like terms.

$82^{\circ}+\quad=180^{\circ}$
First, undo the addition.

$$
\begin{aligned}
2 m^{\circ} & =98^{\circ} \\
\frac{2 m^{\circ}}{-} & =\frac{98^{\circ}}{-} \quad \text { Now, undo the multiplication. } \\
m^{\circ} & =-\quad \text { What does } m \text { equal? }
\end{aligned}
$$

$\qquad$ Date $\qquad$ Class $\qquad$

## Lssow <br> Ready to Go On? Skills Intervention

## 7-4 Classifying Polygons

A polygon is a closed plane figure formed by three or more segments. A regular polygon has sides and angles of equal measure. The sum of the angle measures in any $n$-gon is $180^{\circ}(n-2)$.
Quadrilaterals are given names based on certain properties.
Trapezoid: one pair of parallel sides
Rectangle: 4 right angles
Rhombus: 4 congruent sides

Vocabulary
parallelogram
polygon
rectangle
regular polygon
rhombus
square
trapezoid

Parallelogram: 2 pairs of parallel sides
Square: 4 congruent sides and 4 right angles

## Finding Sums of the Angle Measures in Polygons

A. Find the sum of the angle measures in a parallelogram.

Draw a diagonal line from opposite corners.
How many triangles are formed? $\qquad$


How many degrees are in a triangle? $\qquad$
$2 \cdot 180^{\circ}=$ $\qquad$
There are $\qquad$ in a parallelogram.
B. Find the sum of the angle measures in a hexagon.

Divide the figure into triangles.
How many triangles are formed? $\qquad$

$\qquad$ - $180^{\circ}=$ $\qquad$
There are $\qquad$ in a hexagon.

Finding the Measure of Each Angle in a Regular Polygon Find the angle measures in the regular hexagon.
What is true about the angles and sides in a regular polygon?

Use the formula $180^{\circ}(n-2)$.


| $6 z^{\circ}$ | $=180^{\circ}\left(\_-2\right)$ |  | What is $n ?$ |
| ---: | :--- | ---: | :--- |
| $6 z^{\circ}=180^{\circ}\left(\_\right)$ |  | Subtract. |  |
| $6 z^{\circ}=$ | Multiply. |  |  |
| $\frac{6 z^{\circ}}{-}=\frac{720^{\circ}}{-}$ |  | Divide to isolate $z$. |  |
| $z^{\circ}$ | $=-$ |  | What is the measure of each angle? |

$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 7-5 Coordinate Geometry

Slope describes how steep a line is.
Slope $=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{\text { rise }}{\text { run }}$

## Finding the Slope of a Line

Determine if the slope of each line is positive, negative, 0 , or undefined.
A. $\overleftrightarrow{A B}$

Does the line rise up to the left or right? $\qquad$
What is the vertical change between point $A$ and point $B$ ? $\qquad$ What is the horizontal change between point $A$ and point $B$ ?
slope $\overleftrightarrow{A B}=\frac{\text { rise }}{\text { run }}=\overline{\overline{2}}$
The slope is $\qquad$ .
B. $\overleftrightarrow{A D}$

The slope of a horizontal line is $\qquad$ .

c. $\overleftrightarrow{E F}$

The slope of a vertical line is $\qquad$ .

Finding Perpendicular and Parallel Lines Which lines are parallel? Which lines are perpendicular?
Parallel lines have slopes that are $\qquad$ _.

Perpendicular lines have slopes whose product equals $\qquad$ .
Find the slope of $\overleftrightarrow{S T} . \overline{1}=$ $\qquad$
Find the slope of $\overleftrightarrow{U V} .-\frac{2}{2}$


Find the slope of $\overleftrightarrow{W X} .-\overline{\overline{3}} \quad$ Find the slope of $\overleftrightarrow{Y Z}$. $\qquad$
Which lines have equal slopes? $\qquad$
Are these lines parallel or perpendicular?
What is the product of the slope of lines $Y Z$ and $U V ?-\overline{\overline{3}} \cdot \frac{-3}{-}=$ $\qquad$
Are these lines parallel or perpendicular or neither? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## 7-1 Points, Lines, Planes, and Angles

 Refer to the figure.1. Name two pairs of complementary angles.
2. Name three pairs of supplementary angles above line $\overline{A E}$.
$\qquad$
$\qquad$
3. Name one right angle. $\qquad$
4. How many rays are in the figure? $\qquad$
5. Name the segments identified on line $\overline{A E}$.
$\qquad$

6. How many points, in addition to those identified, are located on plane $A B C$ ?

Refer to the figure.
7. Name the right angle.
8. Name two acute angles. $\qquad$
9. Name two obtuse angles. $\qquad$


7-2 Parallel and Perpendicular Lines In the figure, line $t|\mid$ line $r$. Find the measure of each angle.
10. $\angle 1$ $\qquad$ 11. $\angle 2$ $\qquad$
12. $\angle 3$ $\qquad$ 13. $\angle 4$ $\qquad$

## 7-3 Angles in Triangles

 Find $x$ in each triangle.14. $\qquad$ 15. $\qquad$

$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> 7A

Ready to Go On? Quiz continued

## 7-3 Angles in Triangles (continued)

Find $x$ in each triangle.
16. $\qquad$ 17. $\qquad$


## 7-4 Classifying Polygons

Give all the names that apply to each figure
18. $\qquad$ 19. $\qquad$


## 7-5 Coordinate Geometry

Graph the quadrilaterals with the given vertices. Give all of the names that apply to each quadrilateral.
20. $A(4,4), B(4,-2), C(-3,-2)$,
$D(-2,4)$

21. $P(2,4), Q(2,-1), R(-1,-1)$,
$S(-1,4)$


Name the coordinates of the missing vertex.
22. rectangle $A B C D$ with
$A(-3,2), B(4,2), C(4,-3)$
23. parallelogram $P Q R S$ with
$P(-3,2), Q(-1,4), R(2,-1)$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> Ready to Go On? Enrichment

## 7A Single Point Perspective

Perspective is a technique used to help make a drawing of an object appear the way the actual object appears to the human eye. A main feature of perspective drawing is that some edges that are parallel in an actual object are not drawn as parallel line segments. These non-parallel lines converge at a "vanishing point."

These are the steps for drawing a three-dimensional rectangular solid with single point perspective.

## Steps



1. Draw rectangle $A B C D$.
2. Choose any vanishing point $V$ you wish.
3. Draw light lines from each vertex of rectangle $A B C D$ through point $V$.
4. Choose a point $E$ on line $A V$. Draw a line from $E$ that is parallel to $A B$ and intersects $B V$ at $F$.
5. Draw $F G$ parallel to $B C$.
6. Darken lines $A E, B F$, and $C G$.

You can now apply the same technique to create a threedimensional drawing of the letter L. Use vanishing point $V$. You do not have to label any other vertex. When you are finished drawing, shade the two inside surfaces of the figure.

$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 7-6 Congruence

Two figures are congruent if all corresponding sides and angles are congruent. When writing congruence statements between a pair of polygons, the vertices in the second figure are written in order of correspondence with the first figure.

## Writing Congruence Statements

Write a congruence statement for the pair of polygons.


In polygon \#2, which angle is congruent and in the same position as $\angle W$ in polygon \#1? $\qquad$
In polygon \#2, which angle is congruent and in the same position as
$\angle X$ in polygon \#1? $\qquad$
Complete the following statements.
$\angle Y \cong \angle K$ so $\qquad$ corresponds to $\angle K$.
$\angle Z \cong$ $\qquad$ so $\angle Z$ corresponds to $\qquad$ .

Complete the statement: trapezoid $W Z Y X \cong$ trapezoid $\qquad$ .

## Using Congruence Relationships to Find Unknown Values

 pentagon $H I J K L \cong$ pentagon TPQRSA. Find $m$.

What angle corresponds to $\angle K$ ? $\qquad$
What is the measure of these angles? $\qquad$
$5 m=100 \quad$ Write an equation to find $m$.

$\frac{5 m}{-}=\frac{100}{-}$
$m=$ $\qquad$ Solve for $m$.
B. Find $n$.

What side does $n+10$ correspond to? $\qquad$

[^0]
$\qquad$ Class $\qquad$

## LESSOM Ready to Go On? Skills Intervention <br> 7-7 Transformations

Three types of transformations are:
Translation: slides a figure along a line without turning.
Rotation: turns the figure around a point, called the center of rotation.
Reflection: flips the figure across a line to create a mirror image.

## Identifying Transformations

Identify each as a translation, rotation, reflection, or none of these.

Vocabulary transformation translation rotation center of rotation reflection image
A. What point corresponds to $A$ ? $\qquad$
Can you turn the original figure to match the translated figure? $\qquad$


Can you slide the original figure to match the translated figure? $\qquad$
Can you flip the original figure to match the translated figure? $\qquad$ What type of transformation is shown? $\qquad$
The image of a translation, rotation, or reflection is $\qquad$ to the original figure.
B. Was triangle $Z X Y$ rotated? $\qquad$
What was done to get triangle $X^{\prime} Y^{\prime} Z^{\prime}$ ? $\qquad$


## Graphing Transformations

If triangle $A B C$ is translated 4 units right, what are the coordinates of the image of point $A$ ? $\qquad$
Translate triangle $A B C 4$ units right and label the image $A_{1} B_{1} C_{1}$.
If triangle $A B C$ is rotated $180^{\circ}$ clockwise about $(0,0)$, the rotated image of side $B C$ will be $\qquad$ to side $B C$.

Rotate triangle $A B C 180^{\circ}$ clockwise about $(0,0)$ and label the image $A_{2} B_{2} C_{2}$.


If triangle $A B C$ is reflected across the $x$-axis, what are the coordinates of the image of point $C$ ? $\qquad$
Reflect triangle $A B C$ across the $x$-axis and label the image $A_{3} B_{3} C_{3}$.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON <br> Ready to Go On? Skills Intervention

### 7.8 Symmetry

A figure with line symmetry can be split into two mirror images by drawing a line through the figure. This line is called the line of symmetry.
A figure with rotational symmetry can be turned around a point so it coincides with itself.

Vocabulary<br>line symmetry<br>line of symmetry rotational symmetry

## Drawing Figures with Line Symmetry

Complete each figure. The dashed line is the line of symmetry.
If you fold a figure on the line of symmetry, what is true about each half of the figure? $\qquad$ .
A. Draw the other half of the figure.
B. Draw the other half of the figure.

C. Complete the figure.

D. Complete the figure.


## Drawing Figures with Rotational Symmetry

Complete the figure. The point is the center of rotation.
The amount of rotation must be less than $\qquad$ degrees.

Rotational symmetry means that you can rotate the figure around some point so that the figure $\qquad$ with itself.
A. In a 3-fold rotation the figure will
B. In a 6-fold rotation the figure will coincide with itself every $\qquad$ degrees.
Complete the figure. coincide with itself every $\qquad$ degrees.
 Complete the figure.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 7-9 Tessellations

A tessellation is a repeating pattern of polygons that completely covers a plane.

## Example of a Tessellation

Is the pattern shown a tessellation? $\qquad$
How do you know? $\qquad$
$\qquad$
$\qquad$
What shapes makes up the pattern? $\qquad$


Add to the pattern using the same shapes.

## Creating a Tessellation

A. Create a tessellation with parallelogram $W X Y Z$.

Do the quadrilaterals overlap each other in a tessellation? $\qquad$
Draw a tessellation using the quadrilateral.

B. Use the pentagon shown below to demonstrate that a tessellation of regular pentagons is impossible.


A tessellation is not possible because there are $\qquad$ between the figures.
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

## Ready to Go On? Quiz

## 7B

## 7-6 Congruence

In the figure, triangle $D E F \cong$ triangle $R S T$.

1. Find $x$. $\qquad$
2. Find $z$. $\qquad$


In the figure, quadrilateral $A B C D \cong$ quadrilateral EFGH
3. Find $r$. $\qquad$
4. Find $s$. $\qquad$
5. Find $t$. $\qquad$


## 7-7 Transformations

Identify each as a translation, reflection, rotation, or none of these.
6.

$\qquad$
8.


7. $A$

$\qquad$
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> 7B

Ready to Go On? Quiz continued

7-7 Transformations (continued)
Quadrilateral $A B C D$ has vertices at $A(-7,5) B(-2,4), C(-2,2)$, $D(-4,1)$. Find the coordinates of the image of each point after each transformation.
9. translation 5 units right, point $B$
10. reflection over the $y$-axis, point $C$
11. reflection across the x-axis, point $A$

Quadrilateral $J K L M$ has vertices $J(0,0), K(5,0), L(4,-4)$, $M(0,-6)$. Find the coordinates of the image of each point after each transformation.
13. $90^{\circ}$ clockwise rotation about $(0,0)$, point $K$
$\qquad$
15. translation 5 units up, point $L$

## 7-8 Symmetry

17. Complete the figure. The dashed line is the line of symmetry.

18. reflection across the $y$-axis, point $J$
19. $180^{\circ}$ clockwise rotation about $(0,0)$, point $M$

## 7-9 Tessellations

18. Two shapes have been cut out of the square and added on the opposite side. Will this figure tessellate?

$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Enrichment

## 7B Frieze Designs

A frieze is a pattern that repeats in one direction. It consists of repeated copies of a single figure or block. Frieze patterns, also called border patterns, can be found along the upper edge of wallpaper, on pottery, as decorative design on buildings, and elsewhere. An example of a frieze is below.


As you can see, the same triangle is repeated and it has been reflected horizontally. Name the translation used to make the frieze below.


Five basic transformations used for friezes are listed below at the right. Match each transformation with the frieze that incorporates it.
A.







B.




C.


D.

E.


Rotation $\qquad$
Translation $\qquad$
Reflection Across
a Horizontal Line $\qquad$
Reflection Across a Vertical Line $\qquad$
Glide Reflection $\qquad$
$\qquad$
$\qquad$

## LESSON

Ready to Go On? Skills Intervention

## 8-1 Perimeter and Area of Rectangles and Parallelograms

To find the perimeter of a figure, add the lengths of all its sides.
Finding the Perimeter of Rectangles and Parallelograms
Find the perimeter of the figure.

Vocabulary perimeter area
$p=2 \_+2 \_\quad$ Write the formula for the perimeter of a rectangle.
$p=2\left(\__{-}\right)+2\left(\__{-}\right) \quad$ What are the values for $b$ and $h$ ?
$p=32+24 \quad$ Multiply.
$p=$ $\qquad$ Add.


The perimeter is $\qquad$ units.
The area of a rectangle or parallelogram is found by multiplying the base times the height, or bh.

## Using a Graph to Find Area

Graph the figure with the given vertices. Then find the area of the figure. $(-3,-2),(1,-2),(1,1),(-3,1)$
Plot each point on the graph.
What is the base? __ What is the height?
$A=$ $\qquad$ Write the area formula.
$A=4 \cdot 3$
Substitute the length of the base and height.
$A=$ $\qquad$ $u_{n i t s}{ }^{2}$

Multiply.


Finding Area and Perimeter of a Composite Figure
15
Find the perimeter and area of the figure.
How do you find the perimeter? $\qquad$
Complete the formula.
$p=15+$ $\qquad$ $+7+$ $\qquad$ $+5+$ $\qquad$ $+3+8$
$p=$ $\qquad$ units
$\qquad$
What is the formula for the area of a rectangle?
$A=\left(15 \cdot \_\right)+\left(4 \cdot \_\right)$
$A=120+$
$A=$ $\qquad$ units ${ }^{2}$
$\qquad$
Find the area of each rectangle.

Add.
15

$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 8-2 Perimeter and Area of Triangles and Trapezoids

To find the perimeter of a triangle or trapezoid, find the total of the side lengths. Use these formulas to find the area.
Area of Triangle: $A=\frac{1}{2} b h \quad$ Area of Trapezoid: $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$


Finding the Perimeter of Triangles and Trapezoids Find the perimeter of each figure.

## A. Find the perimeter of the triangle.



Define perimeter.
$p=5+\ldots+\ldots \quad$ Fill in the blanks.
$p=$ __ units Add. What is the perimeter?
B. Find the perimeter of the trapezoid.

How do you find perimeter?
$p=8+$ $\qquad$ $+15+$ $\qquad$ Complete the problem.
$p=\ldots$ units Add.


Finding the Area of Triangles and Trapezoids
Graph and find the area of the figure with the given vertices: $(-2,1),(1,7),(4,1)$.

Plot and connect the points $(-2,1),(1,7)$ and $(4,1)$. What is the base? $\qquad$
$A=$ $\qquad$
$A=\frac{1}{2}$. $\qquad$ - $\qquad$
$A=$ $\qquad$ units ${ }^{2}$

What is the height? $\qquad$
What is the formula for the area of a triangle?

Substitute the values for $b$ and $h$.

$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

Ready to Go On? Problem Solving Intervention

## 8-2 Perimeter and Area of Triangles and Trapezoids

The Pythagorean Theorem allows you to find the length of one side of a right triangle, if you know the length of the other two sides.

Tamara has a house built on a corner lot shaped like a right triangle. The legs of the triangle measure 45 ft and 50 ft . She wants to put up a fence along the entire boundary of her property. Find out how long the fence will be to the nearest tenth of a foot.

## Understand the Problem

1. What is the problem asking you to do?
2. What useful information is given about the size and shape of the lot?

## Make a Plan

3. What additional information do you need before you can find the perimeter?
4. How can you find that information using what you already know?

Solve
5. Set up an equation using the Pythagorean Theorem and the information you know. Then answer the question.
$a^{2}+b^{2}=c^{2}$
$(\square)^{2}+(\square)^{2}=c^{2}$

$\qquad$ $\approx c$

The third side is about $\qquad$ ft . The amount of fencing needed is approximately $\qquad$ $+$ $\qquad$ $+$ $\qquad$ $=$ $\qquad$ ft .

## Check

6. The hypotenuse of a right triangle is longer than either leg but less than the sum of the legs. What three inequalities tell you whether the length you found for the third side of the lot is reasonable?
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 8-3 Circles

A circle is a set of points in a plane that are a fixed distance from a given point, called the center.


| Vocabulary |
| :--- |
| circle |
| diameter |
| radius |
| circumference |

The circumference is the distance around a circle, $C=\pi d$ or $C=2 \pi r$. The formula for the area of a circle is $A=\pi r^{2}$.

## Finding the Circumference of a Circle

Find the circumference of each circle both in terms of $\pi$ and to the nearest tenth of a unit. Use 3.14 for $\pi$.
A. circle with radius 6 cm
$C=$ $\qquad$
$C=2 \pi(\ldots)$
$C=$ $\qquad$ $\pi \mathrm{cm}$

Using a calculator $12 \pi$ is $\approx$ $\qquad$ cm.

What is 37.68 rounded to the nearest tenth? $\qquad$
B. circle with diameter 2.5 in.

$$
\begin{aligned}
C & = \\
C & =\pi(\ldots \\
C & =2.5 \pi \mathrm{in} \\
& \approx \quad \mathrm{in} .
\end{aligned}
$$

Write the formula for the circumference of a circle, if you know the radius.

What do you substitute for $r$ ?
Multiply. circle, if you know the diameter.
Substitute the value for $d$ into the equation.
Multiply.
Use a calculator. Round to the nearest tenth.

## Finding the Area of a Circle

Find the area of the circle both in terms of $\pi$ and to the nearest tenth. Use 3.14 for $\pi$.
circle with diameter 2.5 in .

$$
\begin{aligned}
& A=\pi r^{2} \\
& r=\frac{d}{2}=\overline{2}=\quad \quad \begin{array}{l}
\text { What is the relationship between the } \\
\text { radius and diameter of a circle? }
\end{array}
\end{aligned}
$$


$A \approx$ $\qquad$ $i n^{2}$

Substitute the value of $r$ into the formula.
What is the area to the nearest tenth?
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

Ready to Go On? Quiz

## $8 A$

## 8-1 Perimeter and Area of Rectangles and Parallelograms

 Find the perimeter of each figure.
2.


Graph and find the area of each figure with the given vertices.
3. $(-1,2),(2,-1),(-1,-1),(2,2)$
4. $(-3,2),(-1,2),(0,-1),(2,-1)$

5. Find the area and perimeter of the figure.
$\qquad$
$\qquad$


7 ft


## 8-2 Perimeter and Area of Triangles and Trapezoids

6. Andrea drew a design on her T-shirt in the shape of a right triangle. The legs of the triangle were 4 inches and 6 inches. She sewed ribbon along the entire edge of the triangle. To the nearest tenth of an inch, how much ribbon did she use? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> $8 A$

Ready to Go On? Quiz continued

## 8-2 Perimeter and Area of Triangles and Trapezoids (continued)

 Find the perimeter of each figure.7. 


8.


Graph and find the area of each figure with the given vertices.
9. $(-2,-1),(2,-1),(1,3)$
10. $(3,2),(3,-1),(-1,2),(-2,-1)$



## 8-3 Circles

Find the area and circumference of each circle, both in terms of $\pi$ and to the nearest tenth. Use 3.14 for $\pi$.
11. radius $=14 \mathrm{~cm}$
$\qquad$
$\qquad$
13. Graph a circle with center $(1,0)$ that passes through $(1,2)$. Find the area and circumference, both in terms of $\pi$ (and to the nearest tenth). Use 3.14 for $\pi$.
$\qquad$
$\qquad$
$\square$
12. diameter $=8$ yd
$\qquad$
$\qquad$

$\qquad$ Date $\qquad$ Class $\qquad$

SECTION
Ready to Go On? Enrichment

## 8A Tangrams

The tangram is a type of puzzle that originated in China over 300 years ago. A tangram consists of seven figures: five triangles, one square and one parallelogram. The challenge is to recreate a shape that is presented to you by using all seven of the "tans." They must lay flat, they must touch, and they may not overlap.

Create your own tangram set by using a $4 \times 4$ grid and cutting out the seven pieces as indicated in the diagram to the right.


1. What fraction of the entire area of the tangram set is represented by each of the seven shapes?
2. Describe the basic shape that all seven shapes are made up of.
3. Look at the figure of the cat. See if you can reproduce it using your tangram set. A partial solution is shown on the right to give you a head start.
4. Is there any figure that can be made with a tangram set created from a 4-in. square that
 cannot be made with a tangram set created from a 12-in. square? Explain.
$\qquad$
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 8-4 Drawing Three-Dimensional Figures

The drawings of three-dimensional objects show the faces, edges, and vertices of the objects. A face is a flat surface, an edge is where two faces meet, and a vertex is where three or more edges meet. The orthogonal view of a figure shows how the figure looks when seen from different perspectives such as the front, top, and side. Studying an orthogonal view of a figure can

Vocabulary
face
edge
vertex
orthogonal views give you the information needed to draw the figure in three dimensions.

## Identifying Vertices, Edges, and Faces

Name the vertices, edges, and faces of the threedimensional figure shown.

How many vertices, edges, and faces are there?

Name the vertices $\qquad$
Name the edges. $\qquad$
Name the faces $\qquad$


B

## Drawing a Figure When Given Different Perspectives

Draw the figure shown in the front, top, and side view.

Which view tells you that the base is made


Front


Top


Right Side up of 4 cubes? $\qquad$
How many layers of cubes are there?
Look at the side view. How many cubes does it show in the front row of the second level? $\qquad$
How many cubes are in the back row of the second level? $\qquad$
Complete the drawing of the figure. Every vertex you draw should be on a dot.
$\qquad$ Class $\qquad$

## LESSON <br> Ready to Go On? Skills Intervention

## 8-5 Volume of Prisms and Cylinders

A prism is a three-dimensional figure named for the shape of its base. A cylinder is a geometric solid with two circular bases. The volume of a solid is the number of cubic units needed to fill the figure. Use these formulas to find the volume.

Vocabulary
prism
cylinder

Prism: $V=B h \quad$ Cylinder: $V=B h=\left(\pi r^{2}\right) h$
Finding the Volume of Prisms and Cylinders
Find the volume to the nearest tenth of a unit.
A. What shape is the base of the figure? $\qquad$
How do you find the area of a rectangle? $\qquad$
$B=2 \cdot 4=$ $\qquad$ $\mathrm{m}^{2}$ Find the area of the base.
$V=$ $\qquad$ What is the formula for the volume of a prism?

$V=8$ •
Substitute known values into the formula.
$V=\ldots \mathrm{m}^{3}$
What is the volume?
B. What shape is the base of the figure? $\qquad$
How do you find the area of the base?
What is the length of the radius? $\qquad$
$B=\pi\left(6^{2}\right) \quad$ Find the area of the base.
$B=$ $\qquad$ $m^{2}$
$V=\ldots \quad$ Write the formula for the volume of a cylinder.
$V=$ $\qquad$ - $\qquad$ What values do you substitute for $B$ and $h$ ?
$V=$ $\qquad$ $\pi$

Multiply.
$V \approx$ $\qquad$ $\mathrm{m}^{3}$

Multiply.
C. What shape is the base of the figure? $\qquad$

How do you find the area of a triangle? $\qquad$

$B=\frac{1}{2} \cdot \ldots \quad \mathrm{ft}^{2} \quad$ What is the area of the base?

$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 8-6 Volume of Pyramids and Cones

A pyramid is named for the shape of its base. A cone has a circular base. The height of a pyramid or cone is the distance from the highest point to the base along a perpendicular line. Use these formulas to calculate volume.

Vocabulary
pyramid
cone

Pyramid: $V=\frac{1}{3} B h \quad$ Cone: $V=\frac{1}{3} \pi r^{2} h$
Finding the Volume of Pyramids and Cones Find the volume.
A. What type of base does the figure have? $\qquad$
How do you find the area of the base? $\qquad$
$B=6 \cdot 6=36 \mathrm{in}^{2}$

$V=\frac{1}{3} B h \quad$ In the volume formula what does the $h$ represent?

What does the $B$ represent? $\qquad$
$V=\frac{1}{3}(\ldots) \quad$ What values do you substitute for $B$ and $h$ ? $V=\ldots \quad$ in $^{3} \quad$ What is the volume of the pyramid?
B. What type of figure is shown? $\qquad$
What shape is the base? $\qquad$
How do you find the area of the base?
Find the area of the base. $A=\pi_{-}{ }^{2}=\__{-} \pi \mathrm{ft}^{2}$


What is the formula for the volume of a cone? $\qquad$
Substitute for $B$ and $h . \quad V=\frac{1}{3}\left(\ldots \pi \cdot \_\right)$

$$
\begin{array}{lll}
V=\_\pi & & \text { Use } 3.14 \text { for } \pi . \\
V=\_\mathrm{ft}^{3} & \text { Multiply. }
\end{array}
$$

$\qquad$ Class $\qquad$

LESSON
Ready to Go On? Skills Intervention

## 8-7 Surface Area of Prisms and Cylinders

Surface area, $S$, is the sum of the areas of all surfaces of a figure. A lateral surface is the curved surface of a cylinder.
Prism: $S=2 B+F$
Cylinder: $S=2 \pi r^{2}+2 \pi r h$

## Finding Surface Area

Find the surface area of the figure.
A. What shape is the figure?

What is the formula for the surface area? $S=$ $\qquad$ $+$ $\qquad$
What is the radius of the figure? $\qquad$
What is the height of the figure? $\qquad$
$S=2 \pi r^{2}+2 \pi r h$


Substitute values for $r$ and $h$.
Vocabulary surface area lateral surface lateral face

Follow the order of operations.
Multiply.
Add.

$S=$ $\qquad$ $\pi+108 \pi$
$S=$ $\qquad$ $\pi$

If you use 3.14 for $\pi$, the surface area of the figure is approximately $\qquad$ $i n^{2}$
B. What shape is the figure? $\qquad$

$S=2 B+P h$
What shapes make up the base?
What shape makes up the lateral face (the parallelograms that connect the bases)? $\qquad$

How do you find the area of the base? $\qquad$ formula?
In the formula, $P$ represents the
base $\qquad$ and $h$
represents $\qquad$ .
$S=2 B+P h$
$S=2\left(\frac{1}{2} \cdot 6 \cdot 4\right)+(\ldots)$
$S=2(\ldots)+$
Substitute values into the formula.
$S=$ $\qquad$
$\qquad$
Multiply.
$S=\ldots \mathrm{cm}^{2}$
Multiply.
Add.
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON

## Ready to Go On? Skills Intervention

## 8-8 Surface Area of Pyramids and Cones

The slant height of a pyramid or cone is measured along its lateral surface. A regular pyramid has a regular polygon as its base and all lateral faces are congruent. In a right cone, the tip of the cone is directly above the center of the base. Use these formulas to find the surface area.

Pyramid: $S=B+\frac{1}{2} P \ell \quad$ Cone: $S=\pi r^{2}+\pi r \ell$

## Finding Surface Area

Find the surface area.
A. What is the name of the figure? $\qquad$
In the formula $S=B+\frac{1}{2} P \ell, B$ represents the ___ of the base.
How do you find the area of the base? $\qquad$
How do you find the perimeter, $P$, of the base? $\qquad$
What is the slant height, $\ell$, of the pyramid? $\qquad$
Write the surface area formula.
$S=$ $\qquad$ $+\frac{1}{2}$ $\qquad$
$S=(14 \cdot \ldots)+\frac{1}{2}(\ldots)$
$S=(\square)(\square)$
$S=$ $\qquad$ $i n^{2}$

Substitute known values.
Multiply.
Multiply.
B. What is the name of the figure shown? $\qquad$
In the formula $S=\pi r^{2}+\pi r \ell$, what does $r$ represent? $\qquad$
What is the slant height $\ell$ ? $\qquad$
$S=$ $\qquad$
$S=\pi()^{2}+\pi(-)(\square)$
Write the formula.
Substitute values into the formula.
$S=$ $\qquad$
$S=$ $\qquad$ Multiply.

Add.
$S \approx$ $\qquad$ $\mathrm{cm}^{2}$

## Vocabulary

slant height regular pyramid right cone


Use 3.14 for $\pi$.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

Ready to Go On? Skills Intervention

## 8-9 Spheres

A sphere is a set of points in three dimensions that are a fixed distance from a given point.
Volume Formula Surface Area Formula
$V=\frac{4}{3} \pi r^{3}$
$S=4 \pi r^{2}$

Vocabulary
sphere
hemisphere
great circle

## Finding the Volume of a Sphere

Find the volume of a sphere with radius 2 ft , both in terms of $\pi$ and to the nearest tenth of a unit.

What is the formula for the volume of a sphere? $V=$ $\qquad$
What value will you substitute for $r$ ?

$$
V=\frac{4}{3} \pi(\ldots)^{3}
$$

Simplify the power.

$$
V=\frac{4}{3} \pi
$$

Multiply.
$V=\overline{\overline{3}} \pi$
Use 3.14 for $\pi$.
$V \approx$ $\qquad$ $\mathrm{ft}^{3}$

The volume of a sphere with a radius of 2 ft is $\qquad$ .

The surface area of a sphere is 4 times the area of a great circle. A great circle is the edge of a hemisphere. A hemisphere is one half of a sphere.

## Finding Surface Area of a Sphere

Find the surface area of the sphere shown in terms of $\pi$ and to the nearest tenth of a unit.

| $S=$ | Write the formula for the surface area of a sphere. |
| :---: | :---: |
| $S=4 \pi(\ldots)^{2}$ | What value should you substitute for $r$ ? |
| $S=4 \pi$ (_) | Simplify the power. |
| $S=\ldots \pi$ | Multiply. |
| $S \approx \ldots . \quad \mathrm{in}^{2}$ | Use 3.14 for $\pi$. |



The surface area of a sphere with a radius of 6 in . is $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

## LEsSoN Ready to Go On? Skills Intervention

## 8-10 Scaling Three-Dimensional Figures

Multiplying the linear dimensions of a solid by $n$ creates $n^{2}$ as much surface area and $n^{3}$ as much volume, also called capacity.

Vocabulary
capacity

## Scaling Models That Are Cubes

A 3 cm cube is built from small cubes, each 1 cm on a side.
Compare the following values.
A. the edge length of the two cubes

What is the ratio of corresponding edges? $\quad \overline{=\frac{\mathrm{cm}}{1 \mathrm{~cm}}}=$
The edges of the larger cube are how many times longer than the smaller cube? $\qquad$
B. the surface area of the cubes

How many sides are on a cube? $\qquad$
How many dimensions do you use when calculating area? $\qquad$
What is the ratio of corresponding areas? $\quad \overline{\mathrm{cm}^{2}}=$
The surface area of the larger cube is how many times larger than the smaller cube? $\qquad$
C. the volume of the two cubes

How many dimensions do you use when calculating volume? $\qquad$
What is the ratio of corresponding volumes? $\quad \overline{\mathrm{cm}^{3}}=$
The volume of the larger cube is how many times larger than that of the smaller cube? $\qquad$

## Application

A swimming pool has dimensions of 40 ft long, 15 ft wide, and 6 ft deep. If the pool fills at a rate of 16 cubic feet per minute, how long will it take to fill the pool?
$V=40 \mathrm{ft} \times 15 \mathrm{ft} \times 6 \mathrm{ft}=$ $\qquad$ What is the volume of the pool?

$$
\frac{1 \mathrm{~min}}{16 \mathrm{ft}^{3}}=\frac{x}{\square \mathrm{ft}^{3}}
$$

Set up a proportion.


Cross multiply.
Solve for $x$
How long will it take to fill the pool in hours and minutes? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

You can use what you know about scaling to solve problems involving weight and volume.
A 125-kg statue is made of a metal with a density of $2.5 \mathrm{~g} / \mathrm{cm}^{3}$.
What is the volume of a $\frac{1}{5}$ scale model of the statue?

## Understand the Problem

1. How much does 1 cubic centimeter of the statue weigh? $\qquad$

## Make a Plan

2. The statue is 5 times longer, 5 times higher, and 5 times wider than the model. How many times greater is the volume of the statue than the volume of the model?
$\qquad$
3. If you knew the volume of the statue, how could you find the volume of the model?
4. How can you use the density and weight information to find the volume of the statue? $\left(\right.$ Hint: Density $=\frac{\text { weight }}{\text { volume }}$.)

## Solve

5. What is the volume of the statue? (Hint: Convert kg to g before dividing.)
6. What is the volume of the model?

## Check

7. Check your calculations by working backwards. See if you get $2.5 \mathrm{~g} / \mathrm{cm}^{3}$ as the density of the statue.

Volume of model = $\qquad$ $\mathrm{cm}^{3}$

Density of statue $=\frac{\text { Weight of statue }}{\text { Volume of statue }}$
Volume of statue $=125 \cdot$ Volume of model

$$
\begin{aligned}
& =125 \cdot \ldots \mathrm{~cm}^{3} \\
& =
\end{aligned}
$$

$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

## Ready to Go On? Quiz

## 8 B

## 8-4 Drawing Three-Dimensional Figures

1. Draw the top, front, and side views of the welded sculpture.



Top


Front


Side

## 8-5 Volume of Prisms and Cylinders

## Find the volume of each figure to the nearest tenth.

Use 3.14 for $\pi$.
2.

3.

4.


## 8-6 Volume of Pyramids and Cones

## Find the volume of each figure to the nearest tenth.

 Use 3.14 for $\pi$.5. 


6.

7.

8.


10.

$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> <br> $8 B$

 <br> <br> $8 B$}
## Ready to Go On? Quiz continued

## 8-7 Surface Area of Prisms and Cylinders

Find the surface area of each figure to the nearest tenth. Use 3.14 for $\pi$.
11.

1.8 in.
12.

15.
9.2 in.

$\qquad$
13.

16.


## 8-8 Surface Area of Pyramids and Cones

Find the surface area of each figure to the nearest tenth. Use 3.14 for $\pi$.
17.

18.

19.


## 8-9 Spheres

Find the surface area and volume of each sphere with the given measurements, both in terms of $\pi$ and to the nearest tenth. Use 3.14 for $\pi$.
20. radius 7 m
21. radius 1.5 cm
22. radius 2.2 ft

## 8-10 Scaling Three-Dimensional Figures

23. The dimensions of a new office building are 100 ft wide, 125 ft deep, and 340 ft high. The scale model of the building is 13.6 in . tall. Find the width and depth of the scale model.
$\qquad$ Date $\qquad$ Class $\qquad$

## section Ready to Go On? Enrichment

## 8B Giant Pyramids

The Pyramid of the Sun is located in the valley of Teotihuacan, 30 miles north of Mexico City, Mexico. It was built in 150 C.E. in what was then a great city. The Great Pyramid in Gizeh, Egypt, was constructed around 2500 B.C.E. It has an

|  | Pyramid <br> of the Sun | Great <br> Pyramid |
| :--- | :---: | :---: |
| Height | 233 ft | 481 ft |
| Side of Base | 733 ft | 756 ft | estimated weight of 6.5 million tons.

1. The bases of both pyramids are squares. Use the information in the table to calculate the slant height of each pyramid. Use a calculator and show your work.

Pyramid of the Sun Slant Height $=$ $\qquad$
Great Pyramid Slant Height = $\qquad$
2. If $s$ is the side of a square pyramid and $/$ is the slant height of each side, show that the surface area of the pyramid, including the base, is $s(2 l+s)$.
$\qquad$
3. How does the surface area of the Great Pyramid compare to that of the Pyramid of the Sun?
$\frac{\text { surface area of the Great Pyramid }}{\text { surface area of Pyramid of the Sun }}=$
$\qquad$
$\qquad$
4. How does the volume of the Great Pyramid compare to that of the Pyramid of the Sun?
$\frac{\text { volume of Great Pyramid }}{\text { volume of Pyramid of the Sun }}=$
$\qquad$ Date $\qquad$ Class $\qquad$

## LEsson Ready to Go On? Skills Intervention

## 9-1 Samples and Surveys

Surveys are used to study an entire group or population.
In order to evaluate the survey, you must be aware of the sample, or the part of the population, being surveyed. If the sample is not a good representation of the entire group or population being studied, then the sample is considered to be a biased sample.

Sampling methods used to make sure that the sample will result in accurate information are:
random choosing a member by chance
systematic
stratified choosing a member according to a rule or formula choosing a member at random from a randomly chosen subgroup
convenience choosing a member who is easiest to reach voluntary- member chooses to be in the sample response
Vocabulary
population
sample
biased sample
random sample
systematic sample
stratified sample
convenience
$\quad$ sample
voluntary-
$\quad$ response
sample

## Identifying Sampling Methods

Identify the sampling method used.
A. Five teams are chosen. One captain is selected from each team.

This is random and from a subgroup so it is a $\qquad$ sample.

What is the subgroup? $\qquad$
B. Every third name on the volunteer list is called.

A rule is used so it is a $\qquad$ sample.

What is the rule? $\qquad$
C. Every shopper puts comments in a suggestion box. The manager draws out one comment to discuss with employees.
The comment is selected by chance so it is a $\qquad$ sample.

## Identifying Biased Samples

Identify the population and sample. Give a reason why the sample could be biased.
A hotel worker asks the first fifty people who check out on Sunday if they enjoyed the new pool.

Fill in the chart.

| Population | Sample | Possible Bias |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |

$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Problem Solving Intervention

## 9-1 Samples and Surveys

When you use a sample, try to choose a sampling method that is not biased so that the information you get reflects the population.

You want to find out how much time students in your school read and watch television. Which sampling method would you use? Why?

Method A: Choose every 3rd person that comes into the school library until you have 60 students.

Method C: From an alphabetical list of students' names, pick every other name until you have 60 names.

Method B: Randomly choose 20 students at a school soccer game, 20 at a baseball game, and 20 at a basketball game.

Method D: Write each student's name on a slip of paper, put them in a bowl, and randomly pick 60 slips.

## Understand the Problem

1. What is the population you want to find out about?

## Make a Plan

2. As you examine each method, what will you look for?

## Solve

3. Why won't the samples in A and B represent the population?
4. Look at Method C. Why don't all the students have an equal chance of being selected?
$\qquad$
$\qquad$
5. Does Method D give all students an equal chance to be picked?

## Check

6. Which method would you use? Why?
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 9-2 Organizing Data

A line plot, back-to-back stem-and-leaf plot, and Venn diagram are three ways to organize and display data.

## Organizing Data in Line Plots

Use the given data to make a line plot:
$3,2,4,4,6,7,8,8,6,5,4,3$.

## Vocabulary

line plot
back-to-back
stem-and-leaf plot
Venn diagram

How many 4s are there? $\qquad$


Baseball Scores for High School Championships

| Year | $\mathbf{9 7}$ | $\mathbf{9 8}$ | $\mathbf{9 9}$ | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{0 2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Win | 7 | 12 | 13 | 6 | 3 | 9 |
| Loss | 5 | 7 | 10 | 1 | 2 | 6 |

Fill in the stems.
Fill in the leaves; losses will be read backwards.
What does the key $1|0|$ represent? $\qquad$
What does the key | 1 | 2 represent? $\qquad$

| Loss | $\boldsymbol{V}$ | Win |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |

## Organizing Data in Venn Diagrams

Use the data in the table to make a Venn diagram showing how many ropes are blue and how many are 12 inches or longer.

| Rope Inventory |  |
| :---: | :---: |
| Color | Length (in.) |
| red | 18 |
| red | 12 |
| blue | 8 |
| blue | 18 |
| blue | 12 |
| red | 8 |
| blue | 18 |

How many ropes are blue? $\qquad$ How many ropes are 12 inches or longer? $\qquad$
How many ropes are blue AND 12 inches or longer? $\qquad$
Label your Venn diagram. Give it a title.
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Problem Solving Intervention

## 9-2 Organizing Data

Match each stem-and-leaf plot to its corresponding description.

| Plot A |  |
| :---: | :---: |
| 0 |  |
| 1 |  |
| 2 | 5556666667 |
|  | 778899 |
| 3 | 001 |


| Plot B |  |
| :---: | :---: |
| 0 | 13578 |
| 1 | 1459 |
| 2 | 1689 |
| 3 | 278 |
| 4 | 4 |

Plot C

| 2 | 1112222233 |  |
| :--- | :--- | :--- |
| 3 |  |  |
| 4 | 899 |  |
| 5 | 0 |  |
| 6 |  |  |

1. Length of some TV shows in minutes not counting commercials
2. Size of classes at Oak School
3. Number of hits by each baseball player so far this season

## Understand the Problem

1. How are the 3 stem-and-leaf plots different?

## Make a Plan

2. What do you know about the length of television shows?
$\qquad$
$\qquad$
3. How can you use what you know about television shows to find the plot that goes with description 1 ?
$\qquad$
$\qquad$

## Solve

4. Use what you know about television shows, class sizes, and baseball to match the plots to the descriptions.

## Check

5. How can 30 -minute TV shows be different lengths?
$\qquad$ Date $\qquad$ Class $\qquad$

## LEsSon <br> Ready to Go On? Skills Intervention

## 9-3 Measures of Central Tendency

The measures of central tendency are:
mean average
median middle value
mode occurs most often
range difference between the greatest and least data values outlier an extreme data value

Vocabulary
mean
median
mode
range
outlier

## Choosing the Best Measures of Central Tendency

These are ages of the people at the playground.
$2,6,4,8,9,4,7,46$
A. What is the average age of people at the playground?

Mean: $2+6+4+8+9+4+7+46=$ $\qquad$ Find the total of the values.

Mean $==$ $\qquad$ Divide by $\qquad$ , the total number of values.
B. What is the middle age of people at the playground?

Median: $\qquad$ Order the values.
The median is the number between which two values? $\qquad$ and $\qquad$
$\frac{+}{2}=$ $\qquad$ Average the two middle values to find the median.
C. What is the most frequent age of people at the playground?

Mode: $\qquad$ What number occurs the most often?
D. What is the difference between the ages of the oldest and youngest persons?
Range: 46 - $\qquad$ $=$ $\qquad$ Difference between the greatest and least data values.
E. Is there an extreme value in the data? $\qquad$ Identify the outlier. $\qquad$
Without the outlier, the mean would be about $\qquad$ .

## Application

Find the average diameter of all the planets.

| Planets | Diameter <br> (km) |
| :--- | :---: |
| Mercury | 4,800 |
| Venus | $12,103.6$ |
| Earth | $12,756.3$ |
| Mars | 6,794 |
| Jupiter | 142,984 |
| Saturn | 120,536 |
| Uranus | 51,118 |
| Neptune | 49,532 |
| Pluto | 2,274 |


$=$ $\qquad$ km
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 9-4 Variability

Variability describes the spread of a data set.
First Quartile: median of lower half
Third Quartile: median of upper half
A box-and-whisker plot shows the distribution of the data. Use the box to represent the middle half of the data and the whiskers

Vocabulary
variability
quartile
box-and-whisker plot to represent the lower and upper fourth of the data.

## Finding Measures of Variability

Find the range and the first and third quartiles for the set of data.

$$
\begin{array}{llllllllll}
12 & 19 & 16 & 20 & 13 & 14 & 13 & 17 & 19 & 14
\end{array} 16
$$

Place the values in order. $\qquad$
What is the median of the data? $\qquad$ Put a box around it.

Put a box around the lower half of the data and find its median (first quartile). $\qquad$
Put a box around the upper half of the data and find its median (third quartile). $\qquad$

## Making a Box-and-Whisker Plot

Use the given data to make a box-and-whisker plot.
13411549171512205113554356

## Step 1

Order the data. $\qquad$
Find the items listed below.
smallest value: $\qquad$
first quartile: $\qquad$
median: $\qquad$
third quartile: $\qquad$
largest value: $\qquad$

## Step 2

Draw a number line with a vertical line above each value from Step 1.


## Step 3

Draw horizontal lines to make the box and whiskers.

$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION Ready to Go On? Quiz <br> 9A

## 9-1 Samples and Surveys Identify the sampling method used.

1. The winning raffle ticket for a new bicycle was drawn from a hat.
2. A store promotion gave every twelfth customer that purchased Acme bread a free loaf.

Identify the population and sample. Give a reason why the sample might be biased.
3. A coach asks the starting players on the soccer team to tell their favorite sport.
$\qquad$
$\qquad$
4. The first 30 bikers to come back from the trail were surveyed whether the ride was fun.
$\qquad$
$\qquad$

## 9-2 Organizing Data

5. Use a line plot to organize the data of the number of pages read so far by each member of the book club: 47, 39, 44, 46, 42, 48, $44,46,43,41$, and 39.

6. Use the given data to make a back-to-back stem-and-leaf plot.

| North <br> Shore | East <br> Shore |  |
| :--- | :--- | :--- |
|  | 4 |  |
|  | 5 |  |
|  | 6 |  |
|  | 7 |  |
|  | 8 |  |

$\qquad$ Date $\qquad$ Class $\qquad$

## 9-3 Measures of Central Tendency

Determine and find the most appropriate measure of central tendency or range for each situation.
7. The height of the players on the basketball team are $63,71,66,74,62,67,68,72$, and 67 inches. What is the spread of the height of the players?
8. The number of milk cartons sold during lunch were 60 on Monday, 67 on Tuesday, 84 on Wednesday, 82 on Thursday, and 51 on Friday. What number best describes the middle number?
9. Each student checked to see how many pencils were in their backpacks. Students found 1, 2, 0, 7, 5, 3, 4, $8,3,6$, and 5 pencils in their backpacks. Find the average number of pencils.

## 9-4 Variability

Use the data given to make a box-and-whisker plot.
10. Find the first and third quartiles of the following data set: 15, 16, $17,20,15,21,16,17,18,15,20,16,18,15,19,20,22,24,19$, 17, 21.
11. $42,36,39,26,41,27,34,31,29$

12. $63,48,71,77,57,49,68,64,66$

$\qquad$ Date $\qquad$ Class $\qquad$

## section Ready to Go On? Enrichment

## 9A Track Meet Preparation

Last year, Frederico made improvements in his times and distances at league track meets. He wants to do even better in the coming season so he practices often and charts his progress.

Find the most appropriate measure of central tendency or range for each situation.

1. The best times in seconds for the 400-meter run were $59.2,58.7,60.1,60.0,58.8$, and 58.4. What was the spread of the times?
2. Ten attempts at the high jump yielded heights of 63 , 64, 64, 63, 62, 64, 65, 64, 66, and 65 inches. Find the mean of his high jumps.
3. His top discus throws for one week were 11.4, 12.1, $13.6,12,14.2,11.8$, and 13.8 meters. What is the median of his throws?
4. In one day, Frederico ran ten 100-meter sprints. His finishing times were 13.2, 12.7, 13.4, 12.9, 12.4, 12.6, $12.7,12.2,13.1$, and 14.9 seconds. If the outlier is removed, what was his average time?
5. During a six-month period, Frederico practiced 27,24, 29, 30, 29, and 28 days a month. Find the mode for the number of days practiced in a month.
6. His top long jumps were $6.94,6.87,7.06,7.02,7.11$, 7.09 , and 7.16 meters. What is the median of his jumps?
7. His javelin throws during one week were $16,18,16,14,29,16$, and 17 meters. What are the mean, median, mode, and range of his javelin throws? Which figure makes Frederico look the best?
8. What is the outlier in Frederico's javelin throws? If it is removed, how does that affect the other measures of central tendency?
$\qquad$ Date $\qquad$ Class $\qquad$

## Lesson Ready to Go On? Skills Intervention

## 9-5 Displaying Data

## Displaying Data in a Double-Bar Graph

Organize the data into a frequency table and make a bar graph.
The following are the ages of a randomly chosen group of 30 teenagers when got their first job:
Girls 15161517171917181617181817161918
Boys 16161518181516171715191616181718
First organize the data into a frequency table.
How many times does each value occur?

| Age at First Job | 15 | 16 | 17 | 18 | 19 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Girls | 2 | 3 | 4 | 4 | 2 |
| Boys | 3 | 4 | 3 | 4 | 1 |

What is the title of the double-bar graph?

Label the $x$ - and $y$-axis on the graph.
Determine and fill in the scale for each axis.
Use the frequency table to complete the double-bar graph.

## Displaying Data in a Histogram

For their big summer sale, a catalog company wants to display their products grouped together by price range. Make a histogram of the given merchandise prices. Use an interval of $\$ 5.00$.
\$11 \$8 \$2 \$4 \$17 \$9 \$10 \$13 \$7 \$11 \$19 \$3 \$6 \$4 \$12 \$8 \$9
How many items are in each price range? Fill in the table.

| Price (\$) | Frequency |
| :--- | :---: |
| $1-5$ | 4 |
| $6-10$ | 7 |
| $11-15$ | 5 |
| $16-20$ | 2 |

How is the $x$-axis labeled? $y$-axis?

Label the intervals of both the $x$ - and $y$-axes.
Complete the histogram by drawing the bars.
Should there be any space in between the bars?


Price (\$)
$\qquad$ Date $\qquad$ Class $\qquad$

## 9-5 Displaying Data

What is the greatest difference between two adjacent bars in this histogram? Suppose the intervals were changed so they had a range of 10 instead of 5 . What would the greatest difference be?

Test Scores


## Understand the Problem

1. How many scores are in the $70-74$ interval? How many more than that number are in the 75-79 interval?

## Make a Plan

2. How can you find the greatest difference between adjacent bars in the histogram shown?
3. When the intervals are changed to have a range of 10 , what will the first two intervals be? What will be the heights of the first two bars? What will be the difference between those first two bars?

## Solve

4. What is the greatest difference between adjacent bars for the histogram shown? For the new histogram? Explain.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Check

5. Sketch a histogram with the new intervals.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 9-6 Misleading Graphs and Statistics

Data can be presented in a way that may intentionally distort or indicate misleading information.

## Identifying Misleading Graphs

Explain why each graph is misleading.

## A.

How many $8^{\text {th }}$ grade students like golf?
How many $8^{\text {th }}$ grade students like basketball?
How many $8^{\text {th }}$ grade students like baseball? How many $8^{\text {th }}$ grade students like football? $\qquad$
Why does the graph look like more students

| $8^{\text {th }}$ Graders Favorite Sports |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\bullet$ |  | 0 | 0 |  |
| $\bullet$ |  | 0 | 0 |  |
| $\bullet$ |  | 0 | 0 |  |
| golf | basketball | baseball | football |  | prefer basketball over golf?

What is the most preferred sport according to this graph? $\qquad$
B.

Where does the scale start? $\qquad$
How many people prefer brand $A$ ? $\qquad$
How many people prefer brand $B$ ?
Do twice as many people prefer Brand B over
Brand $A$ as the bars seem to show? $\qquad$
What happens when the scale does not start at 0 ?

## Preferred Brands



## Identifying Misleading Statistics

Explain why the statistic is misleading.
An advertiser for a local pizzeria asks 10 people what their favorite topping is on their pizza. Six people said pepperoni, 3 said sausage, 1 said mushrooms, and 1 said bacon. The ad read "Try our
Pepperoni Pizza. It is preferred 2 to 1 over all other toppings."
How many people did the advertiser ask? $\qquad$
How many people voted for pepperoni? $\qquad$
How many people voted for sausage? $\qquad$
Is the difference between 3 and 6 people meaningful? $\qquad$
Is the advertisement statement truthful or misleading? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$
Ready to Go On? Problem Solving Intervention

## 9-6 Misleading Graphs and Statistics

Even if a graph is misleading, you can still figure out the truth.
This year's sales are \$2,000 more than last year's. To make it appear that sales have doubled from last year, a bar graph starts at $\$ 6000$ instead of 0 . In reality, how many times greater are this
year's sales than last year's?

## Understand the Problem

1. On the misleading graph, how many times taller is the bar for this year's sales than for last year's?
$\qquad$
Make a Plan
2. If one bar is twice as high as another, how does the difference
 compare to the short bar?

## Solve

3. How many dollars is it from the bottom of last year's bar to the top?
4. If the vertical scale starts at $\$ 2,000$, what were last year's sales? What were this year's sales?
5. In actuality, how many times greater are this year's sales than last year's? Show your work.

## Check

6. Sketch the graph using your answers to Exercise 4.
$\qquad$ Date $\qquad$ Class $\qquad$

## Lessom Ready to Go On? Skills Intervention

## $9-7$ Scatter Plots

A scatter plot shows a relationship between two sets of data. Correlation describes the relationship between the data sets. The line of best fit is a line that comes closest to the most points on the scatter plot.

Vocabulary
scatter plot correlation line of best fit

## Making a Scatter Plot of a Data Set

A teacher studying the effects of sleep on test scores gathered the data shown in the table. Use the data to make a scatter plot.
Label the $x$ - and $y$-axes.
Determine and fill in the scale for each axis.
How many data points do you need to plot?

Plot the data from the table. For instance plot a point at $(5,69)$.
Does the data appear to have a positive, negative, or no correlation?

How can you tell? $\qquad$

| Hours <br> Slept | Test <br> Score | Hours <br> Slept | Test <br> Score |
| :---: | :---: | :---: | :---: |
| $\mathbf{5}$ | 69 | $\mathbf{8 . 5}$ | 87 |
| $\mathbf{5}$ | 65 | $\mathbf{9}$ | 91 |
| $\mathbf{6}$ | 80 | $\mathbf{9}$ | 93 |
| $\mathbf{6 . 5}$ | 77 | $\mathbf{1 0}$ | 85 |
| $\mathbf{7}$ | 79 | $\mathbf{1 0 . 5}$ | 92 |
| $\mathbf{7}$ | 85 | $\mathbf{1 1}$ | 100 |
| $\mathbf{8}$ | 83 | $\mathbf{1 2}$ | 97 |



## Identifying the Correlation of Data

Do the data sets have a positive, negative, or no correlation?
A. The age and weight of a baby

As a baby gets older his weight $\qquad$ . Both sets of data
$\qquad$ , so the data has a $\qquad$ correlation.
B. The amount of free time you have and the number of sports that you play Your free time $\qquad$ as the number of sports you play
$\qquad$ ; therefore, the data has a $\qquad$ correlation.
C. The price of a shirt and the color of its buttons

The price is not affected by the color of its buttons so the data has $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

Ready to Go On? Skills Intervention

## 9-8 Choosing the Best Representation of Data

Data can be represented in many different ways, depending on both the type of data and the message being displayed. When data is shown in the most appropriate way it will be understood more easily.

| Graph Type | Common Use |
| :--- | :--- |
| Line graph | Shows change in data over time. |
| Bar graph | Shows relationships or comparisons between groups. |
| Circle graph | Compares parts to a whole. |
| Histogram | Shows the frequency of data divided into equal groups. |
| Box-and-whisker plot | Shows the distribution and spread of data. |
| Line plot | Shows the distribution of data. |
| Scatter plot | Shows the relationship of two data sets. |

## Selecting a data display

Which graph is a better display of the data on the number of laps students completed for their run, walk, or jog fundraiser?


The $\qquad$ is the better representation.

Which graph better shows the distribution of eggs laid?


The $\qquad$ is the better representation because the question asks about eggs. The $\qquad$ of the line graph shows it does not display the correct data.
$\qquad$ Date $\qquad$ Class $\qquad$
Lisson
Ready to Go On? Problem Solving Intervention

## 9-8 Choosing the Best Representation of Data

An assistant basketball coach recorded the distance from the basket of each shot that was made. She wanted to develop the most fitting offensive strategy to help her team win more games.

Shots were made from $12,16,10,4,2,2,2,12,18,10,17,18,13$, $8,15,19,11,7,3,2,8,12,2,3,14,2$, and 7 feet away from the basket. The coach chose to group made shots in 5 foot increments.

## Understand the Problem

1. Which representation would most clearly display all of the baskets made and how many baskets were made from each distance? Explain.
2. What is the coach most interested in learning?

## Make a Plan

3. What will show all made baskets?
4. What will show baskets in 5 -foot groups?
5. What will show the percent of the whole for each group?

## Solve

6. Put data in the circle graph.

## Check

7. Is there another display that would show the data clearly? Explain.
$\qquad$
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

## Ready to Go On? Quiz

## 9B

## 9-5 Displaying Data

1. Organize the data into a frequency table and make a double-bar graph.

Data set 1: 4, 2, 6, 3, 3, 4, 7, 5, 6, 3, 4, 7, 3, 5, 6
Data set 2: 3, 4, 2, 2, 4, 4, 6, 3, 7, 4, 2, 6, 7, 4, 5

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

2. A marching band tallied the number of minutes they practiced each day. Use the data to make a histogram with intervals of 10 minutes.

38, 44, 48, 37, 51, 34, 47, 39, 46, 48, 62, 49, 53, 45, 37
$43,54,52,41,36,30,46,38,53,62,47,41,38,57,47$

## 9-6 Misleading Graphs and Statistics

## Explain why each graph may be misleading.


4. Story Parts

5. A survey found $29 \%$ of students like to read history best, $16 \%$ like science fiction, $28 \%$ enjoy reading about sports, and $27 \%$ prefer to read mysteries. The survey concludes that most students like to read history the best. Explain why the statistic is misleading.
$\qquad$
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

Ready to Go On? Quiz continued
9B

## 9-7 Scatter Plots

6. Use the given data of class sizes to make a scatter plot.

| Year | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Class size | 235 | 264 | 216 | 385 | 372 | 361 | 406 |

Do the data sets have a positive, a negative, or no correlation?
7. the height of a mountain and its temperature
8. the color of a person's hair and his or her weight

## 9-8 Choosing the Best Representation of Data

9. One sunny afternoon two children skipped rocks across the lake. They wanted to know how many skips were in each range. Rocks were skipped $4,3,7,9,13,4,8,3,5,8,6,11$, $5,7,3,6,5,6,11,8$, and 7 times. Choose an appropriate data display and draw the graph.
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

Ready to Go On? Enrichment
Wingspan
A model plane contest had participants building their own planes in an attempt to travel the farthest distance. Different sized model airplanes were constructed to achieve the longest flight. The students made a table of their results.

| Wingspan (in inches) | 2 | 5 | 8 | 10 | 12 | 15 | 20 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Flight distance (in feet) | 10 | 16 | 20 | 24 | 30 | 36 | 44 |

1. Use the given data to make a scatter plot.

Tell whether the data sets have a positive, negative, or no correlation. Explain.
2. the school year of the person launching the airplane and the flight distance
$\qquad$
$\qquad$
3. the weight of the landing gear attached to the plane and the distance flown
$\qquad$
$\qquad$
4. the tailwind speed and the distance traveled
$\qquad$
$\qquad$
5. Predict how far a model plan will fly if it has a 25 -inch wingspan.
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 10-1 Probability

The probability of an event occurring is a number from 0 to 1 that tells how likely the event is to happen.

Finding Probabilities of Outcomes in a Sample Space

Vocabulary
probability
outcome Give the probability of each outcome.
A. What is the probability that it will not snow?

What is the probability of snow? $\qquad$
Probabilities must add to 1 :
$P($ snow $)+P($ no snow $)=1$
$P($ no snow $)=1-$ $\qquad$ $=$ $\qquad$ or $\qquad$ \%
What is the probability that it will not snow? $\qquad$
B. Complete the table.

What fraction of the spinner is labeled 1? $\qquad$
The probability of the spinner landing on 1

| Outcome | Snow | No Snow |
| :--- | :---: | :---: |
| Probability | $20 \%$ | $?$ |


is $P(1)=$ $\qquad$ .
If the spinner was divided evenly how many sections would there be? $\qquad$

| Outcome | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| Probability |  |  |  |  |

What fraction of the spinner is labeled 2 ? $\qquad$
The probability of the spinner landing on 2 is $P(2)=$ $\qquad$ .

The probability of the spinner landing on 3 is $P(3)=$ $\qquad$ .

## Finding Probabilities of Events

A quiz contains 4 multiple-choice questions. Suppose you guess randomly on every question. The table below gives the probability of each score.

| Score | 0 | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Probability | 0.4096 | 0.4096 | 0.1536 | 0.0256 | 0.0016 |

What is the probability of guessing two or more correct answers?
What does two or more mean? $\qquad$
$P(2$ or more $)=$ $\qquad$ $+$ $\qquad$ $+$ $\qquad$
$P(2$ or more $)=$ $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## 10-1 Probability

The winner of a contest will get a CD player, a bicycle, or a television. For the winner, getting the CD player is twice as likely as getting the bike, which is three times as likely as getting the television. Create a table of probabilities for the sample space.

## Understand the Problem

1. What probabilities will you show? What is their sum? Explain.

## Make a Plan

2. Let $t$ be $P$ (television), the probability of the winner getting the television. Write expressions with $t$ for $P$ (bike) and $P$ (CD player).
3. Write an equation to show that the sum of the three probabilities is 1 .

## Solve

4. Solve the equation you wrote in Exercise 3.
5. Make a table of the three probabilities.

| Outcome |  |  |  |
| :--- | :--- | :--- | :--- |
| Probability |  |  |  |

## Check

6. Make sure your answer fits all the conditions in the problem.

## Solve.

7. A flashlight is added to the possible prizes. $P$ (flashlight) $=2.5 \cdot P$ (CD player). The other conditions are still true. What are the 4 probabilities?
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 10-2 Experimental Probability

Experimental probability $=\frac{\text { number of times event occurs }}{\text { total number of trials }}$

## Estimating the Probability of an Event

Vocabulary
experimental probability
A. After 550 spins of the spinner, the following information was recorded. Estimate the probability of the spinner landing on blue.

| Outcome | Red | Blue | Green |
| :--- | :---: | :---: | :---: |
| Spins | 216 | 185 | 149 |



How many spins landed on blue? $\qquad$
What is the total number of spins? $\qquad$
Find the probability of spinning blue: $\frac{\text { number of times event occurs }}{\text { total number of trials }}=\overline{=}$
There is a $\qquad$ \% probability of spinning blue.
B. A marble is randomly drawn out of a bag and then replaced. The table shows the results after 200 draws. Estimate the probability of drawing a green marble.

| Outcome | Red | Green | Orange | Purple | Yellow |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Draws | 65 | 72 | 32 | 18 | 13 |

Probability $\approx \frac{\text { number of ___ marbles drawn }}{\text { total number of draws }}=\overline{200}=\ldots$
C. A researcher has been recording the number of people who stop to pick up a coin laying on the ground. Of the last 75 people observed, 32 stopped to pick it up, 12 kicked it, 18 picked it up and put it back down, and 13 stepped over it. Estimate the probability that a person will pick it up and put it back down.

Complete the table.

| Outcome | pick it up | kick it |  |  |
| :--- | :---: | :---: | :--- | :--- |
| Observations | 32 |  |  |  |

Probability $\approx \frac{\text { number of people who will }}{\text { total number of }}$

$$
===\ldots
$$

The probability that a person will pick it up and put it back down is
$\qquad$ (decimal) or $\qquad$ \%.
$\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 10-3 Use a Simulation

A simulation is a model of a real situation.

## Problem Solving Using Random Numbers

Children at the frog-hopper game at the carnival win about $35 \%$ of the time. Estimate the probability that at least 4 of the next 10 children will win the game.

## Understand the Problem

The answer will be the probability that a child will win at least $\qquad$ out of the next $\qquad$ tries.

## List the important information:

The probability that a child will win a game is what percent?

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| 48966 | 67122 | 23502 | 36056 |
| 56033 | 23817 | 30369 | 73211 |
| 28694 | 28131 | 96798 | 77484 |
| 93042 | 85734 | 16081 | 53686 |
| 74069 | 52580 | 18621 | 84479 |
| 92344 | 33648 | 80295 | 95300 |

## Make a Plan

Use a simulation to model the situation. Use digits from the table shown above, grouped in pairs.
Since the probability of a win is $35 \%$, the numbers 01 to $\qquad$ will
represent a win. The numbers $\qquad$ to 00 will represent a loss.
List the first twenty digits in the table above, grouped in two's.

| 48 | 96 | 66 |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

How many of the numbers are between 01 and 35 ? $\qquad$
This represents $\qquad$ wins out of 10 .
Complete the tables for the next 5 trials.

| 56 | 03 | 32 |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

How many wins? $\qquad$


How many wins? $\qquad$


How many wins? $\qquad$


How many wins? $\qquad$
$\square$ How many wins? $\qquad$
Out of 6 trials, how many represented 4 or more wins?
Based on the simulation, the probability of at least four children out of the next ten winning the game is about $\qquad$ out of 6 , or $\qquad$ \%.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON <br> Ready to Go On? Problem Solving Intervention

## 10-3 Use a Simulation

A baseball player gets on base an average of 400 times for every 1,000 times he bats. If he bats 5 times in a game, what is the probability he will get on base 3 or more times?

## Understand the Problem

1. When the player bats, what is the probability he will get on base?

## Make a Plan

2. If you model the problem with the random number table, why could you use a 1 -digit number to represent a single time at bat?
3. What digits will represent getting on base? What digits will represent not getting on base? What will represent batting 5 times?

## Solve

4. Look at 50 groups of 5 digits. Each group represents 5 times at bat in a game.

Circle the groups that represent getting on base 3 or more times in a game.

| 87244 | 11632 | 85815 | 61766 | 19579 | 28186 | 18533 | 42633 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 74681 | 65633 | 54238 | 32848 | 87649 | 85976 | 13355 | 46498 |
| 53736 | 21616 | 86318 | 77291 | 24794 | 31119 | 48193 | 44869 |
| 86585 | 27919 | 65264 | 93557 | 94425 | 13325 | 16635 | 28594 |
| 18394 | 73266 | 67899 | 38783 | 94228 | 23426 | 76679 | 41256 |
| 39917 | 76373 | 59733 | 18588 | 22545 | 61378 | 33563 | 65161 |
|  | 78916 | 46278 | 78210 | 13906 | 82794 | 01136 | 60848 |

5. Based on your simulation, what is the probability that the player will get on base at least 3 times in 5 times at bat?

## Check

6. Make sure your answer is a number between 0 and 1 .
$\qquad$ Date $\qquad$ Class $\qquad$

SECTION
Ready to Go On? Quiz
104

## 10-1 Probability

Use the table to find the probability of each event.

| Outcome | A | B | C | D |
| :--- | :---: | :---: | :---: | :---: |
| Probability | 0.1 | 0.3 | 0.5 | 0.1 |

1. $P(\mathrm{~B})$ $\qquad$ 2. $P(\mathrm{~A}$ or B$)$ $\qquad$ 3. $P($ not $C)$ $\qquad$ 4. $P(\mathrm{~B}, \mathrm{C}$, or D$)$ $\qquad$

At an ice cream shop, customers can choose up to 6 different toppings to be blended with their ice cream. The table gives the probability of each outcome.

| Outcome | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Probability | 0.013 | 0.142 | 0.361 | 0.254 | 0.136 | 0.083 | 0.011 |

5. What is the probability of someone getting less than 3 toppings? $\qquad$
6. What is the probability of someone getting 3 or 4 toppings?

People leaving a theater rated the movie they saw on a scale of 0 ("Hated it") to 6 ("Loved it"). The table gives the probability of each outcome.

| Outcome | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Probability | 0.004 | 0.011 | 0.081 | 0.163 | 0.216 | 0.422 | 0.103 |

7. What is the probability that a rating is over 4?
8. What is the probability that a rating is not the highest or lowest possible?
9. Four students are finalists in the competition for best science essay. Kyle has a $45 \%$ chance of winning. Jim's chance of winning is one-third of Kyle's. Mia's chance is the same as Amy's. Create a table of probabilities for the sample space.
10. Five frogs are in a jumping contest. Luke has $20 \%$ chance of winning. Pip's chances are one-quarter of that. Croak, Jojo, and Max have equal chances. Create a table of probabilities for the sample space.
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Quiz continued

## 104

## 10-2 Experimental Probability

A colored chip is randomly drawn from a box and then replaced. The table shows the results after 300 draws.

| Outcome | Red | Green | Blue | Yellow |
| :--- | :---: | :---: | :---: | :---: |
| Probability | 78 | 57 | 141 | 24 |

11. Estimate the probability of drawing a blue chip.
12. Estimate the probability of drawing a red chip or a yellow chip.
13. Estimate the probability of drawing a chip that is not green.

## 10-3 Use a Simulation

Use the table of random numbers to simulate each situation.
Use 10 trials for each simulation.

| 57245 | 39666 | 18545 | 50534 | 57654 | 25519 | 35477 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 42726 | 58321 | 59267 | 72742 | 53968 | 63679 | 54095 |
| 82768 | 32694 | 62828 | 19097 | 09877 | 32093 | 23518 |
| 97742 | 58918 | 33317 | 34192 | 06286 | 39824 | 74264 |
| 48332 | 38634 | 20510 | 09198 | 56256 | 04431 | 22753 |
| 26700 | 40484 | 28341 | 25428 | 08806 | 98858 | 04816 |

14. A survey shows that in Central City, $71 \%$ of the households have more than one television set. Estimate the probability that at least 5 out of 10 randomly chosen households have more than one television set.
15. A carton contains 100 pairs of socks. Of these, 33 pairs of socks are brown. If you randomly select 6 pairs of socks, what is the probability that at least 2 pairs will be brown? $\qquad$
16. In a college town, 2 out of every 5 people is a college student. If you randomly select 7 people on the street, what is your estimate of the probability that at least 4 of those 7 people are college students?
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

## Ready to Go On? Enrichment

## 104 Random Numbers and Codes

You have seen how random digits can be used to simulate random events. Random digits are also central to encryption, which means putting plain text into code.

The sender and receiver of a coded message have to use the same key. A simple key might be: Each code letter is 10 positions later in the alphabet than the text letter. Thus the text We can meet at five in the park would be encrypted as GO MKX WOOD KD PSFO SX DRO ZKBU.

1. Suppose the key is: Each code letter is 5 positions later in the alphabet than the text letter. Write the coded message for I will call you tomorrow.
2. If someone intercepted this message and suspected that the code involved a simple shift in the alphabet, how would they go about breaking the code?

A more complicated code involves the use of what is called a one-time pad (OTP). Used only for one message, the OTP contains a sequence of random numbers. Every character in the message is encrypted with a different number. Suppose the sequence in the OTP consists of random numbers in the range 00 to 26 . If the sequence begins 052501, that means the first letter in the text is 5 positions later in the alphabet than the first letter in the code, the second is 25 positions later, and the third is 1 position later. Thus, if the first word in the text is Why, the code would read BFZ.

## 3. Use the OTP on the right to encrypt the 020720011215262120171311032612 message I will call you tomorrow. 092324072019

4. Compare the two encryptions you wrote for the same sentence. What clues about the original text does the simple code give someone that the OTP code does not?
5. Use the random number generator in a spreadsheet program to create your own OTP. Use the OTP to encode a message. Give the OTP and the coded message to a partner for decoding, and decode the message your partner gives you.
$\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 10-4 Theoretical Probability

Theoretical probability is used to estimate probabilities by making assumptions about an experiment.

Probability of an event $=\frac{\text { number of equally likely outcomes in an event }}{\text { total number of possible outcomes }}$

## Vocabulary

theoretical probability

## Calculating Theoretical Probability

An experiment consists of rolling a specially-numbered fair number cube. There are 6 possible outcomes: 2, 4, 6, 8, 10, and 12.
What is the probability of rolling a 6 ?
What does a fair number cube mean?
How many 6's could be rolled? $\qquad$
The probability of rolling a 6 is $P(6)=\overline{\overline{6}}$.

## Calculating Probability for Two Fair Number Cubes

An experiment consists of rolling two fair number cubes.
A. What is the probability that the total shown on both number cubes is 4 ?

How many outcomes are possible?

$$
P(\text { total }=4)=\frac{\overline{36}}{36}=
$$

$\qquad$
B. What is the probability that the total shown on both number cubes is greater than 9 ?
List the outcomes that are possible:

|  | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $(1,1)$ | $(1,2)$ | $(1,3)$ | $(1,4)$ | $(1,5)$ | $(1,6)$ |
| 2 | $(2,1)$ | $(2,2)$ | $(2,3)$ | $(2,4)$ | $(2,5)$ | $(2,6)$ |
| 3 | $(3,1)$ | $(3,2)$ | $(3,3)$ | $(3,4)$ | $(3,5)$ | $(3,6)$ |
| 4 | $(4,1)$ | $(4,2)$ | $(4,3)$ | $(4,4)$ | $(4,5)$ | $(4,6)$ |
| 5 | $(5,1)$ | $(5,2)$ | $(5,3)$ | $(5,4)$ | $(5,5)$ | $(5,6)$ |
| 6 | $(6,1)$ | $(6,2)$ | $(6,3)$ | $(6,4)$ | $(6,5)$ | $(6,6)$ |

$\qquad$
$\qquad$ and $\qquad$ .
$P($ total $>9)=$ $\qquad$ $=$ $\qquad$

## Finding the Probability of Mutually Exclusive Events

Suppose you are playing a game in which two fair number cubes are rolled. You need a total of 9 to finish the game by an exact count, or 5 to land on a "free space." What is the probability of landing on finish or a "free space"? Use the table above.
The event "total $=9$ " consists of how many outcomes? $\qquad$
The event "rolling a 5 " consists of how many outcomes? $\qquad$
$P($ win or free space $)=\overline{\overline{36}}+\overline{\overline{36}}=$ $\qquad$ $=$ $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## Lessom Ready to Go On? Skills Intervention

## 10-5. Independent and Dependent Events

Independent events are events in which the outcome of the first event does not affect the outcome of the second event.

Dependent events are events in which the outcome of the first event affects the outcome of the second event.

## Vocabulary

independent events
dependent events

## Finding the Probability of Independent Events

An experiment consists of spinning a spinner 4 times. For each spin all outcomes are equally likely.
A. What is the probability of spinning a 1 all 4 times?

What is the probability of spinning a 1 ?
What is the formula for calculating independent events?

$P(A$ and $B)=$ $\qquad$
$P(1,1,1,1)=\frac{1}{4} \cdot \frac{1}{4} . \quad=\underline{1} \approx 0.0039$
B. What is the probability of spinning an even number all four times?

What is the probability of spinning an even number? $\qquad$
Does the probability change each time? $\qquad$
$P($ even, even, even, even $)=\frac{1}{2} \cdot \quad=$ $\qquad$

## Finding the Probability of Dependent Events

A bag contains 6 red marbles, 5 blue marbles and 4 green marbles.
What is the probability of drawing 2 blue marbles from the bag?
The events are dependent.
How many blue marbles are in the bag? $\qquad$
How many total marbles are in the bag? $\qquad$
What is the probability of drawing a blue marble on the first draw? $\overline{\overline{15}}=$ $\qquad$
How many blue marbles are left in the bag? $\qquad$
How many total marbles are left in the bag? $\qquad$
What is the probability of drawing a blue marble on the second draw? $\overline{\overline{14}}=$ $\qquad$
The formula for calculating the probability of dependent events is $P(A)$ $\qquad$ $-$
Substitute into the formula: $\frac{1}{3} \cdot \frac{2}{7}=$ $\qquad$
The probability of drawing 2 blue marbles from the bag is $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON Ready to Go On? Problem Solving Intervention 10-5 Independent and Dependent Events
Three sisters take turns trying to guess a number that their mother is thinking of. It is a number from 1 to 3 . The sister who goes last may not get a turn. But if she does get a turn, she will certainly guess right. Which gives a better chance of winning, going first or last?

## Understand the Problem

1. What probabilities will you compare?

## Make a Plan

2. Find $P(1)$, the probability of winning if you go first.
3. $P(2)$ and $P(3)$ are the probabilities of winning if you go second and if you go third. What is the sum of $P(1)+P(2)+P(3)$ ? Explain.
$\qquad$
$\qquad$
4. If you knew $P(1)$ and $P(2)$, how could you find $P(3)$ ? $\qquad$

## Solve

5. Find $P(2)$. Hints: Find $P$ (not 1), the probability that the first guess is wrong. How many numbers will be left if the first guesser does not win?
6. What is $P(3)$ ?
7. Which gives you the better chance of winning, going first or last?

## Check

8. Think of the probabilities if the mother does not say who wins until all 3 sisters have guessed.
$\qquad$ Date $\qquad$ Class $\qquad$

## 10-6 Making Decisions and Predictions

## Using Probability to Make Decisions and Predictions

The table shows the colors of the last 100 sweaters that Clive sold. He is placing an order for 800 sweaters. How many tan sweaters should he order?

Find the probability of selling a tan sweater.
$\frac{\text { number of tan sweaters sold }}{\text { total number of sweaters sold }}=\frac{}{100}$, or -

| Sweaters Sold |  |
| :---: | :---: |
| Color | Number |
| Blue | 17 |
| Peach | 14 |
| Plum | 31 |
| Tan | 25 |
| Yellow | 13 |

Set up a proportion. $\frac{1}{n}=\frac{n}{}$

Find the cross products. $\qquad$ - $\qquad$ $=$ $\qquad$ $n$

Solve for $n .-=n$ $\qquad$ $=n \quad$ Clive should order $\qquad$ tan sweaters.

Deciding Whether a Game is Fair
In a game, two players each roll two fair number cubes and add the two numbers. Player A wins if the sum is 6. Player B wins if the sum is 7 . Decide whether the game is fair. Complete the table to list all the possible outcomes.

|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 2 | 3 | 4 | 5 | - | 7 |
| $\mathbf{2}$ | 3 | 4 | - | 6 | - | 8 |
| $\mathbf{3}$ | 4 | - | 6 | 7 | 8 | - |
| $\mathbf{4}$ | 5 | - | 7 | 8 |  | 10 |
| $\mathbf{5}$ | 6 | 7 | 8 | 9 | 10 | 11 |
| $\mathbf{6}$ | 7 | - | 9 | 10 | 11 | - |

Find the theoretical probability of each player's winning.
$P($ player A winning $)=$ $\qquad$ $P($ player B winning $)=$ $\qquad$

Since , the game $\qquad$ fair.
$\qquad$ Date $\qquad$ Class $\qquad$ LEsson Ready to Go On? Problem Solving Intervention

## 10-6 Making Decisions and Predictions

A game of chance is fair if every player has the same probability of winning.
Fred and Marta are playing a game with two five-sided playing pieces. The digits on the red piece are $1,2,2,4,5$. The digits on the green piece are $6,7,8,9,9$. When the two pieces are thrown, Fred's number is the red digit in the tens place and the green digit in the ones place. Marta's number is the sum of the red and the green digits. Fred wins if his number is a multiple of 3 . Marta wins if her number is 11 . Is the game fair?

## Understand the Problem

1. How can you tell if the game is fair?

## Make a Plan

2. Why is a table a good way to list the possible outcomes?

## Solve

3. Label and fill in the table to show all the possible outcomes. Hint: Think of each combination of sides as a different equally likely outcome
4. How many different possible outcomes are there? $\qquad$
5. What are Fred's favorable outcomes and probability of winning? Marta's? Is the game fair?

Fred: $\qquad$

Marta: $\qquad$ Is the game fair? $\qquad$

|  | 1 | 2 | 2 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | $\frac{1}{6}$ | $\frac{2}{6}$ | $\frac{2}{6}$ | $\frac{4}{6}$ |  |
| 7 | $\frac{1}{7}$ |  |  |  |  |
| 8 |  | $\frac{2}{8}$ | $\frac{2}{8}$ |  | $\frac{5}{8}$ |
| 9 | $\frac{1}{9}$ |  |  | $\frac{4}{9}$ | $\frac{5}{9}$ |
| 9 | $\frac{1}{9}$ |  |  | $\frac{4}{9}$ | $\frac{5}{9}$ |

## Check

6. Circle all the favorable outcomes for both players, then check all the other numbers to make sure you did not miss any.

## Solve

7. What are the odds that neither player wins when the game pieces are tossed?
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON <br> Ready to Go On? Skills Intervention <br> $10-7$ Odds

Odds in favor of an event is the ratio of favorable outcomes to unfavorable outcomes.
Odds against an event is the ratio of unfavorable outcomes to favorable outcomes.

Vocabulary
odds in favor odds against

## Finding Odds

On a band trip, 75 students were given juice drinks. The drinks each had a prize game within the lid. Nine of the students won a free juice from the juice company.
A. Estimate the odds in favor of winning a free juice.

How many students won a free juice? $\qquad$ (favorable outcomes)

How many students did not win a free juice? $\qquad$ (unfavorable outcomes)
The odds in favor of winning are favorable outcomes to unfavorable outcomes. Therefore, the odds are about $\qquad$ to 66, or $\qquad$ to $\qquad$ .
B. Estimate the odds against winning a free juice.

What were the odds of winning a free juice?
Reverse the order of the odds of winning. The odds against a free juice are 22 to $\qquad$ .

## Converting Odds to Probabilities

If the odds in favor of winning a free sandwich is $1: 15$, what is the probability of winning a free sandwich?

If the odds of an event are $a: b$, then the probability of the event occurring is
$\frac{a}{a+b}$.
There is $\qquad$ winner for every $\qquad$ losses. Substitute into the formula:
$\frac{1}{1+\ldots}=$

There is a $\qquad$ probability of winning a free sandwich.

## Converting Probabilities to Odds

The probability of winning a free lunch is $\frac{1}{50}$. What are the odds in favor of winning a free lunch?
If the probability of an event is $\frac{m}{n}$, then the odds in favor of the event are $m$ : $(n-m)$.

There is $\qquad$ winner out of every $\qquad$ people.
How many people do not win? $\qquad$ The odds in favor of winning are 1:(50 - 1), or $\qquad$ _.
$\qquad$ Date $\qquad$ Class $\qquad$

## 10-7 Odds

A bag contains red, blue, and green marbles. If you pick at random, the odds of picking a blue marble are $1: 2$. The odds of picking a red marble are $2: 3$. What are the odds of picking a green marble?

## Understand the Problem

1. The odds of picking blue are $1: 2$. Does that mean you have a $50-50$ chance of picking blue? Explain.

## Make a Plan

2. If you knew $P$ (green), the probability of picking green, how could you find the odds of picking green?
$\qquad$
3. If you knew $P$ (blue) and $P$ (red), how could you find $P$ (green)? Explain.

## Solve

4. Find $P$ (blue). Hint: If the odds of picking blue are $1: 2$, how many blues would you expect to pick in 3 tries?
5. What is $P$ (red)?
6. What is $P$ (green)? What is $P$ (not green)?
7. What are the odds of picking green? Think: $P$ (green): $P$ (not green)

## Check

8. Make sure the sum of the probabilities is 1 .
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

Ready to Go On? Skills Intervention

## 10-8 Counting Principles

The Fundamental Counting Principle states that if there are $m$ ways to choose the first item and $n$ ways to choose a second item after the first item has been chosen, then there are $m \cdot n$ ways to choose all the items.

Vocabulary
Fundamental Counting Principle

## Using the Fundamental Counting Principle

A state plans to issue a series of license plates using codes consisting of 3 letters followed by 2 digits. Letters and digits may both be repeated and all license numbers are equally likely.
A. Find the number of possible license plates.

Use the Fundamental Counting Principle.
Draw and label a blank for each letter or number needed.

## first letter second letter first digit

Fill in the blanks with the number of choices for each letter and number.
How many choices for letters are there? $\qquad$
How many choices are there for digits? $\qquad$

$\overline{\text { first letter }} \overline{\text { second letter }} \quad \overline{\text { third letter }} \quad \frac{10}{\text { first digit }} \quad$| second digit |
| :--- |

Multiply: 26 • $\qquad$ - $\qquad$ - 10 • $\qquad$ - = $\qquad$
The number of possible 3-letter, 2-digit license plates is $\qquad$ .
B. Find the probability of being assigned the license plate CAT 23.

Are all license plates equally likely? $\qquad$
Probability $=\frac{1}{\text { total number of license plates }} ; P($ CAT 23$)=\frac{1}{\square} \approx$ $\qquad$
C. Find the probability that a license plate cannot contain the letter O.
Use the Fundamental Counting Principle to find the number of codes that do not contain an O.
Since the license plate cannot contain the letter O there are only
$\qquad$ choices for letters and $\qquad$ choices for digits.
$\overline{\text { first letter }} \overline{\text { second letter }} \overline{\text { third letter }} \overline{\text { first digit }} \overline{\text { second digit }}$

There are _ possible codes without an O.
Probability $=\overline{\overline{1,757,600}} \approx$ $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$
IIssow
Ready to Go On? Problem Solving Intervention 10-8 Counting Principles
Shape-Up crackers come in triangles and 4 other shapes. Each shape comes in red and 5 other colors. Suppose you have a box with 1 of each type of cracker and you pick one at random. What is the probability that it will be neither triangular nor red?

## Understand the Problem

1. How many different shapes are there? How many different colors?
2. If you're finding the probability asked for in the problem, would it be a favorable outcome if you picked a green circle? A red square? A blue star? Explain.

## Make a Plan

3. Why might you use the fundamental counting principle instead of a tree diagram in this problem?
$\qquad$
$\qquad$

## Solve

4. How many types of cracker are there? How many types are there that are not triangular or red? Explain.
$\qquad$
5. What is the probability that a cracker is not triangular or red?

## Check

6. Why does it seem reasonable for the answer to be greater than $\frac{1}{2}$ ?

## Solve

7. What is the probability of picking a cracker that is triangular or red?
8. Why should your answers to Exercises 5 and 7 add up to 1 ?
$\qquad$ Class $\qquad$

## Lissom

Ready to Go On? Skills Intervention

## 10-9 Permutations and Combinations

A permutation is an arrangement of things in a particular order. ${ }_{n} P_{r}=\frac{n!}{(n-r)!}$
A combination is a selection of things in any order.
${ }_{n} C_{r}=\frac{{ }_{n} P_{r}}{r!}=\frac{n!}{r!(n-r)!}$

Vocabulary
permutation combination factorial

A factorial is the product of all whole numbers from the given number down to 1.

## Evaluating Expressions Containing Factorials

## Evaluate each expression.

A. 6 !

What are the whole numbers less than or equal to 6 ? $\qquad$
Multiply. 6 - 5 • $\qquad$ $=$ $\qquad$

## Finding Permutations

There are 6 cross-country runners running a race. Find the number of orders in which all 6 runners can finish.
What is the formula for permutations?
${ }_{n} P_{r}=$ $\qquad$
How many runners are in the race?
$n=$ $\qquad$
How many runners are running at a time? $r=$ $\qquad$
Substitute into the formula:
${ }_{6} P_{-}=\frac{-}{\sigma_{-6}}=\quad==\frac{1}{1}$
$=$ $\qquad$
There are $\qquad$ permutations. This
means that there are $\qquad$ orders in which the 6 runners can finish running the race.
B. $\frac{8!}{3!}$

Write the factorial of each number.


Cancel common factors.
Multiply the remaining factors.
8 • $\qquad$ = $\qquad$

## Finding Combinations

Student council needs to select a dance committee of 4 members from the group of 10 council members. Find the number of possible combinations.
Find the total number of council members. $n=$ $\qquad$
How many are chosen at a time? $r=$ $\qquad$ Substitute into the combination formula.

$$
{ }_{10} C_{-}=\frac{!}{4!(\square)!}
$$

Write out the factorials. Cancel and multiply.

$$
\begin{aligned}
& { }^{10} C_{-}=\frac{-!}{4!(6)!}= \\
& (4 \cdot 3 \cdot 2 \cdot 1)(\square) \\
& =
\end{aligned}
$$

There are $\qquad$ 4-member committees that can be formed.
$\qquad$ Date $\qquad$ Class $\qquad$
LEsson/ Ready to Go On? Problem Solving Intervention 10-9 Permutations and Combinations

When you calculate permutations and combinations, you may get results that surprise you.

Think of a standard deck of 52 playing cards. Are there more possible 13-card hands or 39-card hands? Explain.

## Understand the Problem

1. Is a hand a permutation or combination? Hint: Does order matter?

## Make a Plan

2. Write an expression with factorials for the number of possible 13-card hands.

Hint: Think of ${ }_{52} \mathrm{C}_{13}$.
$\qquad$
3. Write an expression with factorials for the number of possible 39-card hands.

## Solve

4. Without calculating the factorials, compare the two expressions you wrote.
5. Are there more possible 13-card hands or 39 -card hands? Explain.

## Check

6. Why does your answer make sense? Hint: Think of what is left each time you deal out a 13 -card hand from a deck.

## Solve

7. There are 73 students to choose from. Which is greater, the number of possible teams of 5 or the number of possible teams of 68? Explain.
$\qquad$ Date $\qquad$ Class $\qquad$

## section Ready to Go On? Quiz <br> 103

## 10-4 Theoretical Probability

An experiment consists of rolling two fair number cubes.
Find the probability of each event.

1. $P$ (total shown $=5$ ) $\qquad$ 2. $P(2$ and 6$)$ $\qquad$ 3. $P$ (total less than 8 ) $\qquad$

## 10-5 Independent and Dependent Events

4. Two fair number cubes are rolled. What is the probability that the first number rolled is a 4 and that the second number rolled is a 1 ?
5. A set of 10 cards is numbered $1-10$. If two cards are chosen at random, what is the probability that they are both even?
6. A bag contains 3 red tokens, 6 green tokens, 2 yellow tokens, and 1 blue token. If two tokens are chosen at random, what is the probability that 1 is yellow and the other is not yellow?

## 10-6 Making Decisions and Predictions

7. The spinner shown is used to tell a player how many cards to draw. Landing on the sad face means no cards get drawn. Suppose the spinner is spun 120 times. Predict how many times it will land on the sad face.

8. A set of 40 cards is numbered $1-40$. Player A wins the round if the card drawn is even and under 21. Player $B$ wins the round if the card drawn is odd and over 20. Decide whether the game is fair and show why.
9. The table shows the sizes of the last 500

T-shirts sold. Kia is placing an order for 1,200 T-shirts. How many medium size T-shirts should she order?

| T-shirts Sold |  |  |
| :---: | :---: | :---: |
| Small | Medium | Large |
| 119 | 225 | 156 |

$\qquad$ Date $\qquad$ Class $\qquad$

## section Ready to Go On? Quiz continued

## 108

## 10-7 Odds

10. If the odds in favor of winning the grand prize in a drawing are $1: 14,999$, what is the probability of winning the grand prize?
11. If you send in a letter to the Ask Bess TV show, the probability that Bess will read it aloud on her show is $\overline{999}$. What are odds that your letter will not get read aloud on the show?

## 10-8 Counting Principles

12. The menu in a restaurant has a choice of 3 kinds of soup, 4 different main courses, and 5 different desserts. How many different orders can a waitress hear from someone who is ordering soup, a main course, and dessert?
13. How many 7-digit phone numbers are there that contain only the digits 1,3 , and 5 ?
14. Paul is making up password with 4 digits and 2 letters to use with his banking account on the Internet. How many choices of passwords does he have?

## 10-9 Permutations and Combinations <br> Evaluate each expression

15. 6! $\qquad$ 16. $\frac{8!}{5!}$
16. $\frac{7!}{(5-2)!}$
17. There are 5 dogsleds in a race. In how many possible orders can all 5 dogsleds finish the race?
18. In a school board election, 8 candidates are running for 3 seats. How many different choices does Mrs. Lantera have if she is voting for 3 of the candidates?
$\qquad$ Class $\qquad$

## setriow

Ready to Go On? Enrichment

## 103 Combinations and Democracy

One of the many benefits of living in a democracy is being able to vote for the people you want to be your leaders. Sometimes the number of choices you have can be much greater than they seem.

Maddox Middle School is holding an election to choose the 9 members of the student council. Three members will be chosen from each of grades six, seven, and eight. There are 5 candidates from grade six, 8 candidates from grade seven, and 6 candidates from grade 8. Each student has three votes and votes only for the candidates in his or her grade.

1. Are the different possible election results for a grade combinations or are they permutations? Explain.
2. How many different results are possible for each of the grades?
3. How many different ways can the election turn out?
4. Compare the probability that all the candidates a sixth-grader voted for get elected with the probability that all the candidates a seventh-grader voted for get elected.
5. Is it fair that sixth-grade voters have more of a chance of electing the council members from their grade than seventh- and eighth-grade voters do? Explain.
$\qquad$
$\qquad$
6. What rule could be made so that all voters had an equal probability of electing all the council members they voted for? What is good or bad about the rule?
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON

## Ready to Go On? Skills Intervention

## 11-1 Simplifying Algebraic Expressions

If terms have the same variable to the same power, then they are like terms. Combining like terms simplifies an expression.

## Combining Like Terms to Simplify

Vocabulary
term
like term simplify

Combine like terms. $9 n+8-5 n+10$
$9 n+8-5 n+10 \quad$ Identify like terms.
$9 n-$ $\qquad$ $+8+$ $\qquad$

Rewrite and combine coefficients of the like terms. $n+$ $\qquad$ What is the coefficient of $n$ ? What is the constant?

## Combining Like Terms in Two-Variable Expressions

Combine like terms.

```
\(7 m+3 n-m+8 n-6\)
\(7 m+3 n-m+8 n-6\)
\(7 m\) -
```

$\qquad$

``` \(m+3 n+8 n-6\)
```

$\qquad$

``` \(m+\)
``` \(\qquad\)
``` \(n-6\)
```

Identify like terms. Circle terms with an
$m$-variable. Draw a square around terms with an $n$-variable.
Rewrite with like terms together. What is the coefficient on the term $m$ ?

Combine the coefficients of like terms.

## Using the Distributive Property to Simplify

Simplify. $3(6 x+5)-4 x+12$
$3(6 x+5)-4 x+12 \quad$ Simplify the parentheses using the
3 $\qquad$ $+3$ $\qquad$ $-4 x+12$ $\qquad$ property.
$\qquad$ $+$ $\qquad$ $-4 x+12$
$\qquad$ $-4 x+$ $\qquad$ $+12$

Multiply.
Rewrite with like terms together.
$\qquad$ $x+$ $\qquad$
Simplify. What is the coefficient of $x$ ? What is the constant?

## Combining Like Terms to Solve Algebraic Equations

Solve. $7 x+2 x=81$
$7 x+2 x=81 \quad$ Circle like terms.
$\bar{x}=81$
$\overline{-}=\frac{81}{-}$
$x=$

Add coefficients.
Divide both sides by $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 11-2 Solving Multi-Step Equations

You solve an equation by isolating the variable. To isolate the variable you may have to combine like terms.

## Solving Equations that Contain Like Terms

Solve.
$4 x+12+8 x-24=36$
$4 x+12+8 x-24=36$
$12 x-12=36$
$\qquad$
$12 x=$ $\qquad$

Circle the terms that contain a variable.
Combine like terms.
Add $\qquad$ to each side to isolate $x$. each side by 12.
$\qquad$
Simplify.

Check:

$$
4 x+12+8 x-24=36
$$

$4\left(\__{\quad}\right)+12+8\left(\__{-}\right)-24 \stackrel{?}{=} 36$

$$
\begin{aligned}
\__{-}+12+\ldots-24 & \stackrel{?}{=} 36 \\
\ldots & =36
\end{aligned}
$$

What do you substitute for $x$ ? $\qquad$
Simplify.
$12 x=$
$x=$ $\qquad$

## Solving Equations that Contain Fractions

Solve.

$$
\begin{aligned}
& \frac{5 y}{8}+\frac{7}{8}=\frac{-3}{8} \\
& -\left(\frac{5 y}{8}+\frac{7}{8}\right)=-\left(\frac{-3}{8}\right) \\
& \text { - } \\
& \text { Clear the denominators by multiplying both } \\
& \text { sides by } \\
& \text {. } \\
& \text { Use the Distributive Property. } \\
& \text { Simplify. } \\
& \text { Undo the addition. } \\
& 5 y= \\
& \frac{5 y}{-}=\frac{-10}{-} \\
& y= \\
& \text { Solve for } y \text {. }
\end{aligned}
$$

$\qquad$ Date $\qquad$ Class $\qquad$

LESSON Ready to Go On? Problem Solving Intervention 11-2 Solving Multi-Step Equations
A baseball player had 243 hits. He singled $21 \%$ of the times he batted. He doubled $6 \%$ of the times and he tripled $1.5 \%$ of the times. He also hit 37 home runs. About how many times did he bat?

## Understand the Problem

1. Why don't the percents add up to $100 \%$ ?
$\qquad$
$\qquad$
2. What is the sum of the player's singles, doubles, triples, and home runs?
$\qquad$

## Make a Plan

3. Let $n$ be the number of times the player batted. What expression with $n$ describes the number of times he singled? Doubled? Tripled?
$\qquad$
4. Write an equation with $n$ to show how the different types of hits add up to 243 .

## Solve

5. Solve the equation you wrote in Exercise 4.
6. About how many times did the player bat?

## Check

7. Substitute your answer for $n$ into the equation you solved to see if the answer checks.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## $11-3$ Solving Equations with Variables on Both Sides

When solving multi-step equations, combine like terms or clear fractions before isolating the variable.

## Solving Equations with Variables on Both Sides

Solve.
A. $5 a+6=6 a$
$\qquad$
$6=a$
B. $7 x-9=6+2 x$
$\qquad$
$\qquad$
$x-9=6$
$\qquad$

| $5 x$ | $=$ |
| ---: | :--- |
| $\frac{5 x}{-}$ | $=\underline{15}$ |
| $x$ | $=$ |

C. $2 a-6=2 a+8$
$\qquad$
$\qquad$

$$
-6=8
$$

To get the variable on the same side of the equation, subtract $\qquad$ from each side.

What is the first step? $\qquad$
Subtract $2 x$ from both sides.
Combine like terms.
Undo the - 9.
Add.
Isolate $x$.
What does $x$ equal?
How do you get $2 a$ to one side?
Subtract $2 a$ from both sides.
Is this a true statement? $\qquad$

There is no solution to the equation since there is no number that when substituted for the variable $a$, would make the equation true.

Solving Multistep Equations with Variables on Both Sides Solve. $x+9+6 x=2+x+1$

$$
7 x+9=x+3 \quad \text { What is the first step? }
$$

$\qquad$
$\qquad$
$x+9=$ $\qquad$
$\qquad$
$6 x=$ $\qquad$
$\underline{6 x}=\frac{-6}{}$
$x=$ $\qquad$

Get $x$ to one side of the equation.
Subtract.
What is the next step? $\qquad$

How do you isolate $x$ ? $\qquad$
Solve for $x$.
$\qquad$ Date $\qquad$ Class $\qquad$
IIsson

## Ready to Go On? Problem Solving Intervention

## 11-3 Solving Equations with Variables on Both Sides

Jiffy Gym offers two plans. With Plan A, you pay a one-time membership fee of \$145 and then $\$ 39$ every month. With Plan B, you pay no membership fee but you pay $\$ 54$ every month. After how many months does Plan A become a better deal?

## Understand the Problem

1. With Plan A, how often do you pay the $\$ 145$ membership fee?
2. With Plan A, how much do you pay for 1 month? 2 months?
3. With Plan B, how much do you pay for 1 month? 2 months?

## Make a Plan

4. With $n$ as the number of months, write expressions for the cost of both plans.
5. Set the two expressions from Exercise 4 equal to each other. How would solving this equation for $n$ help you solve the problem?

## Solve

6. Solve the equation you wrote in Exercise 5.
7. Why should the answer be a whole number of months?
8. After how many months does Plan A become a better deal?

## Check

9. Complete the table to check your answer.

| $n-1$ |  |  |  |
| :--- | :--- | :--- | :--- |
| $n+1$ | months | Plan A | Plan B |
|  |  |  |  |
|  |  |  |  |

$\qquad$ Date $\qquad$
$\qquad$

## SECTION

Ready to Go On? Quiz
11A
11-1 Simplifying Algebraic Expressions Simplify.

1. $2 x+7 x$
2. $6 y-5 y$
3. $8 z+4-3 z$
4. $4 m-3+7 m$
5. $4+n+5 n-3-2 n$
6. $3 k-3-4 k+5+6 k$
7. $3 p+8 q+6 p-q$
8. $3(f+2)+f$
9. $7 a+4 b-5 b+4 a$
10. $6 s-3 t+9$
$\qquad$

Solve.
13. $3 m+2 m=15$
15. $4 r+5 r=45$
17. $-12 z+13 z=17$
19. $44 b-33 b+4 b=60$
$\qquad$
14. $10 p-7 p=18$
16. $2 a+9 a=88$
18. $11 x-x=90$
20. $20 s+30 s+10 s=120$
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> Ready to Go On? Quiz continued

## 11A

## 11-2 Solving Multi-Step Equations

Solve.
21. $5 y+4 y-11=16$
22. $\frac{7 x}{9}-\frac{2 x}{9}=\frac{10}{9}$
23. $\frac{r}{3}-\frac{r}{5}=\frac{4}{15}$
24. $\frac{3 b}{8}+\frac{b}{4}=\frac{5}{2}$
25. $\frac{1}{5} s+\frac{2}{3} s=6$
26. $\frac{2}{3} t+1+\frac{1}{4} t=-5$
27. $\frac{7 c}{10}-\frac{c}{5}=\frac{9}{2}$
28. $-6-\frac{2}{3} d+\frac{13}{6} d=-4$
29. The Sunday newspaper sells for $\$ 2$. Corner News had a supply of them worth $\$ 50$ but has already sold 14 . How many more Sunday newspapers remain to be sold?

## 11-3 Solving Equations with Variables on Both Sides

30. $3 a+13=5 a+5$
31. $7 h+34=4-3 h$
32. $-3 w+4+w=4 w+28$
33. The pentagon and the triangle have the same perimeter. What is the measure of this perimeter?
$\qquad$
$\qquad$
34. $8 b+14=4 b+38$
35. $-p+9=10 p-35$
36. $\frac{5}{6} x-\frac{1}{3}=x-\frac{3}{2}$

$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> Ready to Go On? Enrichment

## 11A Of Hippos and Chairs

Begin at START. Solve the equation in the box. Find the solution (in parentheses) in another box. Draw a line with an arrow from the box with the equation to the box with its solution. Now solve the equation in the second box and find its solution in a third box. Remember to draw a line with an arrow. Continue this way until you reach FINISH.

| START $3 x+5 x=16$ <br> "What" | $\begin{gathered} \left(x=\frac{9}{5}\right) \\ 3 x+18=-2 x+11 x-21 \\ \text { "time" } \end{gathered}$ | $\begin{gathered} (x=3) \\ 6 x-15=4 x+7 \\ \text { "is" } \end{gathered}$ |
| :---: | :---: | :---: |
| $\begin{gathered} (x=9) \\ \frac{11}{6} x-\frac{11}{4}=\frac{4}{3} x \end{gathered}$ <br> "the" | $\begin{gathered} \left(x=\frac{7}{2}\right) \\ 10 x-7 x+3=8 \end{gathered}$ <br> "it" | $\begin{gathered} (x=8) \\ 6 x-9 x=-15 \\ \text { "a" } \end{gathered}$ |
| $\begin{gathered} \left(x=\frac{5}{3}\right) \\ \frac{3 x}{5}+\frac{4}{5}=\frac{7}{5} \end{gathered}$ <br> "when" | $\begin{gathered} (x=11) \\ -3 x-1=x-14 \end{gathered}$ <br> "sitting" | $\begin{gathered} (x=5) \\ \frac{3}{4} x-\frac{3}{5} x-3=0 \end{gathered}$ <br> "chair?" |
| $\begin{gathered} (x=20) \\ -3 x+2+4 x=-4 x+11 \end{gathered}$ <br> "It's" | $\begin{gathered} \left(x=\frac{13}{2}\right) \\ \frac{3}{4} x+13=\frac{2}{3} x+14 \\ \text { "to" } \end{gathered}$ | $\begin{gathered} (x=2) \\ 5 x-2 x=30 \end{gathered}$ <br> "time" |
| $\begin{gathered} \left(x \frac{13}{4}\right) \\ \frac{x}{2}-5-\frac{x}{8}=-2 \\ \text { "in" } \end{gathered}$ | $\begin{gathered} (x=7) \\ \frac{x}{3}+\frac{x}{5}=\frac{8}{5} \end{gathered}$ <br> "hippopotamus" | $\begin{gathered} (x=1) \\ \frac{2 x}{5}-\frac{11}{5}=\frac{3}{5} \\ \text { "a" } \end{gathered}$ |
| $\begin{gathered} (x=12) \\ -13 x+5 x=-72 \\ \text { "replace" } \end{gathered}$ | $\begin{gathered} (x=10) \\ 7 x-3 x=14 \end{gathered}$ <br> "is" | $\left(x=\frac{11}{2}\right)$ <br> FINISH <br> "chair" |

Each box on your path has a word in quotation marks in it. Write these words below in the exact order in which you came upon them.
$\qquad$ Date $\qquad$ Class $\qquad$
ILsom

## Ready to Go On? Skills Intervention

## 11-4 Solving Inequalities by Multiplying or Dividing

The steps for solving inequalities are similar to those for solving equations. If the number on each side of the inequality is to be multiplied or divided by a negative number, you must reverse the inequality sign when you perform this step.

## Solving Inequalities by Multiplying or Dividing

Solve and graph each inequality.
A. $5 \geq \frac{1}{2} x$
$5 \geq \frac{1}{2} x$
Multiply both sides by $\qquad$ .
$\qquad$ $\geq x$

Use $a(n)$ $\qquad$ circle on the graph because the sign is
$\qquad$ Draw a line to the $\qquad$ , because $\qquad$ .


Check: 9 should be a solution because 10 $\qquad$ 9. 11 should not be a solution because 10 __ 11. Substitute and check.

$$
5 \geq \frac{1}{2}(9)=5 \geq \quad \checkmark \quad 5 \geq \frac{1}{2}(11)=5 \geq \quad X
$$

So 9 $\qquad$ a solution and 11 $\qquad$ .
B. $10>-2 x$

$$
10>-2 x
$$

Divide both sides by $\qquad$ . $\qquad$ the inequality sign.
$\qquad$ $x$

Use a(n) $\qquad$ circle on the graph because the sign is
$\qquad$ . Draw a line to the right. Because $\qquad$


Check: -3 should be a solution because $-5 \ldots-3$. -6 should not be a solution because -5 $\qquad$ -6. Substitute and check.

$$
10>-2(-3)=10>\ldots \quad \checkmark \quad 10>-2(-6)=10>\ldots X
$$

So, -3 $\qquad$ a solution and -6 $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

## 11-4 Solving Inequalities by Multiplying or Dividing

Erica has no more than 6 times the number of snowglobes that James has. If Erica has 54 snowglobes, what is the greatest number of snowglobes James can have?

## Understand the Problem

1. What quantity are you asked to find?
2. What sign should you use for "no more than"? $\qquad$

## Make a Plan

3. How can you solve this problem?
4. What amount will be on the greater than or equal to side of the inequality?
5. What amount will be on the less than or equal to side of the inequality?

Solve
6. Set up the inequality. Use $s$ to represent James's snowglobe collection. $\qquad$
7. Solve the inequality.

## Check

8. Choose two numbers to test, one that should be a solution and one that should not.
9. Substitute each number to check you answer.

## Solve

10. If Erica has 72 snowglobes, what is the greatest number James can have?
$\qquad$ Date $\qquad$ Class $\qquad$
Lissow
Ready to Go On? Skills Intervention

## 11-5 Solving Two-Step Inequalities

When solving two-step inequalities, combine like terms or clear fractions before isolating the variable. When multiplying or dividing by a negative number, remember to reverse the inequality symbol.

## Solving Two-Step Inequalities

Solve. $4 x-5>11$
$4 x-5>11 \quad$ What do you add to both sides to undo the -5 ?
$\qquad$
$4 x>$
What do you do to isolate $x$ ? $\qquad$
$\frac{4 x}{-}>\frac{16}{-}$
$x>$
How do you read the answer? $\qquad$
Will you use an open or closed circle to graph the solution? $\qquad$
Will the graph extend to the left or right? $\qquad$
Graph the solution.


## Solving Inequalities that Contain Fractions

Solve $\frac{3 x}{4}+\frac{3}{8} \geq \frac{5}{12}$ and graph the solution.

$\qquad$ Date $\qquad$ Class $\qquad$

LESSON 1115 Ready to Go On? Problem Solving Intervention Solving Two-Step Inequalties
You decide to buy and sell wallets. How many wallets can you buy from this catalog for $\$ 28$ ?

## Understand the Problem

Wallets: $\$ 3.75$ each
$+\$ 5.95$ for shipping and handling per order

1. If you order 3 wallets, what will you be charged for shipping and handling?
2. What amounts would you add to find the total cost for one wallet?

## Make a Plan

3. Write an expression for the total cost for $x$ wallets.
4. Which of these inequalities would make sense for this problem? Explain.

$$
\begin{array}{ll}
\text { total cost }<\$ 28 & \text { total cost } \leq \$ 28 \\
\text { total cost }>\$ 28 & \text { total cost } \geq \$ 28
\end{array}
$$

5. Use your answers to Exercises 3 and 4 to write an inequality you can use to solve the problem.

## Solve

6. Solve the inequality you wrote in Exercise 5.
7. How many wallets can you buy from this catalog for $\$ 28$ ?

## Check

8. Complete the table to check your answer.

$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 11-6 Systems of Equations

A system of equations is a set of two or more equations. The solution of a system is a set of values that satisfy both equations.

## Solving Systems of Equations

Solve the system of equations.

$$
\begin{aligned}
& y=-x+6 \\
& y=x-2 \\
& -x+6=x-2 \\
& = \\
& x-2 \\
& -\quad=2 x \\
& \underline{8}=\frac{2 x}{-} \\
& =x \\
& y=x-2 \\
& y=\_-2 \\
& y=
\end{aligned}
$$

What are both equations equal to? $\qquad$

Vocabulary
system of equations
solution of a system of equations Set the equations equal to each other.

Get $x$ on one side of the equation.
Combine like terms.
Get the constant terms to one side of the equation.
How do you isolate $x$ ? $\qquad$
Solve for $x$.
Choose one of the original equations to solve for $y$.
To find $y$, $\qquad$ 4 for $x$ into the original equation.

The solution to the system is ( $\qquad$ ).

## Solving Systems of Equations by Solving for a Variable

$2 x-y=4$
$6 x+3 y=12$
Solve each equation for $y$.

$$
\begin{aligned}
2 x-y & =4 \\
& =-2 x+4 \\
y & =- \\
+4 & =2 x--\quad \\
4 & =\square-4 \\
8 & =4 x \\
\underline{8} & =\frac{4 x}{-} \\
- & =x
\end{aligned}
$$

$$
6 x+3 y=12
$$

$$
3 y=
$$

$\qquad$ $+12$

$$
y=
$$

$\qquad$ $+4$

Set the equations equal to each other.
Get $x$ to one side of the equation.
Add 4 to both sides.
Divide both sides by $\qquad$ .

Solve for $x$.
Substitute $x$ into either original equation: $y=2 x-4=2(2)-4=$ $\qquad$
The solution set is $\qquad$ , ___) ).
$\qquad$ Date $\qquad$ Class $\qquad$

## section Ready to Go On? Quiz

## 11B

## 11-4 Solving Inequalities by Multiplying or Dividing Solve and graph.

1. $-7 x<14$
2. $\frac{p}{3}>7$
3. $-\frac{k}{6} \leq 4$

4. Mildred has 35 ounces of hamburger meat for a small picnic.

What are the possible numbers of 4-ounce hamburger patties she can make from this meat?
5. A chemist has prepared 151 mL of a certain liquid. What are the possible numbers of $20-\mathrm{mL}$ beakers that she can fill with this liquid?

## 11-5 Solving Two-Step Inequalities

Solve and graph.
6. $3 m+7<19$
7. $0.5 n+1.5 \geq 6.5$
8. $\frac{1}{6}+\frac{r}{9} \leq-\frac{1}{2}$

9. $-\frac{1}{3} x+\frac{1}{4}>\frac{1}{2}$
10. $-2+1.5 y<7$
11. $-13 \geq-7 z+15$

12. Veronica wants to average at least 140 points whenever she bowls. The first two games she scores 148 and 130. What scores can Veronica get in her third game and still meet her goal?
13. Hans wants to average at least 7 baskets out of every 10 shots he attempts. The first three games he scores 9,3 , and 8 baskets. What numbers of baskets can Hans make the fourth time and still meet his goal?
$\qquad$ Date $\qquad$ Class $\qquad$

## section Ready to Go On? Quiz continued

## 11B

## 11-6 Systems of Equations

Solve each system of equations.
14. $y=2 x+5$
$y=3 x+3$
15. $y=6 x-8$
$y=2 x+4$
16. $y=2 x-1$
$y=-2 x+3$
17. $y=5 x-5$
$y=2 x+7$
$\qquad$
20. $y=4 x+3$
$y=-x+3$
$\qquad$
23. $y=2 x-7$
$y=-x+8$
24. $y=x-7$
$y=-11 x-7$
27. $2 x-y=2$
$3 x-y=5$
30. $3 x+y=10$
$2 x-y=-10$
$-x+y=0$
21. $y=-6 x-6$
$y=-8 x-7$
18. $y=-3 x-1$
$y=-4 x+1$
19. $y=-5 x+7$
$y=-x-1$
22. $y=10 x-46$
$y=7 x-31$
26. $x+y=6$
$x+3 y=8$
28. $-x+y=-6$
$-x-y=-2$
$\qquad$
32. In a baseball game, two teams have a combined score of 11 runs. The difference in their scores is 5 runs. If the two run totals are $x$ and $y$, write a system of equations to describe their sum and their difference. Solve this system to find the score of the game.
33. The sum of two winter temperatures is -10 degrees. Their difference is 34 degrees. Write a system of equations to describe the sum and the difference. Solve this system to find the two temperatures.
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

 Ready to Go On? Enrichment
## 11B What Is It?

Solve each system of equations. Then graph each solution with a bold point. What do you find?

1. $y=\frac{1}{2} x+1$
2. $y=-x+2$
$y=\frac{2}{3} x-3$
3. $\begin{aligned} y-\frac{3}{5} x & =-2 \\ y+\frac{1}{2} x & =-2\end{aligned}$
4. $y=-x$
5. $y-\frac{1}{2} x=-\frac{5}{2}$
6. $y-3 x=4$
$y=\frac{3}{2} x+5$
$y+x=-1$
$y+\frac{8}{3}=-\frac{1}{3} x$
7. $y=-1$
$y-1=\frac{2}{3} x$
8. $y-6=\frac{3}{2} x$
$y+1=-\frac{1}{4} x$
9. $x=y$
$y+\frac{1}{4} x=\frac{5}{2}$
10. $y+\frac{5}{3}=\frac{1}{3} x$
$y-5 x=3$
11. $y=\frac{4}{7} x$
$y=-\frac{5}{8} x$
12. $y=-\frac{3}{2} x$
$y=\frac{2}{5} x+\frac{19}{5}$
13. $\begin{aligned} x & =\frac{4}{3} y-2 \\ y & =2 x-1\end{aligned}$
14. $y=\frac{3}{4} x-\frac{7}{2}$
$y=-x$
15. $\begin{aligned} x & =\frac{4}{5} y+4 \\ x & =4-y\end{aligned}$
$\qquad$
$\qquad$
$\qquad$
Connect those points that are exactly 1 unit apart. Connect diagonally those points that are opposite vertices of a unit square. Do not connect any other points.
16. What do the points you have just graphed look like to you?

$\qquad$ Date $\qquad$ Class $\qquad$

LESSON

## Ready to Go On? Skills Intervention

## 12-1 Graphing Linear Equations

A linear equation is an equation whose solutions fall on a line on the coordinate plane. If the equation is linear, a constant change in the $x$-value corresponds to a constant change in the $y$-value.

Vocabulary linear equation

## Graphing Equations

Graph each equation and tell whether it is linear.
A. $y=3 x-2$

Create a table of values.

| $\boldsymbol{x}$ | $\mathbf{3 x - 2}$ | $\boldsymbol{y}$ | $(\boldsymbol{x}, \boldsymbol{y})$ |
| :---: | :---: | :---: | :---: |
| -2 | $3(-2)-2$ | -8 | $(-2,-8)$ |
| -1 | $3(\ldots)-2$ |  | $(-1, \ldots)$ |
| 0 | $3(\ldots)-2$ |  | $(0, \ldots)$ |
| 1 | $3(\ldots)-2$ |  |  |
| 2 | $3(\ldots)-2$ |  |  |



Plot each coordinate pair from the table on the coordinate grid.
Does the equation form a straight line? $\qquad$
What is the change between each $y$-value? $\qquad$
Is the change the same between every $y$-value? $\qquad$
The equation $y=3 x-2$ is a $\qquad$ equation.
B. $y=x^{2}+1$

Create a table of values.

| $\boldsymbol{x}$ | $\boldsymbol{x}^{2}+\mathbf{1}$ | $\boldsymbol{y}$ | $(\boldsymbol{x}, \boldsymbol{y})$ |
| :---: | :---: | :---: | :---: |
| -2 | $(-2)^{2}+1$ | 5 | $(-2,5)$ |
| -1 | $(-1)^{2}+1$ |  | $(-1,-)$ |
| 0 | $(0)^{2}+1$ |  | $(0,-)$ |
| 1 | $(1)^{2}+1$ |  |  |
| 2 | $(2)^{2}+1$ |  |  |



Plot each coordinate pair from the table on the coordinate grid.
Does the equation form a straight line? $\qquad$
Is the change between the $y$-values constant? $\qquad$
The equation $y=x^{2}+1$ is $\qquad$ a linear equation.
$\qquad$ Date $\qquad$ Class $\qquad$
Lisson|
Ready to Go On? Problem Solving Intervention 12-1 Graphing Linear Equations
You can use a graph to check your solution to a linear equation.
Sara's hair grows an average of 0.4 inches per month. She just cut it to a length of 14 inches on August 1. How long will her hair be at the beginning of February if she doesn't cut it again?

## Understand the Problem

1. What do you know and what you need to find?

## Make a Plan

2. Let $n$ be the number of months since August 1. Write an expression with $n$ for the number of inches Sara's hair grows.
3. Fill in the blanks to write an equation that shows how Sara's hair length, $\ell$, depends on the number of months since August.


Solve
4. To find the length of Sara's hair at the beginning of February, what value of $n$ should you use? Explain.
5. Use the equation you wrote in Exercise 3 to solve the problem.
6. How long will Sara's hair be at the beginning of February?

## Check

7. Check your answer by making a graph and finding the value of $\ell$ when $n=6$.

$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 12-2 Slope of a Line

Linear equations have a constant slope. The formula for determining the slope between any two points is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.


Positive slope Negative slope


Zero slope


Undefined slope

## Finding Slope, Given Two Points

Find the slope of the line that passes through $(2,4)$ and $(8,2)$.
Let $x_{1}=2, y_{1}=\ldots, x_{2}=\ldots$ and $\quad \ldots=2$.
$m=\frac{2-}{--2}=\frac{-2}{-}=\overline{3} \quad$ Substitute the values into the slope formula.

The slope of the line that passes through $(2,4)$ and $(8,2)$ is $\qquad$ .
If the graph of an equation is a straight line, the graph shows a constant rate of change. This means that the slope between any two points on the line is the same. If a graph is not a straight line, it shows a variable rate of change. The slope of the graph changes, depending upon the points used to find the slope.

## Identifying Constant and Variable Rates of Change in Graphs

Determine whether each graph shows a constant or a variable rate of change. Explain.
A.


The graph is a $\qquad$ .

The slope is $\qquad$ between all points.

The graph shows a $\qquad$ rate of change.
B.


The graph is $\qquad$ a straight line.

The slope $\qquad$ based on different points.

The graph shows a $\qquad$ rate of change.
$\qquad$ Date $\qquad$ Class $\qquad$

## 12-2 Slope of a Line

The points in the table are all on a line. Without graphing, find the slope of the line and tell whether it has a constant or a variable rate of change.

| $x$ | 1 | 3 | 5 | 7 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 4 | 8 | 12 | 16 |

## Understand the Problem

1. What do you know and what are you asked to find?

## Make a Plan

2. How can you find the slope of a line without graphing it?
3. How can you tell the rate of change without graphing the line?
4. What is the formula for slope?

## Solve

5. Use the formula from Exercise 4 to find the slope between $(1,4)$ and $(3,8)$.
6. Use the formula from Exercise 4 to find the slope between $(5,12)$ and $(7,16)$.
7. Are the slopes the same? $\qquad$
8. Answer the question in the problem.

## Check

9. The equation for the line is $y=m x+2$. Substitute the slope you found for $m$ and any point on the line for $x$ and $y$ to see if your answer checks.
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## $12-3$ Using Slopes and Intercepts

The $x$-intercept is where the graph crosses the $x$-axis and the $y$-intercept is where the graph crosses the $y$-axis.

## Finding $x$-intercepts and $y$-intercepts to Graph

## Linear Equations

Find the $x$-intercept and $y$-intercept of the line $4 x+5 y=20$.

Vocabulary
$x$-intercept
$y$-intercept
slope-intercept form Use the intercepts to graph the equation.

Find the $x$-intercept. $(y=0)$

$$
4 x+5 y=20
$$

$4 x+5(\ldots)=20 \quad$ Substitute 0 in for $y$.
$x=20$
$\underline{4 x}=\underline{20} \quad$ What do you divide each side by?
$x=\ldots \quad$ Solve for $x$. The $x$-intercept is $\quad . \quad$.
Find the $y$-intercept. $(x=0)$

$$
\begin{array}{rlrl}
4 x+5 y & =20 & \\
4(\ldots)+5 y & =20 & & \text { Substitute } 0 \text { in for } x . \\
y & =20 & & \\
\frac{5 y}{-} & =\frac{20}{-} & & \text { What do you divide each side by? } \\
y & =- & & \text { Solve for } y . \text { The } y \text {-intercept is }
\end{array}
$$

To graph the equation plot the points ( $\qquad$ 0 ) and (0, $\qquad$ ).


For an equation written in slope-intercept form, $y=m x+b, m$ is the slope and $b$ is the $y$-intercept.

## Using Slope-Intercept Form to Find Slopes and $\boldsymbol{y}$-intercepts

Write the equation $3 y=8 x$ in slope-intercept form and then find the slope and $y$-intercept.

What is the slope-intercept form of an equation? $y=$ $\qquad$
$3 y=8 x$
$\underline{3 y}=\frac{8 x}{} \quad$ By what number do you divide both sides?
$y=\ldots \quad x \quad$ What is the slope? $\qquad$ What is the $y$-intercept? $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

## 12-3 Using Slopes and Intercepts

You can use geometric relationships to find distances on a coordinate plane.
The graph of the equation $y=\frac{3}{4} x+3$ has an $x$-intercept and a $y$-intercept. What is the distance between the two intercepts?

## Understand the Problem

1. In what form is the equation $y=\frac{3}{4} x+3$ ?
2. In the equation $y=\frac{3}{4} x+3$, what does the number $\frac{3}{4}$ tell you? What does the number 3 tell you?
3. What is the $x$-intercept of $y=\frac{3}{4} x+3$ ? Graph the equation. Label the $x$-intercept $A$ and the $y$-intercept $B$.


## Make a Plan

4. $\overline{A B}$ is a side of $\triangle A B C$. What kind of triangle is $\triangle A B C$ ? $\qquad$
5. If you know the lengths of the two legs of a right triangle, how can you calculate the length of the third side?
6. What are the lengths of the two legs of $\triangle A B C$ ?

## Solve

7. Use the Pythagorean theorem to find $A B$.

## Check

8. Make sure you graphed the equation correctly. Also, look at $\overline{A B}$ to see if it seems to be about the length you calculated.

## Solve

9. Find the distance between the $x$-intercept and $y$-intercept of the graph of the equation $y=-2.4 x+12$.
$\qquad$ Date $\qquad$ Class $\qquad$
Issoll
Ready to Go On? Skills Intervention

## 12-4 Point-Slope Form

The point-slope form of a linear equation is $y-y_{1}=m\left(x-x_{1}\right)$, where $m$ is the slope and $\left(x_{1}, y_{1}\right)$ is a point on the line.

Vocabulary
point-slope form

## Using Point-Slope Form to Identify Information About a Line

 Identify a point the line passes through and the slope of the line, given the point-slope form of the equation.A. $y-6=\frac{3}{4}(x-12)$
$y-Z_{ـ}=Z_{工}(x-\ldots) \quad$ Write the point-slope form of an equation.

What is $m$ ? $\qquad$ What is $x_{1}$ ? $\qquad$ What is $y_{1}$ ? $\qquad$
The line has slope $\frac{3}{4}$ and passes through the point (___).
B. $y-4=5(x+8)$
$y-\ldots=\ldots \quad(x-$ $\qquad$ Write the point-slope form of an equation. $y-4=5\left(x-\left(\_\right)\right) \quad$ Rewrite using subtraction instead of addition.

What is $m$ ? $\qquad$ What is $x_{1}$ ? $\qquad$ What is $y_{1}$ ? $\qquad$
The line has slope $\qquad$ and passes through the point $\qquad$ ).

## Writing the Point-Slope Form of an Equation

Write the point-slope form of the equation with the given slope that passes through the indicated point.
A. the line with slope -3 passing through $(5,2)$

Write the point-slope form.

$$
y-\ldots \quad=\quad(x-\ldots)
$$

Substitute in known values.

$$
y-\ldots=ـ_{-}(x-\ldots)
$$

B. the line with slope 8 passing through $(-2,6)$

Write the point-slope form.

$\qquad$
Substitute in known values.

$$
y-\ldots=\ldots(x-(\ldots))
$$

Rewrite the equation.

$$
y-\ldots=\ldots \quad(x+\ldots)
$$

$\qquad$ Date $\qquad$ Class $\qquad$

SECTION
Ready to Go On? Quiz
$12 A$

## 12-1 Graphing Linear Equations

Graph each equation and tell whether it is linear.

1. $y=-3+2 x$

2. $y=\frac{1}{2} x^{2}$

3. $x=y+4$

4. A bookstore buys back school books according to the formula $y=\frac{1}{2} x-5$, where $x$ is the price you originally paid for a book and $y$ is the amount the store will now pay you for it. What is the buy-back price for each of the books

| Original Price | Buy-Back Price |
| :---: | :---: |
| $\$ 40$ |  |
| $\$ 50$ |  |
| $\$ 70$ |  |
| $\$ 100$ |  | listed in the table?

## 12-2 Slope of a Line

Find the slope of the line that passes through each pair of points.
5. $(0,1)$ and $(4,3)$
6. $(-2,6)$ and $(1,3)$
7. $(1,-9)$ and $(3,1)$
8. $(4,0)$ and $(1,-6)$
9. $(5,1)$ and (-4, 4)
10. (-4, -1) and (2, -1)
11. The table shows Sam's progress during an all-day hike. Graph the data, find the slope of the line, and explain what the slope shows.

| Time | Distance |
| :---: | :---: |
| 3 h | 9 km |
| 4 h | 12 km |
| 5 h | 15 km |
| 7 h | 21 km |


$\qquad$ Date $\qquad$ Class $\qquad$

## setrion <br> Ready to Go On? Quiz continued

## $12 A$

## 12-3 Using Slopes and Intercepts

12. An amusement park charges $\$ 20$ to get in plus $\$ 2$ for each ride. The equation $y=2 x+20$ represents the total amount paid if a person goes on $x$ rides. Identify the slope and the $y$-intercept and then use them to graph the equation.

Write the equation of the line that passes through each pair of points. Use the slope-intercept form.

13. (-2, -2) and (4, 1)
14. $(1,-5)$ and (-2, 4)
15. $(0,1)$ and $(-3,10)$
16. $(-5,-3)$ and $(5,-3)$
17. (-8, -2) and (4, 1)
18. $(3,0)$ and $(1,1)$

## 12-4 Point-Slope Form

Use the point-slope form of each equation to identify a point the line passes through and the slope of the line.
19. $y-1=2(x-2)$
20. $y=-x+6$
21. $y+3=4 x+2$

Write the point-slope form of the equation with the given slope that passes through the indicated point.
22. slope 2 , passing through ( $1,-1$ )
23. slope $-\frac{1}{3}$, passing through $(-1,-2)$
24. slope -4 , passing through $(5,0)$
25. slope $\frac{2}{3}$, passing through $(-6,3)$
$\qquad$ Date $\qquad$
$\qquad$

## SECTION

Ready to Go On? Enrichment
12A Clown Face
For each of the following, graph the given point and draw a line with the indicated slope through the point.

1. point: $(60,110)$
slope: 0
2. point: $(25,25)$
slope: -1
3. point: $(10,60)$
slope: undefined
4. point: $(105,38)$
slope: 2
5. point: $(82,105)$
slope: $-\frac{1}{2}$
6. point: $(110,60)$
slope: undefined
7. point: $(95,95)$
slope: -1
8. point: $(15,38)$
slope: -2
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON

## Ready to Go On? Skills Intervention

## 12-5 Direct Variation

If two variables are related proportionally by a constant ratio, $k$, then they have a direct variation. The ratio is called the constant of proportionality.
$y=k x$ or $k=\frac{y}{x}$

## Determining Whether a Data Set Varies Directly

Determine whether the data set shows direct variation.
A.

| Stamps | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Price \$ | 0.37 | 0.74 | 1.11 | 1.48 | 1.85 |

Make a graph of the data.
Does the line appear to be a straight line? $\qquad$
Compare the ratios. $\frac{0.37}{1}=\frac{0.74}{2}=\frac{\overline{3}}{=\overline{4}}=\frac{\overline{5}}{}$
Reduce each ratio: 0.37, 0.37, $\qquad$


Since the ratios are all the same this is a $\qquad$
B.

| $x$ | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 8 | 7.5 | 6 | 6.5 | 5 |

Make a graph of the data.
Does the line appear to be a straight line? $\qquad$
Compare the ratios. $\frac{8}{3}=\frac{7.5}{4}=\overline{\overline{5}}=\overline{\overline{6}}=\overline{\overline{7}}$
Reduce each ratio: 2.7, 1.9, $\qquad$ , $\qquad$


Since the ratios are $\qquad$ all the same this is not
a $\qquad$ variation.

## Finding Equations of Direct Variation

Find the equation of direct variation, given that $y$ varies directly with $x$. $y$ is 32 when $x$ is 8 .

| $y$ | $=k x$ |  | Write the direct variation equation. |
| ---: | :--- | ---: | :--- |
|  | $=k \cdot \_$ |  | Substitute for $x$ and $y$. |
| $ـ_{\square}$ | $=k$ |  | Substitute 4 back into the original equation. |
| $y$ | $=l_{x}$ |  |  |

$\qquad$ Date $\qquad$ Class $\qquad$

## 12-5 Direct Variation

When you travel at a constant speed, there is a direct variation between distance and time.

A driver sees a log in the road, but it takes time for her to react. During that reaction time, the car keeps going at the same speed. The distance the car travels before the driver brakes is the reaction distance. At $75 \mathrm{mi} / \mathrm{h}$, the reaction distance is 165 ft . What is the reaction time in seconds?

## Understand the Problem

1. Why does it make sense that there is a direct variation between reaction distance and speed?
$\qquad$
$\qquad$
2. Suppose the reaction time is 0.5 seconds. What would be the reaction distance at a speed of $100 \mathrm{ft} / \mathrm{s}$ ?
3. How far do you travel during the actual reaction time? $\qquad$

## Make a Plan

4. How many $\mathrm{ft} / \mathrm{s}$ is $75 \mathrm{mi} / \mathrm{h}$ ? Hint: How many times greater is $75 \mathrm{mi} / \mathrm{h}$ than $15 \mathrm{mi} / \mathrm{h}$ ?

$$
15 \frac{\mathrm{mi}}{\mathrm{~h}}=22 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

5. Let $t$ be the reaction time. Complete the proportion.

$$
\frac{\text { feet }}{t \text { seconds }}=\frac{\text { feet }}{1 \text { second }} \ll \text { speed in } \mathrm{ft} / \mathrm{s}
$$

Solve
6. Solve the equation you wrote in Exercise 5.
7. How long is the reaction time in seconds?

## Check

8. Start with your answer. See if a car would travel 165 ft in that time if its speed were $75 \mathrm{mi} / \mathrm{h}$.
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON
Ready to Go On? Skills Intervention
12-6 Graphing Inequalities in Two Variables
A graph of a linear inequality divides the coordinate plane into three parts: the points on one side of the line, the points on the boundary line, and the points on the other side of the line. Any ordered pair that makes the linear inequality true is a solution. Use

Vocabulary
boundary line linear inequality a dashed boundary line for inequalities with the $>$ or $<$ symbol and a solid boundary line for the $\leq$ or $\geq$ symbol.

## Graphing Inequalities

Graph each inequality.
A. $y>x+2$

Will you use a dashed or solid boundary line? $\qquad$
Why? $\qquad$
Graph the equation $y=x+2$.
Pick a point on either side of the boundary line.
Which point is the easiest to use? $\qquad$
Substitute the point into the inequality.

$y>x+2$
$\qquad$ $>$ $\qquad$ $+2$
$\qquad$ $>$ $\qquad$ Is this a true statement? $\qquad$
Shade the side of the line that does not include $(0,0)$.
B. $y \leq x-3$

Will you use a dashed or solid boundary line? $\qquad$
Why? $\qquad$
Graph the equation $y=x-3$.
Pick a point on either side of the boundary line.
Which point is the easiest to use? $\qquad$
Substitute the point into the inequality.
$y \leq x-3$
$\qquad$ $\leq$ $\qquad$ $-3$
$\qquad$ $\leq$ $\qquad$ Is this a true statement? $\qquad$


Shade the side of the line that does not include $(0,0)$.
$\qquad$ Date $\qquad$ Class $\qquad$

## 12-6 Graphing Inequalities in Two Variables

Jenny's brother is coming to Greenville on a bus, which leaves at 8 A.M. from a city 340 miles away.

Cousin in car Speed $\leq$ $\qquad$ The bus will travel on a highway with a speed limit of $65 \mathrm{mi} / \mathrm{h}$. Also at 8 A.M., Jenny's cousin leaves Greenville in his car. He will drive on a dirt road on which he cannot go more than $35 \mathrm{mi} / \mathrm{h}$. Could Jenny's brother and cousin each be 100 miles from Greenville at 11:30 A.M.?

## Understand the Problem

1. Label the diagram with the information you know.

## Make a Plan

2. Let $t$ be the number of hours since 8 A.M. Write an expression for $d_{c}$, the distance Jenny's cousin is from Greenville and $d_{b}$, distance of her brother from Greenville after $t$ hours.
3. Which pair of inequalities fits this problem, $A$ or $B$ ? Explain.

| A | $d_{c} \leq 35 t$ |
| :--- | :--- |
|  | $d_{b} \geq 340-65 t$ |

$$
\begin{array}{ll}
\text { B } & d_{c} \geq 35 t \\
& d_{b} \leq 340-65 t \\
\hline
\end{array}
$$

Solve
4. Graph the inequalities you chose in Exercise 3.
5. Is the point $\left(3 \frac{1}{2}, 100\right)$ included in the shaded areas of each inequality? Use the graph to explain why Jenny's brother and cousin cannot both be 100 miles from Greenville at 11:30 A.M.


## Check

6. Make sure you've shaded the correct side of each line.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON <br> Ready to Go On? Skills Intervention

## 12-7 Lines of Best Fit

You can find the line of best fit for data that has a correlation. There are four steps to follow:

- Calculate the means of the $x$ - and $y$-coordinates.
- Draw a line through the means that appears to be the best fit.
- Estimate the coordinates of another point on the line.
- Find the equation of the line.


## Finding a Line of Best Fit

Plot the data and find a line of best fit.

| $x$ | 3 | 5 | 6 | 2 | 4 | 9 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | 3 | 7 | 6 | 2 | 3 | 7 | 4 | 8 |

First, plot the data points on the coordinate grid.
Then, calculate the means of the $x$ - and $y$-coordinates.
How do you find the mean?
$x_{m}=\frac{3+5+6+2+\ldots+\ldots+\ldots+-}{-}=5.5$
$y_{m}=3+7+6+2+\ldots+\ldots+\ldots+\ldots=5$
Draw a line through $\left(x_{m}, y_{m}\right)$ that best represents the data.
Estimate and plot the coordinates of another point on the line. Use (8, 7).

Find the slope of the line between $\left(x_{m}, y_{m}\right)$ and $(8,7)$.

$m=\frac{7-}{8-\ldots}=\quad=$

What is the point-slope form of an equation?
Pick either point to substitute into the point-slope form.

| $y-7$ | $=0.8(x-8)$ |  | Substitute $x_{1}=8$ and $y_{1}=7$. |
| ---: | :--- | ---: | :--- |
| $y-\_$ | $=0.8 x-\ldots$ |  | Use the distributive property. |
| - | $=-$ |  | Isolate $y$. |

The equation of the line of best fit is $\qquad$ -.
$\qquad$ Date $\qquad$ Class $\qquad$
Ready to Go On? Problem Solving Intervention 12-7 Lines of Best Fit

You can use lines of best fit to make projections based on past trends.

The table shows the attendance for women's NCAA basketball games for each year from 1982 to 1993. If the trend had continued, what would the attendance have been in 2000? Use a scatter plot to find out.

## Understand the Problem

1. If 1982 represents year 0 , what ordered pair will be the first point?

## Make a Plan

2. If you had an equation for a line that fit the data, how would you use it to solve the problem?

| Year <br> $(1982$ is 0) | Attendance <br> (thousands) |
| :---: | :---: |
| 1982 | 50 |
| 1983 | 60 |
| 1984 | 75 |
| 1985 | 100 |
| 1986 | 85 |
| 1987 | 100 |
| 1988 | 120 |
| 1989 | 150 |
| 1990 | 180 |
| 1991 | 150 |
| 1992 | 185 |
| 1993 | 220 |

$\qquad$

## Solve

3. Make the scatter plot. Use 0 for 1982.
4. Find $x_{m}$ and $y_{m}$, the mean of the $x$-coordinates and the mean of the $y$-coordinates.
$\qquad$
5. Draw a line of best fit through $\left(x_{m}, y_{m}\right)$.

Choose another point on the line and use it
 to find the slope and the equation of the line.
$\qquad$
$\qquad$
6. Use the equation from Exercise 5 to estimate the attendance in 2000.

## Check

7. Extend the line to $x=18$ to check your solution. (The attendance in 2000 was actually 320,000. Did the trend continue as you projected?)
$\qquad$ Date $\qquad$ Class $\qquad$

## section Ready to Go On? Quiz

## 12:

## 12-5 Direct Variation

1. The table shows how many miles Julia has traveled after riding so many hours on her bicycle. Make a graph of the data and tell whether the data sets have a direct variation.
$\qquad$
Find each equation of direct variation, given that $\mathbf{y}$ varies directly with $\mathbf{x}$.

| Hours | Miles |
| :---: | :---: |
| 0 | 0 |
| 1 | 9 |
| 2 | 18 |
| 3 | 27 |
| 4 | 36 |
| 5 | 45 |
| 6 | 54 |


2. The variable $y$ is 9 when $x$ is 3 .
3. The variable $y$ is 2 when $x$ is 8 .
4. The variable $y$ is 4.5 when $x$ is 4.5 .
6. The variable $y$ is $\frac{7}{2}$ when $x$ is $\frac{7}{2}$.
5. The variable $y$ is 5 when $x$ is 0.5
7. The variable $y$ is 2 when $x$ is 6 .

## 12-6 Graphing Inequalities in Two Variables

Graph each inequality.
8. $y<\frac{2}{3} x-1$

9. $y \geq-2 x-5$
10. $y>-\frac{1}{4} x+2$


11. Buster's Movies and Music sells movie DVDs (d) for $\$ 16$ and music CDs (c) for $\$ 12$, tax included. Jeremy has $\$ 96$. Write and graph an inequality showing the different ways Jeremy might spend all or part of his money. Could he buy 5 CDs and 2 DVDs?

$\qquad$ Date $\qquad$ Class $\qquad$

## section <br> <br> 12:

 <br> <br> 12:}Ready to Go On? Quiz continued

## 12-7 Lines of Best Fit

Plot the data and find a line of best fit.
12.

| $x$ | $y$ |
| :---: | :---: |
| 1 | 4 |
| 4 | 11 |
| 5 | 17 |
| 8 | 23 |
| 7 | 21 |
| 3 | 9 |
| 2 | 6 |
| 6 | 18 |


13.

| $x$ | $y$ |
| :---: | :---: |
| 3 | 9 |
| 8 | 5 |
| 4 | 8 |
| 3 | 10 |
| 2 | 10 |
| 1 | 11 |
| 5 | 7 |
| 6 | 6 |


14. Find the line of best fit for the price of a ticket to a baseball game.

| Year | Price |
| :---: | :---: |
| 2001 | $\$ 5.50$ |
| 2002 | $\$ 5.60$ |
| 2003 | $\$ 5.75$ |
| 2004 | $\$ 5.75$ |
| 2005 | $\$ 5.95$ |
| 2006 | $\$ 6.15$ |


15. Use the equation of this line to predict the ticket price in 2010 to the nearest 5 cents.
16. Is this prediction reasonable? Explain.
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> Ready to Go On? Enrichment

## 12:3 Line of Best Fit

This page provides a simple illustration of one way mathematicians find the line of best fit. It can be used with any number of points and is more precise than our intuitive way.

1. Graph the following 12 points: $(1,2) ;(2,2) ;(2,3) ;(3,4) ;(4,2)$;
$(4,4) ;(5,3) ;(5,5) ;(6,4) ;(7,7) ;(7,8) ;(9,9)$.

2. Draw two dashed vertical lines that separate these 12 points into 3 groups of 4 points each.
3. In each group, find the median of the $x$-coordinates and the median of the $y$-coordinates. Graph the median point using these two medians as the coordinates.
4. Draw a line through the first and last median points.
5. Now draw a line parallel to this line but $\frac{1}{3}$ of the distance to the second median point.

The second line you have just drawn is the line of best fit. Notice that there are precise rules for finding it. These rules define the median-median method of determining the line of best fit.

The other method you have been using is more intuitive because you have to guess the slope. However, there is no guessing with the median-median method; which is why mathematicians prefer it.
$\qquad$ Date $\qquad$ Class $\qquad$

## 13-1 Terms of Arithmetic Sequences

In an arithmetic sequence the difference between one term and the next is always constant and known as the common difference.

## Identifying Arithmetic Sequences

Determine if each sequence could be arithmetic. If so, give the common difference.
A. $7,13,19,25,31, \ldots$
6 _ - -
What is the difference between each term?
Is the difference the same? $\qquad$

The sequence $\qquad$ arithmetic with a common difference of $\qquad$ .
B. 1, 3, 4, 7, 11, 18, ...

What is the difference between each term?
2 $\qquad$ Is the difference the same? $\qquad$
The sequence $\qquad$ arithmetic.
C. $87,84,81,78,75, \ldots$
$\overbrace{}^{87}$
$-3$ $\qquad$

What is the difference between each term?
Is the difference the same? $\qquad$

The sequence $\qquad$ arithmetic with a common difference of $\qquad$ ـ.

The formula for finding the $n$th term is $a_{n}=a_{1}+(n-1) d$, where $a_{1}$ is the first term, $n$ is the number of the term and $d$ is the common difference.

## Finding a Given Term of an Arithmetic Sequence

Find the given term in the arithmetic sequence.
$12^{\text {th }}$ term: $-10,-5,0,5,10, \ldots$
What is the general formula? $a_{n}=$
What is the first term?
What is the common difference?
What term are you looking for?

$$
\begin{aligned}
& a_{12}=-10+(--1) \\
& a_{12}=-10+ \\
& a_{12}=
\end{aligned}
$$ Substitute known values into the formula.

$\qquad$ This is $a_{1}$.
$\qquad$ This is $d$.
$\qquad$ This is $n$. Simplify.
The $12^{\text {th }}$ term in the sequence is $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

## 13-1 Terms of Arithmetic Sequences

You can use an equation to make it easier to extend a sequence.

$$
n=1
$$

$$
n=2
$$


$p=6$
$p=$ $\qquad$

$$
n=3
$$

$p=$ $\qquad$

$$
p=
$$

If the pattern in this sequence of figures continues, what will be the perimeter of the 51st figure?

## Understand the Problem

1. Find the perimeter of the 2nd, 3rd, and 4th figures in the sequence. Write the values in the table.

## Make a Plan

2. How can you tell that the values of $p$ form an arithmetic sequence? Hint: Look at the difference from one row to the next.
3. What formula can you use to find the $n$th term in an arithmetic sequence?

## Solve

4. In the formula in Exercise 3, what values will you use for $a_{1}, n$, and $d$ ?
5. Substitute the values you wrote in Exercise 4 to find the 51 st term.

## Check

6. Check by finding the perimeter of each arm and multiplying. number of arms $\cdot$ perimeter of each arm = total perimeter
$\qquad$ Date $\qquad$ Class $\qquad$

## 13-2 Terms of Geometric Sequences

In a geometric sequence the ratio between one term and the next is always constant and known as the common ratio.

## Identifying Geometric Sequences

Determine if each sequence could be geometric. If so, give the common ratio.
А. $7,-7,7,-7,7, \ldots$

What is the ratio between each term?
$-1$ $\qquad$ Are the ratios the same? $\qquad$
The sequence $\qquad$ geometric with a common ratio of $\qquad$ —.

## B. $2,4,6,8,10, \ldots$

What is the ratio between each term?
$\frac{4}{2}$ $\qquad$ Are the ratios the same? $\qquad$
The sequence $\qquad$ geometric.

The formula for finding the $n$th term is $a_{n}=a_{1} r^{n-1}$, where $a_{1}$ is the first term, $n$ is the number of the term and $r$ is the common ratio.

Finding a Given Term of a Geometric Sequence
Find the given term in the geometric sequence.
$20^{\text {th }}$ term: 800, 640, $512,409.6, \ldots$
What is the general formula? $a_{n}=a_{1}$ $\qquad$
What is the first term? $\qquad$ This is $a_{1}$.

What is the common ratio? $\qquad$ This is $r$.

What term are you looking for?
This is $n$.
$a_{n}=a_{1} r^{n-1}$
$a_{20}=$ $\qquad$
$a_{20}=$ $\qquad$
The $20^{\text {th }}$ term in the sequence is $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

## 13-2 Terms of Geometric Sequences

Sometimes a missing term is in the middle of a sequence.
The 3rd term of a geometric series is 16. The 5th term is 196. What is the 4th term?

## Understand the Problem

1. Complete the table to show what you know. Let $x$ be the 4th term.

| term | value |
| :---: | :---: |
| $a_{3}$ |  |
| $a_{4}$ | $x$ |
| $a_{5}$ |  |

2. In a geometric sequence, how does each term produce the one after it?

## Make a Plan

3. Suppose the common ratio for the sequence were 2. What would $a_{4}$ be? Then what would $a_{5}$ be?
4. Explain why the common ratio cannot be 2. Hint: Look at Exercise 3.
5. Is the common ratio greater than 2 or less than 2? Explain.
$\qquad$
6. Why might guess and check be useful for solving this problem?

## Solve

7. What is the common ratio of the sequence? What is $a_{4}$ ?

## Check

8. Complete to check your answer. common ratio $\cdot a_{1}=a_{1} \quad$ common ratio $\cdot a_{1}=a_{1}$
$\qquad$
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## 13-3 Other Sequences

## Using First and Second Differences

Use first and second differences to find the next three terms in each sequence. Complete each table.
A. $3,8,15,24,35,48,63, \ldots$

| Sequence | $\mathbf{3}$ | $\mathbf{8}$ | $\mathbf{1 5}$ | $\mathbf{2 4}$ | $\mathbf{3 5}$ | $\mathbf{4 8}$ | $\mathbf{6 3}$ | $\mathbf{? ?}$ | $\mathbf{? ?}$ | $\mathbf{? ?}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1^{\text {st }}$ Differences |  | 5 | 7 |  |  |  |  |  |  |  |
| $2^{\text {nd }}$ Differences |  |  | 2 |  |  |  |  |  |  |  |

The next three terms are $\qquad$ , $\qquad$ , and $\qquad$ .
B. $2,8,18,32,50,72, \ldots$

| Sequence | $\mathbf{2}$ | $\mathbf{8}$ | $\mathbf{1 8}$ | $\mathbf{3 2}$ | $\mathbf{5 0}$ | $\mathbf{7 2}$ | $\boldsymbol{? ?}$ | $\mathbf{? ?}$ | $\boldsymbol{? ?}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1^{\text {st }}$ Differences |  | 6 | 10 |  |  |  |  |  |  |
| $2^{\text {nd }}$ Differences |  |  | 4 |  |  |  |  |  |  |

The next three terms are $\qquad$ and $\qquad$ .

Finding a Rule Given Terms of a Sequence
Give the next three terms in the sequence using the simplest rule you can find.
$1,8,27,64,125, \ldots$
Are the terms perfect squares? $\qquad$
Are the terms perfect cubes? $\qquad$
The next three terms are $\qquad$ , $\qquad$ , and $\qquad$ .

## Finding Terms of a Sequence Given a Rule

Find the first five terms of the sequence defined by $a_{n}=\frac{4 n}{n+2}$.
What does the $n$ stand for? $\qquad$

$$
\begin{aligned}
& a_{1}=\frac{4(1)}{1+2}=\frac{4}{3} \longrightarrow \longrightarrow=\frac{4(2)}{-2}=\frac{8}{4}=\square \longrightarrow a_{3}=\frac{4-}{-+2}= \\
& a_{4}=\frac{4}{-+2}=\square \quad=\quad a_{5}=\frac{4}{-+2}=
\end{aligned}
$$

$\qquad$ , $\qquad$ , _ , $\qquad$ _.
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION Ready to Go On? Quiz <br> \section*{13A}

## 13-1 Terms of Arithmetic Sequences

Determine whether each sequence could be arithmetic. If so, give the common difference.

1. $9,10,12,13, \ldots$
2. $17,34,51,68, \ldots$
3. $39,52,65,78, \ldots$
4. $19,31,43,55, \ldots$
5. $56,49,42,35, \ldots$
6. $14,51,88,125, \ldots$

Find the given term in each arithmetic sequence.
7. 7th term: 4, 13, 22, ... $\qquad$ 8. 10th term:
$6,6 \frac{2}{3}, 7 \frac{1}{3}$,
9. 12th term: $4,5.4,6.8$, $\qquad$ 10. 8 th term: $22,19.5,17, \ldots$ $\qquad$
11. Henriqueta earns $\$ 9.00$ the first hour and $\$ 6.50$ every hour after that. How much money has she earned after 8 hours?

## 13-2 Terms of Geometric Sequences

 Determine whether each sequence could be geometric. If so, give the common ratio.12. $3,-6,12,-24, \ldots$
13. $2,4,-8,16, \ldots$
14. $-1,5,-25,125, \ldots$
15. $18,9,4.5,2.25, \ldots$
16. $4,16,64,256, \ldots$
17. $17,8 \frac{1}{2}, 4 \frac{1}{4}, 2 \frac{1}{8}, \ldots$

Find the given term in each geometric sequence.
18. 6 th term: $9,18,36, \ldots$ $\qquad$ 19. 7th term: $-4,12,-36$, $\qquad$
20. 5 th term: $-3,-15,-75$, $\qquad$ 21. 5th term: $90,-30,10, \ldots$ $\qquad$
22. Francesco buys $\$ 100.00$ of stock in a fast-growth company. It grows by 50\% each year. To the nearest, penny, what is Francesco's stock worth after 5 years?
$\qquad$
$\qquad$ Class $\qquad$
$\frac{\text { setcion }}{13 A}$
Ready to Go On? Quiz continued
13.

## 13-3 Other Sequences

Use the first and second differences to find the next three terms in each sequence.
23. $3,3,4,6,9, \ldots$
24. $2,11,22,35,50, \ldots$
25. $13,9,6,4,3, \ldots$
26. $4,6,6,4,0, \ldots$
27. $-74,-49,-29,-14,-4, \ldots$
28. $1,3,6,10,15, \ldots$
$\qquad$
Give the next three terms in each sequence using the simplest rule you can find.
29. $1,2,4,8,16, \ldots$
30. $63,31,15,7,3, \ldots$
31. $\frac{2}{3}, \frac{4}{5}, \frac{6}{7}, \frac{8}{9}, \frac{10}{11}, \ldots$
32. $243,81,27,9,3, \ldots$
33. $2,4,10,28,82, \ldots$
34. $240,120,60,30, \ldots$

Find the first five terms of each sequence as defined by the given rule.
35. $a_{n}=3 n-5$
37. $a_{n}=(-1)^{n}$
$\qquad$
39. $a_{n}=(n+1)^{2}+10$
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

 Ready to Go On? Enrichment
## 13A Hidden Sequences

Find all the number sequences hidden in this array. Each sequence must have 4,5 , or 6 numbers. These must be arranged horizontally, vertically, or diagonally in a straight line without gaps. Ring each sequence that you find. A number may belong to more than one sequence.

| 10.2 | 7 | 5 | 4 | 4 | 5 | 7 | $\frac{3}{2}$ | $23 \frac{1}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 8.5 | 0 | -53 | -23 | 2 | 22 | 37 | 47 |
| $-1 \frac{1}{4}$ | 10 | 6.8 | 6.2 | $1 \frac{1}{3}$ | 14 | 1 | 101 | 94 |
| $2 \frac{1}{2}$ | 11.5 | 1 | 5.1 | 8 | 1 | 225 | $\frac{1}{2}$ | 188 |
| -5 | -2 | 1 | 4 | 7 | 45 | $\frac{2}{3}$ | $3 \frac{1}{7}$ | $\frac{1}{4}$ |
| 10 | -0.5 | 2 | 2.9 | 9 | 3 | 1 | $\frac{1}{3}$ | 4 |
| -20 | 2 | 4 | 1.8 | 116 | 16 | 6 | 5.9 | 5.89 |
| 40 | 0.1 | 7 | 8.5 | 33 | 29 | 25 | 21 | $-2 \frac{1}{4}$ |
| 7 | 9 | 11 | 13 | 13 | $\frac{4}{5}$ | $\frac{3}{4}$ | $\frac{2}{3}$ | $\frac{1}{2}$ |

How many sequences did you find?
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Skills Intervention

## 13-4 Linear Functions

A linear function is the graph of a straight line. Function notation shows that the output of function $f$ corresponds to input value $x$ and is written $f(x)$.

## Identifying Linear Functions

Determine whether $f(x)=\frac{1}{2} x+3$ is linear.
$f(x)=\frac{1}{2} x+3$
Graph the function.
What is the $y$-intercept? $\qquad$

What is the slope? $\qquad$
What shape is the graph? $\qquad$
The function $\qquad$ linear.

## Writing the Equation for a Linear Function

Vocabulary
linear function function notation

Write the rule for the linear function shown in the graph.
What is the general form of a linear function?
What is the $y$-intercept from the graph? $b=$ $\qquad$
Substitute the value of $b$ into the equation. $f(x)=m x+$ $\qquad$ Use (-2, 0), another point on the graph, and substitute the $x$ - and $y$-values into the equation.

$$
\begin{aligned}
f(x) & =m x+2 & & \\
0 & =m(-2)+\ldots & & \text { Substitute } x=\ldots \text { and } y=- \\
0 & =-2 m+\ldots & & \text { Multiply. } \\
& =-2 m & & \text { Isolate the variable. } \\
\frac{-2}{\square-} & =\frac{-2 m}{-} & & \text { What do you divide both sides by? } \\
& =m & & \text { Solve for } m .
\end{aligned}
$$

Substitute the values for $m$ and $b$ into the function.
The rule is $f(x)=$ $\qquad$ $x+$ $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Problem Solving Intervention

## 13-4 Linear Functions

Sometimes you can use graphs to estimate and then use equations to find the exact solutions.

The graph shows a 13,000-gallon swimming pool being filled at the rate of $300 \mathrm{gal} / \mathrm{hr}$. The pool is half full at 3:15 P.M. on May 21. There was already some water in the pool when the filling started at 10:00 P.M. on May 20. When will the pool be full?

## Understand the Problem

1. How long did it take for the pool to be half full?
2. The point where the pool was half full is marked on the graph. Label the point with its coordinates.

## Make a Plan


3. If you knew the equation of the graph, how could you find when the pool will be full?

## Solve

4. Find $m$, the graph's slope.
5. Substitute to find $b$.

$$
v=m
$$

$\qquad$ $+$ $\qquad$

$$
\begin{gathered}
6500=300 \cdot \\
b=1325
\end{gathered}
$$

$\qquad$ $+$ $\qquad$
6. Find $t$ when $v=13,000$. When will the pool be full?

## Check

7. Why should it take more than $17 \frac{1}{4}$ hours to fill the second half of the pool?
$\qquad$ Date $\qquad$ Class $\qquad$

## 13-5 Exponential Functions

An exponential function has the form $f(x)=p \cdot a^{x}$. If $a$ is greater than 1 it is an exponential growth function. If $a$ is less than 1 it is an exponential decay function.

## Graphing an Exponential Functions

Create a table for each exponential function and use it to graph the function.
A. $f(x)=\frac{1}{3} \cdot 3^{x}$

Complete the table.
Plot the points and connect with a smooth curve.

Is the a value larger than 1?

| $x$ | $y$ |
| :---: | :---: |
| -2 | $\frac{1}{3} \cdot 3^{-2}=\frac{1}{3} \cdot \frac{1}{9}=\frac{1}{27}$ |
| -1 | $\frac{1}{3} \cdot 3^{-1}=\frac{1}{3} \cdot \frac{1}{3}=$ |
| 0 | $\frac{1}{3} \cdot 3^{0}=\frac{1}{3} \cdot-=$ |
| 1 | $\frac{1}{3} \cdot 3^{1}=\frac{1}{3} \cdot-=$ |
| 2 | $\frac{1}{3} \cdot 3^{2}=\frac{1}{3} \cdot-=$ |



The output value gets $\qquad$ as the input value gets larger.

This is called an $\qquad$ function.
B. $f(x)=4 \cdot\left(\frac{1}{4}\right)^{x}$

Complete the table.
Plot the points and connect with a smooth curve.

Is the a value larger than 1 ?

| $x$ | $y$ |  |
| :---: | :---: | :---: |
| -2 | $4 \cdot\left(\frac{1}{4}\right)^{-2}=4 \cdot 16=64$ |  |
| -1 | $4 \cdot\left(\frac{1}{4}\right)^{-1}=4 \cdot 4=-\quad=$ |  |
| 0 | $4 \cdot\left(\frac{1}{4}\right)^{0}=4 \cdot \ldots=$ |  |
| 1 | $4 \cdot\left(\frac{1}{4}\right)^{1}=4 \cdot \quad=$ |  |
| 2 | $4 \cdot\left(\frac{1}{4}\right)^{2}=4 \cdot$ | $=$ |



The output value gets $\qquad$ as the input value gets larger.

This is called an $\qquad$ function.
$\qquad$ Date $\qquad$ Class $\qquad$
Lisson

## Ready to Go On? Problem Solving Intervention

## 13-5. Exponential Functions

The half-life of carbon-14 is 5730 years. A fossil has just $0.1 \%$ of the carbon-14 it had when it began to decay. How old is the fossil?

## Understand the Problem

1. Every 5730 years, what fraction of a sample of carbon-14 will decompose? What percent is that?
2. Write $0.1 \%$ as a fraction.

## Make a Plan

3. How might a table help you solve the problem?

## Solve

4. Extend and fill in the table. How many 5730-year periods does it take for the fraction left to be less than $\frac{1}{1000}$ ?

| No. of 5730-year <br> periods | 1 | 2 | 3 | 4 |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fraction left | $\frac{1}{2}$ | $\frac{1}{4}$ |  |  |  |  |  |  |  |  |

5. How many years old is the fossil? Round to the nearest 5000.

## Check

6. Estimate to check your answer.

## Solve

7. Technetium- $99 m$ has a half-life of 6 hours. At 2 P.M on Monday, 4 milligrams of a 1-gram sample remains. About when did the sample start decomposing?
$\qquad$ Class $\qquad$

## 13-6 Quadratic Functions

A quadratic function is of the form: $f(x)=a x^{2}+b x+c$.
The graph of a quadratic function is a parabola.

## Graphing Quadratic Functions

## Vocabulary

quadratic function parabola

Create a table for the quadratic function and use it to make a graph.
$f(x)=x^{2}+x-3$
Plot the points and connect with a smooth curve.

| $\boldsymbol{X}$ | $f(x)=x^{2}+x-3$ |  |
| :---: | :---: | :---: |
| -3 | $f(x)=(-3)^{2}+(-3)-3$ | $=9-6=3$ |
| -2 | $f(x)=(\square)^{2}+(-2)-3$ | $=4-\ldots=$ |
| -1 | $f(x)=(-\quad)^{2}+(-1)-3$ | $=1-\square=$ |
| 0 | $f(x)=(\square)^{2}+0-$ | $=--\ldots$ |
| 1 | $f(x)=(\quad-)^{2}+1-3$ | $=--=$ |
| 2 | $f(x)=(\ldots)^{2}+\ldots-$ | $=--\ldots$ |
| 3 |  |  |



## Sports Application

The height in meters of a ball tossed into the air after $s$ seconds is given by the function $-5 s^{2}+12 s$. Graph the function and find the height the ball reaches after 2 seconds.

First, create a table of values.

| $\boldsymbol{s}$ | $\boldsymbol{f ( s )}$ |
| :---: | :---: |
| 0 | $-5(0)^{2}+12(0)=\square$ |
| 1 | $-5(1)^{2}+12\left(\_\right)=$ |
| 2 | $-5\left(\_\right)^{2}+12\left(\_\right)=$ |

Why can $s$ not be negative?


Why is $f(2)$ less than $f(1)$ ? $\qquad$
What is the highest point the ball reaches?
What height does it reach after 2 seconds? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$
Lissout Ready to Go On? Problem Solving Intervention

## 13-6. Quadratic Functions

Find two ordered pairs that are solutions to both $y=3 x+2$ and $y=x^{2}+x-6$.

## Understand the Problem

1. What should happen when you substitute your answers into the equations $y=3 x+2$ and $y=x^{2}+x-6$ ?

## Make a Plan

2. How would a sketch of the graphs of the two equations help you estimate the answer?

## Solve

3. Complete the function table for each equation.

Then sketch the graphs.

$$
y=3 x+2
$$

$y=x^{2}+x-6$

| $x$ | $y$ |
| :---: | :---: |
| -5 |  |
| 0 |  |
| 5 |  |


| $x$ | $y$ |
| :---: | :---: |
| -4 |  |
| -1 |  |
| 0 |  |
| 1 |  |
| 6 |  |


4. Estimate the coordinates of the points where the graphs meet. Test your estimates. If they don't work, try nearby points. Which ordered pairs satisfy both equations?

## Check

5. Substitute your answers again into both equations.
$\qquad$ Date $\qquad$ Class $\qquad$

## $13-7$ Inverse Variations

In an inverse variation one variable increases in quantity while another variable decreases in quantity. The general form for an inverse variation is

Vocabulary
inverse variation
$x y=k$ or $y=\frac{k}{x}$.

## Identifying Inverse Variation

Tell whether the relationship is an inverse variation.
A car is traveling a distance of 20 miles. The table shows the length of time it will take to travel 20 miles at a particular speed.

Find each product:

| Speed <br> (mi/h) | 5 | 20 | 40 | 50 |
| :---: | :---: | :---: | :---: | :---: |
| Time <br> (h) | 4 | 1 | 0.5 | 0.4 |

5(4) $=$ $\qquad$ $(20)(1)=$ $\qquad$ $(40)\left(\_\right)=$ $\qquad$ $(50)\left(\_\right.$_ $)=$ $\qquad$
Is the product of $x y$ the same for each set of numbers? $\qquad$
Is the relationship an inverse variation? $\qquad$
Write the inverse variation: $y=\underline{20}$.

## Graphing Inverse Variations

Graph the inverse variation function.
$f(x)=\frac{1}{2 x}$
Create a table of values for the function. The graph will be in quadrants I and III.

| $\boldsymbol{x}$ | $f(x)=\frac{1}{2 x}$ | $x$ | $f(x)=\frac{1}{2 x}$ |
| :---: | :---: | :---: | :---: |
| -3 | $f(x)=\frac{1}{2(-3)}=$ | 1 | $f(x)=\frac{1}{2(-)}=$ |
| -2 | $f(x)=\frac{1}{2(-2)}=$ | 2 | $f(x)=\frac{1}{2()}=$ |
| -1 | $f(x)=\frac{1}{2(-1)}=$ | 3 | $f(x)=\frac{1}{2(-)}=$ |
| $-\frac{1}{2}$ | $f(x)=\frac{1}{2\left(\frac{-1}{2}\right)}=$ | 4 | $f(x)=\frac{1}{2(-)}=$ |


$\qquad$ Date $\qquad$ Class $\qquad$

## setrion <br> Ready to Go On? Quiz

13B

## 13-4 Linear Functions

Determine whether each function is linear.

1. $f(x)=\frac{4}{7} x-\frac{1}{7}$ $\qquad$ 2. $f(x)=1.85 x+9$ $\qquad$ 3. $f(x)=2 x^{4}+1$ $\qquad$

Write a rule for each function.
4.

5.

6. Angela has a base salary of $\$ 220$ per week. She also earns a commission of $\$ 20$ on every widget she sells. Find a rule for the linear function that describes Angela's weekly income if she sells $x$ widgets. How much does Angela earn if she sells 8 widgets in one week?

## 13-5 Exponential Functions

Create a table for each exponential function and use it to graph the function.
7. $f(x)=2^{x}$

| $x$ | $f(x)$ |
| :---: | :---: |
| -2 | $\frac{1}{4}$ |
| -1 | $\frac{1}{2}$ |
| 0 | 1 |
| 1 | 2 |
| 2 | 4 |

8. $f(x)=\left(\frac{3}{4}\right)^{x}$

| $x$ | $f(x)$ |
| :---: | :---: |
| -2 | 1.78 |
| -1 | 1.33 |
| 0 | 1 |
| 1 | 0.75 |
| 2 | 0.56 |

$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

Ready to Go On? Quiz continued

## 13B

## 13-6 Quadratic Functions

Create a table for each quadratic function, and use it to graph the function.
9. $f(x)=x^{2}-2$

| $x$ | $f(x)$ |
| :---: | :---: |
| -3 | 7 |
| -2 | 2 |
| -1 | -1 |
| 0 | -2 |
| 1 | -1 |
| 2 | 2 |
| 3 | 7 |


10. $f(x)=\frac{1}{3} x^{2}$

| $x$ | $f(x)$ |
| :---: | :---: |
| -3 | 3 |
| -2 | $1 \frac{1}{3}$ |
| -1 | $\frac{1}{3}$ |
| 0 | 0 |
| 1 | $\frac{1}{3}$ |
| 2 | $1 \frac{1}{3}$ |
| 3 | 3 |


11. The function $f(x)=-16 x^{2}+100 x$ gives the height in feet after $x$ seconds of an object shot upward from the ground at an initial velocity of 100 feet per second. After how many seconds is this height the greatest,
$1,2,3,4$, or 5 ? What is this height?

## 13-7 Inverse Functions

Create a table. Then graph each inverse-variation function.
12. $f(x)=\frac{3}{x}$

| $x$ | $f(x)$ |
| :---: | :---: |
| -3 | -1 |
| -2 | -1.5 |
| -1 | -3 |
| 0 | - |
| 1 | 3 |
| 2 | 1.5 |
| 3 | 1 |

13. $f(x)=-\frac{2}{x}$

| $x$ | $f(x)$ |
| :---: | :---: |
| -3 | $\frac{2}{3}$ |
| -2 | 1 |
| -1 | 2 |
| 0 | - |
| 1 | -2 |
| 2 | -1 |
| 3 | $-\frac{2}{3}$ |

$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION <br> Ready to Go On? Enrichment

## 133. What You Are and What You Are Not

What are you about as a person? This activity will try to answer that question for you.

First, graph each of these four linear functions.

1. $f(x)=2 x+4$
2. $f(x)=-\frac{1}{2} x+4$
3. $f(x)=2 x-6$
4. $f(x)=-\frac{1}{2} x-1$


What figure is in the center? $\qquad$
This figure is telling you what you are not.

Now graph each of these five linear functions.
5. $f(x)=3 x+3$
6. $f(x)=-3 x+3$
7. $f(x)=-\frac{2}{3} x-1$
8. $f(x)=\frac{2}{3} x-1$
9. $f(x)=1$


What figure is formed by the graphs you draw? $\qquad$
This figure is telling you what you are.
$\qquad$ Date $\qquad$ Class $\qquad$

## $14=1$ Polynomials

A monomial is a number or a product of numbers and variables with exponents that are whole numbers. A polynomial is one monomial or the sum or difference of polynomials. Polynomials can be classified by the number of terms. A monomial has 1 term, a binomial has 2 terms, and a trinomial has 3 terms. A polynomial can also be classified by its degree. The degree of a polynomial is the degree of the term with the greatest degree.

## Identifying Monomials

Vocabulary
monomial
polynomial
binomial
trinomial
degree of a polynomial

Determine whether each expression is a monomial.
A. $5 x^{2.3} y$

Is this expression a product of numbers and variables? $\qquad$
Are all the exponents whole numbers? Explain.

The expression $\qquad$ a monomial.
B. $\frac{1}{3} x^{4} y^{2}$

Is this expression a product of numbers and variables? $\qquad$
Are all the exponents whole numbers? Explain.

The expression $\qquad$ a monomial.

## Classifying Polynomials by the Number of Terms

Classify each expression as a monomial, a binomial, a trinomial, or not a polynomial.
A. $20.42 t-15.73 r$

How many terms in this expression? $\qquad$
Are all the terms monomials? $\qquad$
The expression is a $\qquad$ .
B. $10 g h-4 g+5 h$

How many terms in this expression? $\qquad$
Are all the terms monomials? Explain.

The expression is a $\qquad$ .
$\qquad$ Date $\qquad$ Class $\qquad$

LESSON

## Ready to Go On? Problem Solving Intervention

## 14-1 Polynomials

You can use polynomials to describe projectile motion and to find the height of an object at any given time.

The height in feet of a toy rocket launched straight up into the air from $s$ feet above the ground at velocity $v$ after $t$ seconds is given by the polynomial $-16 t^{2}+v t+s$. Find the height of a toy rocket launched from a 2 ft platform at $160 \mathrm{ft} / \mathrm{s}$ after 5 seconds.

## Understand the Problem

1. What does the polynomial in the problem represent?
2. You have been given a polynomial with several variables. Two of them will be constant regardless of how much time passes. Which two variables will not change as time passes?

## Make a Plan

3. Rewrite the polynomial expression for the height of the toy rocket by substituting the values for $v$ and $s$.
4. Substitute $t=0$ into the polynomial to find the height before the toy rocket is launched. Is the result consistent with the information given in the problem? Why or why not?

## Solve

5. The problem asks for the height after 5 seconds, so substitute $t=5$ into the polynomial and simplify.
6. Write your answer as a complete sentence. Be sure to include the appropriate units in your answer.

## Check

7. Make sure your answer is reasonable by substituting another value of $t$ close to 5 , such as $t=4$.
$\qquad$ Date $\qquad$ Class $\qquad$

## Lesson Ready to Go On? Skills Intervention

## 14:2 Simplifying Polynomials

You can simplify a polynomial by adding or subtracting like terms.
Remember that like terms have the same variables raised to the same powers.

## Identifying Like Terms

Identify the like terms in each polynomial, or state that there are none.
A. $4 b^{2}-2 b+2+3 b^{2}+4 b$

Which term(s) contain only $b^{2}$ as a variable? $\qquad$
Which term(s) contain only $b$ as a variable? $\qquad$
Which are like terms, if any? $\qquad$
B. $6 g^{2}+5 g h-2 g$

Which term(s) contain only $g^{2}$ as a variable? $\qquad$
Which term(s) contain only gh as a variable? $\qquad$
Which term(s) contain only $g$ as a variable? $\qquad$
Which are like terms, if any? $\qquad$
C. $5 x^{2} y^{5}-7 y^{3}-2 x^{2} y^{5}+3 x^{2} y^{5}$

Which term(s) contain only $x^{2} y^{5}$ as the variables? $\qquad$
Which term(s) contain only $y^{3}$ as a variable? $\qquad$
What are the like terms, if any? $\qquad$

## Simplifying Polynomials by Combining Like Terms

Simplify.
A. $4 y^{4}-2 y^{2}-2 y^{4}+3+5 y^{4}-y^{2}$

Arrange the terms in descending order.
Name the terms that have the same variable raised to the same power.

Are these like terms? $\qquad$
What term results from combining these terms?
What is the polynomial after combining all the like terms? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON <br> Ready to Go On? Problem Solving Intervention

14-2 Simplifying Polynomials
Polynomials are often used to represent growth and decay of physical elements.
A scientist is studying an element that he has discovered. He has determined that the amount of the element at any given time can be approximated by the polynomial $-0.25\left(4 t^{2}+A t\right)+A$, where $A$ is the original amount of the element and $t$ is the number of hours that have passed. If the scientist originally had 1,000 grams of the element, how much is left after 2 hours?

## Understand the Problem

1. What are the two variables in the problem?
2. What is the value of $A$ in the problem? Will it change for different values of $t$ ?

## Make a Plan

3. Simplify the expression by substituting $A=1,000$ and by multiplying the appropriate terms by -0.25 .
4. What value of $t$ will you need to substitute into the expression?

## Solve

5. The problem asks for the amount of the element remaining after 2 hours, so substitute $t=2$ into the polynomial and simplify.
6. Write your answer as a complete sentence. Be sure to include the appropriate units in your answer.

## Check

7. Make sure your answer is reasonable by substituting another value of $t$ close to 2 , such as $t=3$.
$\qquad$ Date $\qquad$ Class $\qquad$

SECTION
Ready to Go On? Quiz
14A

## 14-1 Polynomials

Determine whether each expression is a monomial.

1. $\frac{1}{4} x^{3}$
2. $5 a^{7}$
3. $2 n^{4}+m$
4. $\frac{3}{c d}$
5. $\frac{p^{2}}{6}$
6. $9 r^{2}+1$

Classify each expression as a monomial, a binomial, a trinomial, or not a polynomial.
7. $x^{2}+2 x-\frac{4}{x}$
8. $3 m n p^{5}$
9. $y-6 \sqrt{y}$
10. $z^{2}+5-2 z^{3}$
11. $4 b-7$
12. $13 a b c^{2} p q^{5}$
13. $4 m^{3 / 2}$
14. $(x+5)(x-5)$
15. $15 r^{3}-2 r s$

Find the degree of each polynomial.
16. $4 x^{2}-3 x+6$
17. $c^{5}+4 c^{3}-11$
18. $9 v^{4}+1$
19. $-5+3 q^{6}+q^{2}$
20. $b^{2}+b-2 b^{3}$
21. $m-3+2 m^{4}-8 m^{3}$
22. $12 s^{2}$
23. $-1-17 z^{3}$
24. $2 w^{3}+w^{4}$
25. The polynomial $2 s+\frac{s^{2}}{20}$ gives an estimate in feet of how far a car going $s$ mi/h must travel to come to a complete stop. Estimate this distance for a car going $30 \mathrm{mi} / \mathrm{h}$.
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

Ready to Go On? Quiz continued

## 14A

## 14-2 Simplifying Polynomials

 Identify the like terms in each polynomial.26. $-x y^{2}+x^{2} y+5 x y^{2}$
$\qquad$
27. $w x y+3 w x y-2 w x y+x y z$
28. $2 m+11 n-m+m^{4}+3 n$
29. $4 v-w+w x+4 v$

## Simplify.

34. $4 r+10 s-3 r+r^{4}+3 s$
35. $-p q-3 p q-p q^{5}+6 p q$
36. $6 d^{2}+3\left(t-2 d^{2}\right)$
37. $a b^{2}-a b^{2}+c^{2} d-2\left(7 c^{2} d-5 c^{2} d\right)$
38. $14-z^{2}+3 u+9 z^{2}+100$
39. $m+4 n-p^{2}-m-5 q$
$\qquad$
$\qquad$
Solve.
40. One side of a regular pentagon is represented by the expression $3 n-2$. Write a polynomial to represent the perimeter of this pentagon.
41. An apartment building is a rectangular prism with a square base. The area of each side of the building is given by the expression $3 a^{2}+5 a-2$. Write a polynomial to represent the total area of all 4 sides of the building.
$\qquad$ Date $\qquad$
$\qquad$

## SECTION

Ready to Go On? Enrichment

## 14A Riddles

Simplify each polynomial. Match the answers in the right column to each problem. Then write the letter of each answer in the order of the problems to solve the riddles.

1. $3 a^{2}-4-a+a^{2}+3$
O. $6 a^{2}-2 a+6$
2. $4\left(a^{2}+3\right)-2\left(-a^{2}+a+3\right)$
L. $-7 a^{2}+2 a-8$
3. $-a+3\left(a^{2}+3\right)-2\left(a^{2}-a+2\right)$
E. $a^{2}-2 a+5$
4. $4 a^{2}-4-5 a-3 a^{2}+3 a+9$
W. $a^{2}+a+5$
5. $-5\left(2 a^{2}-a+1\right)+3\left(a^{2}-a-1\right)$
T. $4 a^{2}-a-1$

What gets wetter as it dries?
6. $\left(2 m p-3 m^{2} p\right)+3\left(-2 m p+2 m p^{2}\right)$
R. $-2 m^{2} p+m p^{2}-8 m p$
7. $4 m p^{2}-m p+2 m^{2} p-m p^{2}+3 m^{2} p$
B. $9 m^{2} p+4 m p^{2}-2 m p$
8. $-5 m^{2} p-2\left(m p-2 m p^{2}-7 m^{2} p\right)$
Y. $3 m^{2} p+5 m p^{2}-4 m p$
9. $m p+5 m p^{2}-3 m^{2} p+4 m p+7 m^{2} p$
R. $4 m^{2} p+5 m p^{2}+5 m p$
10. $-\left(2 m^{2} p-m p+3 m p^{2}\right)+4\left(m p+2 m p^{2}\right)$
I. $5 m^{2} p+3 m p^{2}-m p$
11. $-3 m p^{2}+2\left(-4 m p+2 m p^{2}-m^{2} p\right)$
A. $-2 m^{2} p+5 m p^{2}+5 m p$
12. $2 m p^{2}-3 m p+3 m p^{2}+3 m^{2} p-m p$
L. $-3 m^{2} p+6 m p^{2}-4 m p$

Name the building with the most stories.
13. $-r s t^{2}-r^{2} s t-3 r s^{2} t+6 r^{2} s t+2 r s^{2} t$
E. $-r^{2} s t+2 r s^{2} t-4 r s t^{2}$
14. $2\left(r s^{2} t-3 r s t^{2}\right)-\left(-4 r s t^{2}+r^{2} s t\right)-2 r s t^{2}$
T. $-3 r^{2} s t+7 r s^{2} t+3 r s t^{2}$
15. $3\left(r s t^{2}+2 r s^{2} t-r^{2} s t\right)+r s^{2} t$
W. $5 r^{2} s t-r s^{2} t-r s t^{2}$

Your sock is blue. It falls into the Red Sea. What does it become? $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$
IIssow
Ready to Go On? Skills Intervention

## $14-3$ Adding Polynomials

The Associative Property of Addition states that for any values of $a$, $b$, and $c, a+b+c=(a+b)+c=a+(b+c)$. You can use this property to add polynomials.

## Adding Polynomials Horizontally

Add.
A. $\left(4 x^{2}+3 x-2\right)+(5 x+7)$

Apply the Associative Property. $\qquad$
Arrange in descending order. $\qquad$
Combine like terms. $\qquad$
B. $\left(-4 g^{2} h-5 g h-2\right)+\left(11 g h+6 g^{2} h+2\right)$

Apply the Associative Property. $\qquad$
Arrange in descending order. $\qquad$
Combine like terms.
C. $\left(3 c d^{2}-2 c\right)+(4 c-5)+\left(c d^{2}+3 c-2\right)$

Apply the Associative Property. $\qquad$
Arrange in descending order. $\qquad$
Combine like terms. $\qquad$

## Adding Polynomials Vertically

Add.
A. $\left(2 a^{2}+5 a+2\right)+\left(3 a^{2}+4 a+1\right)$

Place like terms in columns.

$$
\begin{aligned}
& 2 \mathrm{a}^{2}+\ldots+2 \\
& +4 \mathrm{a}+\ldots
\end{aligned}
$$

The sum of the polynomials is $\qquad$ .
B. $\left(5 x^{2} y+3 x-2 y\right)+\left(2 x^{2} y-2 x+4\right)$

Place like terms in columns.


The sum of the polynomials is $\qquad$ _.
$\qquad$ Date $\qquad$ Class $\qquad$ ${ }_{\text {LEsson }}$ Ready to Go On? Problem Solving Intervention

## 143 Adding Polynomials

Adding polynomials sometimes makes a difficult problem easier to solve.
A swimming pool company is planning to fill its three pool models with water. The volume of the first model is $4 b^{2} h+6 b h+h^{2}$; the volume of the second is $5 b h+2 b^{2} h+6 h^{2}$; and volume of the third is $2 h^{2}+b h+10 b^{2} h$. Write and simplify an expression for the total volume of the three models.

## Understand the Problem

1. What do the three polynomials represent?

## Make a Plan

2. How can you find the total volume of the three models?
3. The first step when adding polynomials is to identify like terms. Sometimes it helps to reorder the polynomials so that the terms are in the same order. Reorder the second and third polynomials to match the order of the first polynomial.

## Solve

4. Identify and combine like terms by adding their coefficients.
$\qquad$
$\qquad$
$\qquad$
5. Write the terms in a single polynomial expression.
$\qquad$

## Check

6. Check your answer by adding the polynomials vertically.
$\qquad$ Date $\qquad$ Class $\qquad$
Lissow

## Ready to Go On? Skills Intervention

## 14-4 Subtracting Polynomials

Subtraction is the opposite of addition. To subtract a polynomial, you need to find its opposite.

## Finding the Opposite of a Polynomial

Find the opposite of each polynomial.
A. $3 a^{3} b^{5} c$

The opposite of $a$ is $\qquad$ .
The opposite of $\left(3 a^{3} b^{5} c\right)$ is $\qquad$ $($ $\qquad$ ).
The opposite of $3 a^{3} b^{5} c$ is $\qquad$
B. $8 a^{2}-2 a$

The opposite of $\left(8 a^{2}-2 a\right)$ is $-\left(8 a^{2}\right.$ $\qquad$ 2a).

Remove the parentheses and distribute the sign. $\qquad$
C. $-4 x^{2} y+2 x-3$

The opposite of $\left(-4 x^{2} y+2 x-3\right)$ is $\qquad$ ( $\qquad$ ).
Remove the parentheses and distribute the sign. $\qquad$

## Subtracting Polynomials Horizontally

Subtract.
A. $\left(m^{3}+2 m-5 m^{2}\right)-\left(4 m-3 m^{2}+2\right)$

Add the opposite.

$$
\left(m^{3}+2 m-5 m^{2}\right)+\left(-4 m \_3 m^{2}-2\right)
$$

Apply the Associative Property.

$$
m^{3}+2 m=+3 m^{2}-2
$$

Combine the like terms.
B. $\left(-a^{2} b+3 a b-4\right)-\left(-4 a^{2} b+5-6 a b\right)$

Add the opposite.

$$
\left(-a^{2} b+3 a b-4\right)+(\square)
$$

Apply the Associative Property. $\qquad$
Combine the like terms.

## Subtracting Polynomials Vertically

## Subtract.

$$
\begin{gathered}
\left(7 k^{3}-4 k n^{2}+10\right)-\left(7 k^{3}-3 k n^{2}+6 k+6\right) \\
7 k^{3}-4 k n^{2} \\
+(-\quad+10 \\
+---
\end{gathered}
$$ Add the opposite.

$\qquad$ Date $\qquad$ Class $\qquad$

## Ready to Go On? Problem Solving Intervention

## 14-4 Subtracting Polynomials

Profit is defined as revenue minus cost. Revenue and cost can be given as polynomials. By subtracting the polynomials, it is possible to find profit.

A laptop manufacturer has determined that its cost in dollars of producing $n$ laptop computers is given by the polynomial $80 n+50,000$ and the revenue generated from sales is given by the polynomial $200 n-0.0002 n^{2}$. Find a polynomial expression for the profit from making and selling $n$ laptops, and determine how much profit the manufacturer would make if it produced 300,000 laptops.

## Understand the Problem

1. What does the variable in the problem represent?
2. Why do you know to subtract the first polynomial from the second?

## Make a Plan

3. Express profit as the difference of the two given polynomials.
4. Rewrite the difference as the sum of the first polynomial in Step 3 plus the opposite of the second.
$\qquad$

## Solve

5. Express profit as a single polynomial by simplifying the sum in Step 4.
6. Substitute the value $n=300,000$ into the polynomial to find the amount of profit.

## Check

7. Check your answer by substituting $n=300,000$ into the revenue equation and into the cost equation, and then subtracting. You should get the same result.
$\qquad$
$\qquad$
$\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$
Lisson

## Ready to Go On? Skills Intervention

## 14:5 Multiplying Polynomials by Monomials

Remember that when you multiply two powers with the same bases, you add the exponents. To multiply two monomials, multiply the coefficients and add the exponents of the variables that are the same.

## Multiplying Monomials

Multiply.
A. $\left(2 a^{3} b^{4}\right)\left(3 a^{2} b^{3}\right)$

To solve $a^{3} \cdot a^{2}$, do you add the exponents or multiply them? $\qquad$
$a^{3} \cdot a^{2}=$ $\qquad$
$b^{4} \cdot b^{3}=$ $\qquad$
$\left(2 a^{3} b^{4}\right)\left(3 a^{2} b^{3}\right)=$ $\qquad$
B. $\left(5 y^{2} z\right)\left(-2 x^{2} y^{4} z\right)$
$y^{2} \cdot y^{4}=$ $\qquad$
$z \cdot z=$ $\qquad$
Will $x^{2}$ appear in the product? $\qquad$
$\left(5 y^{2} z\right)\left(-2 x^{2} y^{4} z\right)=$ $\qquad$

## Multiply a Polynomial by a Monomial

Multiply.

## A. $2 x(y+z)$

What are the terms in the parentheses in $2 x(y+z)$ ? $\qquad$
What term is to be multiplied by $y$ and $z$ ? $\qquad$
$2 x \cdot y=$ $\qquad$
$2 x \cdot z=$ $\qquad$
$2 x(y+z)=$ $\qquad$
B. $-3 x^{3} y^{2}\left(5 x^{2} y+4 x^{4} y^{3}\right)$

What are the terms in the parentheses? $\qquad$
What term is to be multiplied by $5 x^{2} y$ and $4 x^{4} y^{3}$ ? $\qquad$
Does the solution require adding exponents or multiplying them? $\qquad$
$-3 x^{3} y^{2} \cdot 5 x^{2} y=$ $\qquad$
$-3 x^{3} y^{2} \cdot 4 x^{4} y^{3}=$ $\qquad$
$-3 x^{3} y^{2}\left(5 x^{2} y+4 x^{4} y^{3}\right)=$ $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## 14-5 Multiplying Polynomials by Monomials

Geometric formulas, such as area, involve multiplying quantities. If the dimensions of a figure are represented by variables, you will need to be able to multiply polynomials.
The formula for the area of a triangle is $A=\frac{1}{2} b h$, where $b$ is the length of the triangle's base and $h$ is the height of the triangle. The base of a particular triangle is given by the monomial $4 x^{2} y$ and the height is given by the binomial $x^{2}+3 x y$. Write and simplify an expression for the area of triangle. Then find the area of the triangle if $x=2$ and $y=3$.

## Understand the Problem

1. Which polynomial represents the length of the triangle's base?
2. What does the polynomial $x^{2}+3 x y$ represent?

## Make a Plan

3. Write an expression for the area of the triangle by substituting the given polynomials for $b$ and $h$.
4. Simplify the expression by multiplying the first polynomial by $\frac{1}{2}$. Then, rewrite the area as the product of this new polynomial and the height.

## Solve

5. Express the area of the triangle as a simplified polynomial by multiplying.
6. To find the area when $x=2$ and $y=3$, substitute the values into the polynomial.

## Check

7. Check your answer by substituting $x=2$ and $y=3$ into the original polynomials for the base and height of the triangle and then multiplying. You should get the same result.
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

## Ready to Go On? Skills Intervention

## 14-6 Multiplying Binomials

You can use the Distributive Property to multiply two binomials. The product can be written as FOIL: The First terms, the Outer terms, the Inner terms, and the Last terms of the binomials.
Vocabulary
FOIL


## Multiplying Two Binomials

Multiply.
A. $(a+2)(5-b)$

What are the "First" terms, including sign? $\qquad$
What is the result of combining the "First" terms? $\qquad$
What are the "Outer" terms? $\qquad$
What is the result of combining the "Outer" terms? $\qquad$
What are the "Inner" terms and the result of combing these terms? $\qquad$
What are the "Last" terms and the result of combing these terms? $\qquad$ $(a+2)(5-b)=5 a$ $\qquad$ $-2 b$
B. $(x+4)(x+3)$

What are the "First" terms, including sign? $\qquad$
Is the term $2 x$ part of the thinking for the solution? $\qquad$
What is the result of combining the "First" terms? $\qquad$
What are the "Outer" terms and the result of combing these terms? $\qquad$
What are the "Inner" terms and the result of combing these terms? $\qquad$
What are the "Last" terms and the result of combing these terms? $\qquad$
Identify any like terms and combine these terms. $\qquad$
$(x+4)(x+3)=$ $\qquad$
$\qquad$ Date $\qquad$ Class $\qquad$

## 14-6 Multiplying Binomials

Finding volume also involves multiplying expressions.
The base of a metal box is formed by cutting a 2-inch square out of each corner of a sheet of metal and folding up the sides. Write and simplify an expression for the volume of the box if the length of the sheet of metal is $x$ inches, the width of the metal is $y$ inches, and the height of the box is 2 inches.

## Understand the Problem

1. List the different variables that you will be using to answer the question. Then write a general formula for finding the volume of a rectangular box. Which of the three quantities is a constant in this problem?

## Make a Plan

2. Begin by drawing a diagram. Label the diagram using the dimensions (and variables) given in the problem.

3. Use your diagram to rewrite the formula for volume using $x$ and $y$.

## Solve

4. You will need to multiply the two binomials and the number 2. Begin by multiplying the binomials.
$\qquad$
5. Next, multiply each of the terms by 2 to find the expression for the volume of the box.

## Check

6. Check your answer by choosing a value for $x$ and $y$. Substitute your choices into the equation you wrote in Exercise 3 and into the simplified expression you wrote in Exercise 5. If you multiplied correctly, you should get the same result.
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

## Ready to Go On? Quiz

## 14:

## 14-3 Adding Polynomials

Add.

1. $\left(2 x^{2}+5 x-4\right)+\left(x^{3}-5 x+3\right)$
2. $\left(2 a^{4}+a-6\right)+\left(a^{4}-3 a+10\right)$ $\qquad$
3. $\left(4 m^{5} n+m n^{2}-5\right)+\left(-2 m^{5} n+3 m n^{2}+11\right)+\left(m^{5} n+5 m n^{2}-2\right)$
4. $\left(7 v^{2}-9 v-1\right)+\left(2 v^{2}+2 v+11\right)+\left(-3 v^{2}+v-7\right)$ $\qquad$
5. $\left(3 w^{3}+3 w^{2}-4\right)+\left(w^{3}-2 w+5\right)+\left(-w^{3}+w^{2}\right)$
6. Each side of a regular pentagon has a length of $2 d+1$.

Each side of a regular hexagon has a length of $3 d-7$.
Write an expression for the sum of the two perimeters.

## 14-4 Subtracting Polynomials

Find the opposite of each polynomial.
7. $-y^{2}+4 y+5$
8. $2 n^{5}-6 n$
9. $-7 a^{2} b-a^{2}+3 c$
$\qquad$
Subtract.
11. $\left(3 z^{2}-z\right)-\left(5 z^{2}+6 z-1\right)$
12. $(a+9)-\left(4 a^{2}-2\right)$
13. $\left(12 p^{3}+5 p\right)-\left(7 p^{3}+6 p\right)$
10. $p q r^{3}+5 p q r^{2}+p q r+q^{4}$
$\qquad$
$\qquad$
15. One solid figure has a volume of $12 u^{3}-u^{2}+4 u+7$. A smaller solid figure has a volume of $5 u^{3}+5 u^{2}-5 u-4$. Write an expression to show the difference between these two volumes.
$\qquad$ Date $\qquad$ Class $\qquad$

## SECTION

Ready to Go On? Quiz continued
14B

## 14-5 Multiplying Polynomials and Monomials

 Multiply.$\qquad$
16. $\left(-3 a^{2} b^{2}\right)\left(2 a b^{3}\right)$
17. $\left(h j^{2}\right)\left(5 h^{5}\right)$
18. $\left(-4 p^{7} q\right)\left(-3 p^{4} q^{3}\right)$
19. $\left(3 x^{8} y^{2}\right)\left(-3 y^{2}\right)$
20. $\left(-r^{6} s^{2}\right)(5 r s)$
21. $\left(4 n^{3} z^{2}\right)(5 n z)$
22. $2 u^{2} v\left(2 u^{3} v-u v^{2}+4 u v\right)$ $\qquad$
23. $-3 s t^{4}\left(-2 s^{2} t+s t^{2}+4 s t^{3}\right)$ $\qquad$
24. A parallelogram has a base of $4 x y$ and a height of $3 x^{3}+2 x y^{2}-y^{2}$. Write and then simplify an expression for the area of this parallelogram. Last, find the area of the parallelogram if $x=1$ and $y=2$.
$\qquad$

## 14-6 Multiplying Binomials

Multiply.
25. $(m-3)(m+7)$
26. $(2 j-4)(j-5)$
27. $(g+9)(g+6)$
$\qquad$
29. $(2 q-3)(2 q-4)$
30. $(4 a-1)(2 a+3)$
31. A swimming pool is built in a $30 \mathrm{~m} \cdot 20 \mathrm{~m}$ area so that there is a walkway $x \mathrm{~m}$ wide all the way around the pool. Find the area of the pool in terms of $x$. What would the area of the pool be if $x$ were 2 ?
$\qquad$ Class $\qquad$

## section Ready to Go On? Enrichment

## 14: Multiplying Binomials and Factoring Polynomials

Multiply.
A. $(x+2)(2 x-1)$
B. $(2 x-3)(2 x+3)$
C. $(3 x+1)^{2}$
D. $(3 x+2)(4 x-3)$
E. $(2 x+1)(x-2)$
F. $(x-1)(5 x-2)$
G. $(4 x-1)(2 x+3)$
H. $(3 x-2)(3 x+2)$

Now use the exercises you have just completed, together with your answers, to find the binomial factors of each polynomial below.

1. $9 x^{2}+6 x+1$
2. $9 x^{2}-4$
3. $5 x^{2}-7 x+2$
4. $2 x^{2}+3 x-2$
5. $12 x^{2}-x-6$
6. $8 x^{2}+10 x-3$
7. $4 x^{2}-9$
8. $2 x^{2}-3 x-2$

You know how to multiply two binomials to get a polynomial product. Explain why it is possible to go the other way and factor a polynomial into binomial factors.


[^0]:    $n+10=20$
    Write an equation.
    -_ _ Undo the addition.
    $n=\_\quad$ Solve for $n$.

