
Statistical MolecularThermodynamics University of Minnesota

Homework Week 5

1. Consider an ideal gas that occupies 3.00 dm3 and has a pressure of 3.00 bar. This gas
is compressed isothermally at a constant pressure of Pext. Calculate the smallest value
that Pext can have if the final volume is 0.50 dm3. Using the value of Pext obtained,
calculate the work done on the gas.

(a) -4500 J

(b) 125 J

(c) 300 J

(d) 3225 J

(e) 3000 J

(f) 4500 J

Answer:

If the gas is compressed isothermally, then we know from the ideal gas law that,

P2 =
P1V1

V2

=
3.00 bar 3.00 dm3

0.500 dm3 = 18 bar.

If Pext is constant, then we also know,

w = −
∫
PextdV = −Pext∆V = −18 bar× (0.500− 3.00) dm3 = 45 dm3 bar

Now we need to convert this to joules. The easiest way to do this is to remember that
there are 105 pascals (Pa) per bar, and that one pascal is the equivalent of 1 newton
per square meter, so

45 dm3 bar× 105 Pa

bar
× 0.13 m3

dm3 = 4500
Kg m2

s2 = 4500 J



2. Calculate the work done when one mole of an ideal gas is compressed reversibly from
3.00 bar to 10.00 bar at a constant temperature of 300 K.

(a) 3002 kJ

(b) 2740 J

(c) 2494 kJ

(d) 3002 J

(e) 1.20 J

(f) 1.86 J

(g) 1.86 kJ

Answer:

We know from the ideal gas law that for one mole of gas,

V1 =
RT

P1

and V2 =
RT

P2

,

and thus V2/V1 = P1/P2, which we will use below. Moreover, as the compression is
specified to be reversible, the external pressure must at every point be equal to (or,
more accurately, only infinitesimally greater than) the internal pressure, which for an
ideal gas is equal to nRT/V . Now it is simply a matter of making the appropriate
substitutions into the following equations,

w = −
∫
PextdV = −

∫
nRT

V
dV = −nRT ln

V2

V1

= −nRT ln
P1

P2

(1)

= −1 mol× 8.315
J

mol K
300 K ln0.3 = 3002 J (2)

3. Consider the reversible adiabatic expansion of one mole of an ideal gas from T1 and P1

to T2 and P2. What is the correct relationship between the temperatures, pressures,
and the molar constant pressure heat capacity, C̄P ?

(a) T1

T2
= R ln

(
P2

P1

)C̄P

(b) T1

T2
= R ln

(
P1

P2

)C̄P

(c) C̄P ln
(

T1

T2

)R
= P2

P1

(d) C̄P ln
(

T1

T2

)R
= P1

P2

(e) T1

T2
=
(

P2

P1

)R/C̄P

(f) T1

T2
=
(

P1

P2

)R/C̄P

(g) T1

T2
= R

(
P2

P1

)C̄P



(h) T1

T2
= R

(
P1

P2

)C̄P

Answer:

Recall that H = U + PV . Therefore:

dH = dU + d(PV ) = dU + PdV + V dP

There is no heat transfer in an adiabatic expansion, so δq = 0. Therefore, dU = δw.
Also, recall that for an ideal gas, δw = −PdV . Using all of this information we can
rewrite the differential dH:

dH = dU + PdV + V dP

= δw + PdV + V dP

= −PdV + PdV + V dP

= V dP

For an ideal gas, V = nRT
P

. Therefore:

dH =
nRT

P
dP

By definition, CP =
(
∂H
∂T

)
P

. However, because the enthalpy of an ideal gas only
depends on temperature, we can rewrite this as dH = CPdT .

Equating the two expressions for dH gives the following:

CPdT =
nRT

P
dP

Divide both sides by T and CP :

dT

T
=

nR

CP

(
1

P

)
dP

=
R

CP

(
1

P

)
dP

Integrate both sides of the above equation over their corresponding limits:∫ T2

T1

dT

T
=

∫ P2

P1

R

CP

(
1

P

)
dP

ln
T2

T1

=
R

CP

ln
P2

P1

= ln

(
P2

P1

)R/CP

Taking the exponential of both sides delivers the desired result:

T2

T1

=

(
P2

P1

)R/CP



4. Consider the isothermal compression of 0.1 moles of an ideal gas at 300 K from (P1 =
1.5 bar, V1 = 2 dm3) to (P2 = 3 bar, V2 = 1 dm3). The curve illustrates the internal
pressure/volume relationship for the ideal gas at 300 K.
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If the compression of the gas is carried out reversibly, which of the following statements
is TRUE?

(a) There will be no energy transfered as heat.

(b) The change in the energy, U , will be positive.

(c) The work required is the minimum for this compression.

(d) The gas will cool (the temperature of the gas will go down).

Answer:

We know that it cannot be that there will be no energy transferred as heat. Why?
Well, we know for an ideal gas the energy of the gas depends only on the temperature,
so the total change in energy for this process must be zero since it is isothermal, i.e.,
∆U = 0. Because it is a reversible process, wrev = −qrev and therefore,

wrev = −qrev = −0.1RT

∫ V2

V1

dV

V
= −0.1RT ln

V2

V1

So clearly, heat must transfer in an amount equal and opposite to the work done. In
this case, the heat transferred is from the system to the surroundings, so the sign on q
is negative (note that V2 is smaller than V1, so the logarithm is a negative number).

There is no increase in energy, as we just discussed, so so there is no positive energy
increase. Also, the gas will not cool, even though heat leaves the system - it does
so only to maintain a constant temperature (the compression is isothermal). If the
temperature remains constant, it is not cooling.



We do know from lecture video 5.2 that the work done in the expansion and compression
of a gas is dependent upon the path taken. For a reversible isothermal expansion of
an ideal gas, the minimum work done is that done along the reversible path.

5. Given the following data,

1

2
H2(g) +

1

2
F2(g)→ HF(g) ∆rH = −273.3 kJ

H2(g) +
1

2
O2(g)→ H2O(`) ∆rH = −285.8 kJ

What is the value of ∆rH for the reaction,

2F2(g) + 2H2O(`)→ 4HF(g) + O2(g)?

(a) ∆rH = −521.6 kJ

(b) ∆rH = −11.7 kJ

(c) ∆rH = −596.6 kJ

(d) ∆rH = 1118.2 kJ

(e) ∆rH = −1689.8 kJ

(f) ∆rH = 559.1 kJ

Answer:

We can solve this using Hess’s Law:

4× [
1

2
H2(g) +

1

2
F2(g)→ HF(g)] 4×∆rH = −1093.2 kJ

+ 2× [H2O(`)→ H2(g) +
1

2
O2(g)] 2×∆rH = 571.2 kJ

2F2(g) + 2H2O(`)→ 4HF(g) + O2(g) ∆rH = −521.6 kJ



6. You have a gas that has a temperature dependent constant pressure heat capacity
given by

C̄P (T )

R
= 10− 0.02 T (50 > K > 300) .

What is the change in the molar enthalpy of the gas if you raise the temperature from
100 K to 200 K? There are no phase transitions.

(a) ∆H̄ = 0R

(b) ∆H̄ = R

(c) ∆H̄ = 10R

(d) ∆H̄ = 500R

(e) ∆H̄ = 700R

(f) ∆H̄ = 1000R

Answer:

H(T2)−H(T1) =

∫ T2

T1

CPdT

= R

∫ 200

100

(10− 0.02T )dT

= R(10T )

∣∣∣∣∣
200

100

−R
(

0.02

2
T 2

)∣∣∣∣∣
200

100

= R

[
10(200)− 0.02

2
(200)2 −

(
10(100)− 0.02

2
(100)2

)]
= 700 R



7. In lecture video 5.5, we learned that(
T2

T1

)3/2

=
V1

V2

for a monatomic ideal gas. Now consider a diatomic gas, N2, at 298 K. This gas is
compressed reversibly and adiabatically from 15 dm3 to 5.0 dm3. Assume that the
heat capacity of this gas is C̄V = 5R/2, and that it behaves ideally. Calculate the final
temperature, T2, of the gas.

(a) 462 K

(b) 751 K

(c) 303 K

(d) 1033 K

(e) 433 K

Answer:

According to the definition, we know that

dU = nCV dT =
5

2
nRdT

Assuming ideal behavior, and noting the reversible nature of the compression, we can
use:

δw = −PdV = −nRT
V

dV

The problem tells us that the gas is compressed adiabatically; therefore, δq = 0 and
dU = δw.

Setting the two above equations equal to one another allows us to obtain an expression
that we can use to find the final temperature.

dU = δw
5

2
nRdT = −nRT

V
dV

5

2

dT

T
= −dV

V

Integrating both sides of the equation gives the following:

5

2
ln
T2

T1

= −ln
V2

V1

Inserting the information given in the problem allows us to solve for T2:

ln

(
T2

298 K

)
= −2

5
ln

(
5.00 dm3

15.0 dm3

)
(

T2

298 K

)
= e0.4394

T2 = 462 K



8. Consider a 20.0 g sample of copper at 350 K placed into 100.0 g of water at 293 K.
Heat is quickly transferred from the copper to the water, and the metal and water
soon reach the same temperature (the zeroth Law!) What is the final temperature of
the water? The molar heat capacities of copper and water are 24.5 J · K−1 and 75.3
J · K−1, respectively. The atomic weight of copper is 63.546 g/mol and the molecular
weight of water is 18.015 g/mol.

(a) 294.0 K

(b) 304.9 K

(c) 266.3 K

(d) 303.5 K

(e) 310.2 K

The energy of the system must be conserved, so any heat lost by the copper is gained
by the water.

∆H = q = nCp∆T

Let x be the final temperature of the system. The heat lost by the copper is:

−qCu = −
(

20.0 g

63.546 g ·mol−1

)
(24.5 J ·mol−1 ·K−1)(x− 350 K)

Similarly, the heat gained by the water is:

qwater =

(
100.0 g

18.015 g ·mol−1

)
(75.3 J ·mol−1 ·K−1)(x− 293 K)

Set these two equations equal to one another to solve for the final temperature, x, of
the system:

−qCu = qwater

−(7.7109 J ·K−1)x+ 2698.8 J = (418.0 J ·K−1)x− 1.225× 105 J

1.25168× 105 K = 425.7x

x = 294.0 K

Does it surprise you that dropping a piece of copper 57 K warmer than a bath of water
having a mass only 5 times larger than that of the copper warms the water by only 1
K? The reason is the lower molecular weight of water (so more moles per mass), the
higher heat capacity of water (so more places to store heat), and the greater mass of
the water.



9. Calculate the work done in the isothermal reversible expansion of one mole of CH4

(g) from 1.00 dm3 to 10.00 dm3 at 300 K. Treat methane as a van der Waals gas.
The van der Waals gas constants for methane are: a = 2.3026 dm6 · bar · mol−2 and
b = 0.043067 dm3 ·mol−1.

(a) -4100 J

(b) 5630 J

(c) -5.63 kJ

(d) -46.37 J

(e) -230.07 J

(f) -2.307 kJ

Answer:

We know from lecture video 2.2 that the van der Waals equation of state is

P =
RT

V̄ − b
− a

V̄ 2

and for a reversible expansion we may use the equation of state to know the exter-
nal/internal pressure at each point,

w = −
∫
PdV̄ = −

∫ V̄2

V̄1

(
RT

V̄ − b
− a

V̄ 2

)
dV̄

= −RT ln
V̄2 − b
V̄1 − b

+
a(V̄2 − V̄1)

V̄2V̄1

= −0.08314
dm3 · bar

mol ·K
· 300K · ln10 dm3 ·mol−1 − 0.043067 dm3 ·mol−1

1 dm3 ·mol−1 − 0.043067 dm3 ·mol−1

+
2.3026 dm6 · bar ·mol−2(10 dm3 ·mol−1 − 1 dm3 ·mol−1)

10 dm3 ·mol−1 · 1 dm3 ·mol−1

= −56.35
dm3 · bar

mol
= −5.63

kJ

mol



10. Given the following data for water, determine ∆vapH
◦ at 298 K and constant pressure:

∆vapH
◦ at 373 K = 40.7 kJ · mol−1

C̄P (l) = 75.2 J · mol−1 K−1

C̄P (g) = 33.6 J · mol−1 K−1

(a) 43.8 J ·mol−1

(b) 149.3 J ·mol−1

(c) 149.3 kJ ·mol−1

(d) 48.9 J ·mol−1

(e) 40.7 kJ ·mol−1

(f) 48.9 kJ ·mol−1

(g) 43.8 kJ ·mol−1

Answer:

H2O(l)
∆vapH◦373K−−−−−−−→ H2O(g)

↑ ∆H2 ∆H3 ↓

H2O(l)
∆vapH◦298K−−−−−−−→ H2O(g)

∆vapH
◦(298)K =∆H2 + ∆H3 + ∆vapH

◦(373)K

=(75 K)× (75.2 J ·mol−1K−1) + (−75 K)× (33.6 J ·mol−1K−1) + 40.7 kJ ·mol−1

=43.8 kJ ·mol−1


