Math 130 Solutions – Introduction to Statistics

Homework 4 Solutions

Assignment

Chapter 15: 2, 6, 20, 31, 43 Chapter 16: 9, 20, 24, 28, 47

Hint on 16.47] Think about the mean and standard deviation of a *combination* of six random variables, one for each day the shop is open.

Chapter 15

15.2] **Travel.** The given information:

Let M = event that a U.S. resident has traveled to Mexico Let C = event that a U.S. resident has traveled to Canada

$$P(M) = 0.09$$

$$P(C) = 0.18$$

$$P(M \text{ and } C) = 0.04$$



A Venn diagram is useful here.

- (a) P(C but not M) = 0.14. There's a 14% chance that a US resident has traveled to Canada but not Mexico.
- (b) P(C or M) = P(C) + P(M) P(C and M) = 0.18 + 0.09 0.04 = 0.23. Or, add the circular sections of the Venn diagram to get 0.05 + 0.04 + 0.14 = 0.23. There's a 23% chance that a U.S. resident has traveled to Canada or Mexico.
- (c) P(neither C or M) = 1 P(C or M) = 1 0.23 = 0.77There's a 77% chance that a randomly selected resident has traveled to neither Canada nor Mexico.

15.6] Birth Order.

- (a) $P(\text{Human Ecology}) = \frac{43}{223} = 0.1928$. The probability that a student is in Human Ecology is 0.1928.
- **(b)** $P(\text{first-born}) = \frac{113}{223} = 0.5067$. The probability that a student is a first born is 0.5067.
- (c) $P(\text{first-born and Ecology}) = \frac{15}{223} = 0.0673$. The probability that a student is a first-born and Ecology student is 0.0673.

$$P(\text{first-born or Ecology}) = P(\text{first-born}) + P(\text{Ecology}) - P(\text{first-born and Ecology})$$

 $= 0.5067 + 0.1928 - 0.0673$
 $= 0.6322$

The probability that a student is a first-born or Ecology student is 0.6322.

15.20] **Benefits.** A Venn diagram can help us here.

Let R = Retirement planLet H = Health Insurance

(a) P(not R and not H) = 0.25

Using probability rules:

$$P(\text{not R and not H}) = 1 - P(\text{R or H})$$

= 1 - [P(R) + P(H) + P(R and H)]
= 1 - [0.56 + 0.68 - 0.49]
= 0.25

There is a 25% probability that he has neither a retirement plan nor employer sponsored health insurance.

- **(b)** $P(H|R) = \frac{P(H \text{ and } R)}{P(R)} = \frac{0.49}{0.56} = 0.875$. The probability of health insurance given he has a retirement plan is 0.875.
- (c) No, they are not independent, because

$$P(H \text{ and } R) \stackrel{?}{=} P(H)P(R)$$

 $0.49 \stackrel{?}{=} 0.68(0.56)$
 $0.49 \neq 0.3808$

(d) They are not mutually exclusive, because there is some overlap between the two events. There are cases with both R and H.

15.31] **Montana.** Party affiliation is not independent of sex. To see this, let D represent Democrats, and M represent males.

Now
$$P(D) = \frac{84}{202} = 0.4158$$
 and $P(D|M) = \frac{P(D \text{ and } M)}{P(M)} = \frac{36}{105} = 0.3429$
Since $P(D|M) \neq P(D)$, these events are not independent.

15.43] Dishwashers. A tree diagram can help us here.

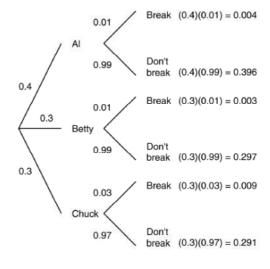
$$P(\text{Chuck}|\text{Break}) = \frac{P(\text{Chuck and Break})}{P(\text{Break})}$$

$$= \frac{(0.3)(0.01)}{(0.4)(0.01)+(0.3)(0.01)+(0.3)(0.03)}$$

$$= \frac{0.009}{0.004+0.003+0.009}$$

$$= \frac{0.009}{0.016} = 0.5625$$

If we hear a dish break, there's a 56.25% chance that Chuck is working.



Chapter 16

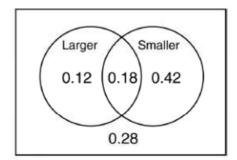
16.9] Software. The given information is:

Large Contract: \$50,000 profit 30% chance Small Contract: \$20,000 profit 60% chance

Both Contracts: \$70,000 profit (0.30)(0.60) = 18% chance

Let X be the profit. The distribution of X can be tabulated as

X	50,000	20,000	70,000	0
P(X)	0.12	0.42	0.18	0.28



$$E[X] = \sum_{i=1}^{n} X_i P(X_i) = 50000(0.12) + 20000(0.42) + 70000(0.18) + 0(0.28) = \$27,000$$

We'd expect an average profit of \$27,000.

16.20] **Insurance.** We have the following information:

Costs \$100

Major Injury: Pays \$10,000, Probability of 1/2000 Minor Injury: Pays \$3,000, Probability of 1/500

Let *X* be the profit.

(a) We can make a table for the probability model.

(b) The company's expected profit is \$89.

$$E[X] = \sum_{i=1}^{n} X_i P(X_i) = 100(0.9975) - 9900(0.0005) - 2900(0.002) = $89.$$

(c) The standard deviation is \$260.54.

$$\sigma = \sqrt{\sum_{i=1}^{n} (X_i - \mu)^2 P(X_i)}$$

$$= \sqrt{(100 - 89)^2 (0.9975) + (-9900 - 89)^2 (0.0005) + (-2900 - 89)^2 (0.002)}$$

$$= \sqrt{120.6975 + 49890.0605 + 17868.242}$$

$$= \sqrt{67879}$$

$$= 260.536$$

16.24] **Contracts.** We have the following information:

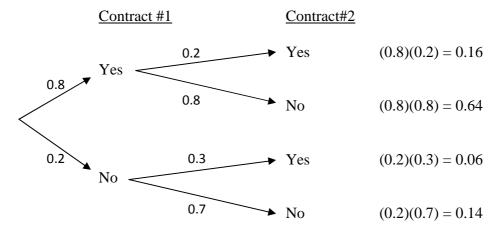
- We bid on two contracts
- P(contract #1) = 0.8
- P(contract #2) = 0.2, if you get contract #1
- P(contract #2) = 0.3, if you don't get contract #1
- (a) No, the two contracts are not independent. The probability of the second contract changes depending on whether or not we got the first contract. The two events are *dependent*.
- **(b)** There are several approaches that might work here.

Let A = the event that we get contract #1

Let B = the event that we get contract #2

We want to find P(A and B). We can use the general multiplication rule here. P(A and B) = P(A)P(B|A) = 0.8(0.2) = 0.16There's a 16% probability that we get both contracts.

We could also try a tree diagram:



(c) Let A^C = the event that we don't get contract #1 Let B^C = the event that we don't get contract #2

We want to find $P(A^C \text{ and } B^C)$. We can use the general multiplication rule again. $P(A^C \text{ and } B^C) = P(A^C)P(B^C|A^C) = 0.2(0.7) = 0.14$ There's a 6% probability that we get no contracts.

(d) We can make a table for the probability model.

$$\begin{array}{c|cccc} X & 0 & 1 & 2 \\ \hline P(X) & 0.14 & 0.70 & 0.16 \\ \end{array}$$

(e) We have:

$$E[X] = \sum_{i=1}^{n} X_i P(X_i) = 0(0.14) + 1(0.70) + 2(0.16) = 1.02$$

$$\sigma = \sqrt{\sum_{i=1}^{n} (X_i - \mu)^2 P(X_i)}$$

$$= \sqrt{(0 - 1.02)^2 (0.14) + (1 - 1.02)^2 (0.70) + (2 - 1.02)^2 (0.16)}$$

$$= \sqrt{0.1457 + 0.0028 + 0.1537}$$

$$= \sqrt{0.3022}$$

$$= 0.5497$$

16.28] **Random Variables.** Find the mean and standard deviation of each of these variables.

(a)
$$X-20$$

Mean = $E[X-20] = E[X] - 20 = 10 - 20 = -10$
 $Var(X-20) = Var(X) = 4 \Rightarrow SD = 2$

(b)
$$0.5Y$$

Mean = $E[0.5Y] = 0.5E[Y] = 0.5(20) = 10$
 $Var(0.5Y) = 0.5^2 Var(Y) = 0.25(25) = 6.25 \Rightarrow SD = 2.5$

	Mean	SD
X	10	2
Y	20	5
X - 20	-10	2
0.5Y	10	2.5
X + Y	30	5.39
X - Y	-10	5.39
$Y_1 + Y_2$	40	7.07

(c)
$$X + Y$$

Mean =
$$E[X + Y] = E[X] + E[Y] = 10 + 20 = 30$$

 $Var(X + Y) = Var(X) + Var(Y) = 4 + 25 = 29 \Rightarrow SD = 5.39$

(Note: The variances add since *X* and *Y* are independent)

(d)
$$X - Y$$

Mean =
$$E[X - Y] = E[X] - E[Y] = 10 - 20 = -10$$

Var $(X - Y) = Var(X) + Var(Y) = 4 + 25 = 29 \Rightarrow SD = 5.39$

(e)
$$Y_1 + Y_2$$

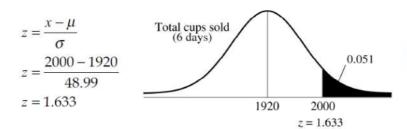
Mean =
$$E[Y_1 + Y_2] = E[Y_1] + E[Y_2] = 20 + 20 = 40$$

 $Var(Y_1 + Y_2) = Var(Y_1) + Var(Y_2) = 25 + 25 = 50 \Rightarrow SD = 7.07$

16.47] Coffee and Doughnuts.

a)

 $\mu = E(\text{cups sold in 6 days}) = 6(E(\text{cups sold in 1 day})) = 6(320) = 1920 \text{ cups}$ $\sigma = SD(\text{cups sold in 6 days}) = \sqrt{6(Var(\text{cups sold in 1 day}))} = \sqrt{6(20)^2} \approx 48.99 \text{ cups}$ The distribution of total coffee sales for 6 days has distribution N(1920,48.99).



According to the Normal model, the probability that he will sell more than 2000 cups of coffee in a week is approximately 0.051.

b) Let C = the number of cups of coffee sold. Let D = the number of doughnuts sold.

$$\mu = E(50C + 40D) = 0.50(E(C)) + 0.40(E(D)) = 0.50(320) + 0.40(150) = $220$$

$$\sigma = SD(0.50C + 0.40D) = \sqrt{0.50^2(Var(C)) + 0.40^2(Var(D))} = \sqrt{0.50^2(20^2) + 0.40^2(12^2)} \approx \$11.09$$

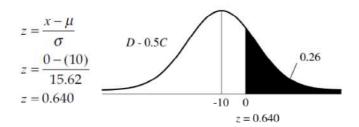
The day's profit can be modeled by N(220,11.09). A day's profit of \$300 is over 7 standard deviations above the mean. This is extremely unlikely. It would not be reasonable for the shop owner to expect the day's profit to exceed \$300.

c) Consider the difference D-0.5C. When this difference is greater than zero, the number of doughnuts sold is greater than half the number of cups of coffee sold.

$$\mu = E(D - 0.5C) = (E(D)) - 0.5(E(C)) = 150 + 0.5(320) = -\$10$$

$$\sigma = SD(D - 0.5C) = \sqrt{(Var(D)) + 0.5(Var(C))} = \sqrt{(12^2) + 0.5^2(20^2)} \approx $15.62$$

The difference D - 0.5C can be modeled by N(-10, 15.62).



According to the Normal model, the probability that the shop owner will sell a doughnut to more than half of the coffee customers is approximately 0.26.