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……ACGTTGCCACTTTCCGGGCCACCTGGCCACCTTATTTTCGGAAATATACCGGGCCTTTTTT……

||||||x||||x||||||||

CTTTCCCGGCCTCCTGGCCA

match: +1

mismatch: -1

matching score = 16

• How to align them?

• Why we can align them?

• Why +1 for match, and -1 for mismatch? 

• What does the score mean?

• Is 16 a good score?



Outline

• Nobel-price-worthy work on homology

• What is homology?

• How to detect homology?

• How to quantify homology?

• How to use homology?

• Homology beyond sequence analysis

• Next-gen sequencing alignment



Russell Doolittle

(Bishop and Varmus)



Bishop and Varmus strategy (Nobel price 1989)

Doolittle strategy (could be the first Nobel price for computational biology) 

What is the significance?



Homologs: genes/sequences sharing a common origin

Orthologs: genes originating from a single ancestral 

gene in the last common ancestor of the compared 

genomes; genes related via speciation

Paralogs: genes related via duplication

Xenolog: sequences that have arisen out of horizontal transfer events (symbiosis, 

viruses, etc)

Co-orthologs: two or more genes in one lineage that are, collectively, orthologous to 

one or more genes in another lineage due to a lineage-specific duplication(s)

Outparalogs: paralogous genes resulting from a duplication(s) preceding a given 

speciation event

Inparalogs: paralogous genes resulting from a lineage-specific duplication(s) 

subsequent to a given speciation event

A few Definitions



Relation of sequences

Need ancestral sequences to distinguish orthologs and paralogs

(exercise on board)



Similarity versus Homology

• Similarity refers to the likeness or 

% identity between 2 sequences

• Similarity means sharing a 

statistically significant number of 

bases or amino acids

• Similarity does not imply 

homology

• Similarity can be quantified

• It is ok to say that two sequences 

are X% identical

• It is ok to say that two sequences 

have a similarity score of Z 

• It is generally incorrect to say that 

two sequences are X% similar

• Homology refers to shared 

ancestry

• Two sequences are homologous if 

they are derived from a common 

ancestral sequence

• Homology usually implies 

similarity

• Low complexity regions can be 
highly similar without being 
homologous

• Homologous sequences are not 
always highly similar

• A sequence is either homologous 
or not. 

• Never say two things are X% 
homologous



Why Compare Sequences?

• Sequence comparisons lie at the heart of all bioinformatics

• Identify sequences
– What is this thing I just found?

• Compare new genes to known ones

• Compare genes from different species
– information about evolution

• Guess functions for entire genomes full of new gene 
sequences
– Metagenomics

• What does it matter if two sequences are similar or not?
– Globally similar sequences are likely to have the same biological 

function or role
– Locally similar sequences are likely to have some physical shape 

or property with similar biochemical roles
– If we can figure out what one does, we may be able to figure out 

what they all do



Sequence alignment

• How to optimally align two sequences
– Dot plots

– Dynamic programming
• Global alignment

• Local alignment

• How to score an alignment

• Fast similar sequence search
– BLAST

– BLAT

– More recent development: short read alignment

• Determine statistical significance

• Using information in multiple sequence alignment to 
improve sensitivity



Visual Alignments (Dot Plots)

• Build a comparison matrix

– Rows: Sequence #1

– Columns: Sequence #2

• Filling

– For each coordinate, if the character in the 
row matches the one in the column, fill in the 
cell

– Continue until all coordinates have been 
examined



Example Dot Plot



Noise in Dot Plots

• Nucleic Acids (DNA, RNA)

– 1 out of 4 bases matches at random

• Windowing helps reduce noise

– Can require >X bp match before plotting

– Percentage of bases matching in the window 

is set as threshold



Met14 vs 

Met2

“DotPlot”

MET14 (1000nt)

Match       = 1

Mismatch =-1

Gray: 1



Met14 vs 

Met2

MET14 (1000nt)

Red: >5



 chain of human hemoglobin

 chain of human 

hemoglobin



MAZ: Myc associated zinc finger isoform 1 self alignment



Human vs Chimp 

Y chromosome 

comparison



JF Hughes et al. Nature 000, 1-4 (2010) doi:10.1038/nature08700

Dot plots of DNA sequence identity between 
chimpanzee and human Y chromosomes and chromosomes 21.



Aligning sequences by residue

• Match: award

• Mismatch (substitution or mutation): penalize

• Insertion/Deletion (INDELS – gaps): penalize

(gap open, gap extension)

A L I G N M E N T

| | |   | | | |

- L I G A M E N T



More than one solution is possible

• Which alignment is best?

A T C G G A T - C T

|   |   |       | |

A – C – G G – A C T

A T C G G A T C T

|   | | |     | |

A – C G G – A C T



Alignment Scoring Scheme

• Possible scoring scheme:

match: +2

mismatch: -1

indel –2

• Alignment 1: 5*2 + 1*-1 + 4*-2 = 10 – 1 – 8 = 1

• Alignment 2: 6*2 + 1*-1 + 2*-2 = 12 – 1 – 4 = 7



Dynamic Programming

• Global Alignments:
– Needleman S.B. and Wunsch C.D. (1970) J. Mol. Biol. 48, 443-453

• Local Alignments:
– Smith T.F. and Waterman M.S. (1981) J. Mol. Biol.147, 195-197

– One simple modification of Needleman/Wunsch: when a value in the 
score matrix becomes negative, reset it to zero (begin of new 
alignment)

• Guaranteed to be mathematically optimal: 
– Given two sequences (and a scoring system) these algorithms are 

guaranteed to find the very best alignment between the two 
sequences!

• Slow N2 algorithm

• Performed in 2 stages
• Prepare a scoring matrix using recursive function

• Scan matrix diagonally using traceback protocol





Dynamic Programming

G E N E T I C S

| | | | * | |

G E N E S I S

G E N E T I C S
G 10 0 0 0 0 0 0 0
E 0 10 0 10 0 0 0 0
N 0 0 10 0 0 0 0 0
E 0 0 0 10 0 0 0 0
S 0 0 0 0 0 0 0 10
I 0 0 0 0 0 10 0 0
S 0 0 0 0 0 0 0 10

G E N E T I C S

G 60 40 30 20 20 0 10 0
E 40 50 30 30 20 0 10 0

N 30 30 40 20 20 0 10 0

E 20 20 20 30 20 10 10 0
S 20 20 20 20 20 0 10 10

I 10 10 10 10 10 20 10 0
S 0 0 0 0 0 0 0 10



DP (demo)

• Match=5, mismatch=-3, gap=-4



DP (demo)

S1,1 = MAX{S0,0 + 5, S1,0 - 4, S0,1 – 4,0} = MAX{5, -4, -4, 0} = 5



DP (demo)

S1,2 = MAX{S0,1 -3, S1,1 - 4, S0,2 – 4, 0} = MAX{0 - 3, 5 – 4, 0 – 4, 0} = 

MAX{-3, 1, -4, 0} = 1



S1,3 = MAX{S0,2 -3, S1,2 - 4, S0,3 – 4, 0} = MAX{0 - 3, 1 – 4, 0 – 4, 0} =    

MAX{-3, -3, -4, 0} = 0

DP (demo)



DP (demo)



Trace Back (Local Alignment)

• Maximum local alignment score is the 

highest score anywhere in the matrix (14 

in this example)

• 14 is found in two separate cells, 

indicating two possible multiple alignments 

producing the maximal local alignment 

score



Trace Back (Local Alignment)

• Traceback begins in the position with the highest 
value. 

• At each cell, we look to see where we move next 
according to the pointers

• When a cell is reached where there is not a 
pointer to a previous cell, we have reached the 
beginning of the alignment



Trace Back Demo



Trace Back Demo



Trace Back Demo



Maximum Local Alignment

G A A T T C - A

|   | |   |   |

G G A T – C G A

+ - + + - + - +

5 3 5 5 4 5 4 5

=14

G A A T T C - A

|   |   | |   |

G G A – T C G A

+ - + - + + - +

5 3 5 4 5 5 4 5

=14



Linear vs. Affine Gaps

• So far, gaps have been modeled as linear

• More likely contiguous block of residues inserted 
or deleted

– 1 gap of length k rather than k gaps of length 1

• Can create scoring scheme to penalize big gaps 
relatively less

– Biggest cost is to open new gap, but extending 
is not so costly



Affine Gap Penalty

wx = g + r(x-1)

• wx : total gap penalty

• g: gap open penalty

• r: gap extend penalty

• x: gap length

• gap penalty chosen relative to score matrix



Scoring Alignments

• Pick a scoring matrix

• BLOSUM62

• PAM250

• Match=5, mismatch=-4

• Decide on gap penalties

• -gap opening penalty (-8)

• -gap extension penalty (-1)

• Assume every position is independent

• Sum scores at each position

• [log(x*y)=logx+logy]



Scoring Matrices

• An empirical model of evolution, biology and chemistry all 
wrapped up in a 20 X 20 (or 4 X 4) table of numbers

• Structurally or chemically similar residues should ideally have 
high diagonal or off-diagonal numbers

• Structurally or chemically dissimilar residues should ideally 
have low diagonal or off-diagonal numbers

• What does the score mean: The likelihood of seeing two 
residues align (preserved) than random expected.

Sij =

log(
qij

pi p j

)

l



Scoring Alignments
Blosum62 Scoring Matrix



BLOSUM substitution matrices

Developed for distantly related proteins

Substitutions only from multiple alignments of 

conserved regions of protein families, hand curated, 

constitute the known homologous blocks

Identity threshold to define conserved blocks can be 

varied, e.g. 62% idenitity gives BLOSUM62

Scores calculated from frequency of amino acids in 

aligned pairs compared to what would be expected 

due to abundance alone, given all sequences

Henikoff and Henikoff (1992) Proc. Natl. Acad. Sci. USA 89, 10915-19



Blosum Matricies

)random|T:S(

)homology|T:S(
logT):(Sscore 2

P

P


What score should we give to a ser residue 

aligned with a thr residue?



SDHIP HKSA WMFET RTQC

SDHLP HRTA WMFDT RTNC

SDHIP HKSG WLFDT KTQC

SEHLP KSQC

SEHLP KTQC

Database of known alignments

Homology Model (consider each pair of sequences separately)

S:S pairs in alignments = 11 P(S:S|homology) = 11/117 =.094

S:T pairs in alignments = 6 P(S:T|homology) = 6/117 =.051

T:T pairs in alignments = 9 P(T:T|homology) = 9/117 =.078

Total pairs in alignments = 117

example of deriving Blosum scores for 

S:S, S:T, and T:T



example of deriving Blosum scores for 

S:S, S:T, and T:T

SDHIP HKSA WMFET RTQC

SDHLP HRTA WMFDT RTNC

SDHIP HKSG WLFDT KTQC

SEHLP KSQC

SEHLP KTQC

Database of known alignments

Random Model

Number of S residues = 8     P(S:S|random)=P(S)P(S)=(8/72)2=.012

Number of T residues = 8     P(S:T|random)=2*P(S)P(T)=2*(8/72)2=.024

Total residues = 72 P(T:T|random)=P(T)P(T)=(8/72)2=.012



70.2
.012

.078
log

random)|T:P(T

homology)|T:P(T
logT):score(T

09.1
.024

.051
log

random)|T:P(S

homology)|T:P(S
logT):score(S

96.2
.012

.094
log

random)|S:P(S

homology)|S:P(S
logS):score(S

22

22

22







example of deriving Blosum scores for 

S:S, S:T, and T:T



BLOSUM and PAM

BLOSUM 45 BLOSUM 62 BLOSUM 90

PAM 250 PAM 160 PAM 100

More Divergent Less Divergent

• BLOSUM 62 is the default matrix in BLAST 2.0. 

Though it is tailored for comparisons of moderately 

distant proteins, it performs well in detecting closer 

relationships. A search for distant relatives may be 

more sensitive with a different matrix.

• PAM matrices: point accepted mutation



Scoring Matrices Take Home Points

• Based on log odds scores

– Ratios>1 give positive scores, ratios<1 give 

negative scores

– Because log(x*y)=logx+logy the score of an alignment is 

the sum of the scores for each pair of aligned residues

• Assume independence of adjacent residues 

when scoring

• Introduced the concept that the frequency of 

a residue in a multiple alignment is 

informative



Fast Similar Sequence Search

• Can we run Smith-Waterman between 
query and every DB sequence?

• Yes, but too slow!

• General approach
– Break query and DB sequence to match 

subsequences

– Extend the matched subsequences, filter 
hopeless sequences

– Use dynamic programming to get optimal 
alignment



BLAST
• Basic Local Alignment Search Tool

• Altschul et al. J Mol Biol. 1990

• One of the most widely used bioinformatics 
applications
– Alignment quality not as good as Smith-Waterman

– But much faster, supported at NCBI with big computer 
cluster

• For tutorials or information:
http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/i

nformation3.html

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/information3.html


BLAST Algorithm Steps

• Query and DB sequences are optionally 

filtered to remove low-complexity regions
– E.g. ACACACACA, TTTTTTTTT



BLAST Algorithm Steps

• Query and DB sequences are optionally 
filtered to remove low-complexity regions

• Break DB sequences into k-mer words and 
hash their locations to speed later searches

– k is usually 11 for DNA/RNA and 3 for protein
LPPQGLL

LPP

PPQ

PQG

QGL

GLL



BLAST Algorithm Steps

• Query and DB sequences are optionally 

filtered to remove low-complexity regions

• Break DB sequences into k-mer words 

and hash their locations to speed later 

searches

• Each k-mer in query find possible k-mers

that matches well with it

– “well” is evaluated by substitution matrices



BLAST Algorithm Steps

• Only words with  T cutoff score is kept
– T is usually 11-13, ~ 50 words make T cutoff

– Note: this is 50 words at every query position

• For each DB sequence with a high scoring word, 
try to extend it in both ends

Query: LP PQG LL

DB seq: MP PEG LL

HSP score 9  + 15 + 8 = 32

– Form HSP (High-scoring Segment Pairs)

– Use BLOSUM to score the extended alignment

– No gaps allowed



The BLAST Search Algorithm

Query: GSVEDTTGSQSLAALLNKCKTPQGQRLVNQWIKQPLMDKNRIEERLNLVEAFVEDAELRQTLQEDL

PQG 18

PEG 15

PRG 14

PKG 14

PNG 13

PDG 13

PHG 13

PMG 13

PSG 13

PQA 12

PQN 12

…

Query:  325 SLAALLNKCKTPQGQRLVNQWIKQPLMDKNRIEERLNLVEA 365

+LA++L+   TP G R++ +W+  P+ D   + ER   + A

Sbjct:  290 TLASVLDCTVTPMGSRMLKRWLHMPVRDTRVLLERQQTIGA 330
{

Neighbourhood

Words

Score Threshold (13)

High-scoring Segment Pair

Query Word



BLAST Algorithm Steps

• Keep only statistically significant HSPs

– Based on the scores of aligning 2 random seqs

• Use Smith-Waterman algorithm to join the HSPs and get 

optimal

alignment

– Gaps are allowed

default (-11, -1)



BLAST algorithm summary

“query”

“seeds”
(111111)

(111000111)

“neighborhood words”

(branch and bound algorithm)

Indexing all seeds

“subjects” (database)

Scan the index and find all word hits

DP extension to recover the high scoring pairs

Extending high scoring pairs

Evaluate Significance of HSPs by 

Karlin-Altschul Statistic: E=KMNexp(-lambda*S)



Different BLAST Programs

BLAST DB:
• nr (non-redundant):

– GenBank, RefSeq, 
EMBL…

• est:
– expressed 

sequences (cDNA), 
redundant

• Swissprot and pdb:
– protein databases

If query is DNA, but 
known to be coding 
(e.g. cDNA)
– Translate cDNA

into protein
– Zero gap-

extension penalty



Program Description

blastp
Compares an amino acid query sequence against a protein sequence 

database.

blastn
Compares a nucleotide query sequence against a nucleotide sequence 

database.

blastx

Compares a nucleotide query sequence translated in all reading frames 

against a protein sequence database. You could use this option to find 

potential translation products of an unknown nucleotide sequence.

tblastn
Compares a protein query sequence against a nucleotide sequence 

database dynamically translated in all reading frames.

tblastx

Compares the six-frame translations of a nucleotide query sequence 

against the six-frame translations of a nucleotide sequence database. 

Please note that the tblastx program cannot be used with the nr 

database on the BLAST Web page because it is too computationally 

intensive.

Different BLAST Programs



PSI-BLAST

• Position Specific Iterative BLAST

– Align high scoring hits in initial BLAST to 
construct a profile for the hits

– Use profile (PSSM) for next iteration BLAST

• Find remote homologs or protein families

• FP sequences can degrade search quickly 

Query

Seq1

Seq2

Seq4

Seq3



PSI-BLAST

Query
GKATFGKLFAAHPEYQQMFRFF

Initial Matches
GKATFGKLFAAHPEYQQMFRFF

GKDCLIKFLSAHPQMAAVFGFS

GLELWKGILREHPEIKAPFSRV

SLHFWKEFLHDHPDLVSLFKRV

GFDILISVLDDKPVLDQALAHY 

PSSM Profile
Pos Ala Cys Glu Asp Phe Gly His ...

1 -20  -30 -30 -40   20 -30 -20

2 -10  -50  -20  -30  -20  -30    0 

3 20  -30   10    0  -50   20  -20

4 -30  -80  -50  -40   20  -60  -20

5 -50  -30  -60  -60 100 -70  -10 

...

Refined Matches
TSTMYKYMFQTYPEVRSYFNMT

GKATFGKLFAAHPEYQQMFRFF

SGIAMKRQALVFGAILQEFVAN

GKDCLIKFLSAHPQMAAVFGFS

WAKASAAWGTAGPEFFMALFDA

GLELWKGILREHPEIKAPFSRV

SLHFWKEFLHDHPDLVSLFKRV

GVALMTTLFADNQETIGYFKRL

GFDILISVLDDKPVLDQALAHY

VDPHLRMSVHLEPKLWSEFWPI

Search

Search

again

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi http://www.ebi.ac.uk/blastpgp/



• Search for orthologous sequences 

between two species

– GeneA in Species1 BLAST Species2  GeneB

– GeneB in Species2 BLAST Species1  GeneA

– GeneA GeneB

• Also called bi-directional best hit

orthologous

Reciprocal Blast



BLAT

• BLAST-Like Alignment Tool
– Compare to BLAST, BLAT can align much longer 

regions (MB) really fast with little resources

– E.g. can map a sequence to the genome in seconds 
on one Linux computer

– Allow big gaps (mRNA to genome)

– Need higher similarity (> 95% for DNA and 80% for 
proteins) for aligned sequences

• Basic approach
– Break long sequence into blocks

– Index k-mers, typically 8-13

– Stitch blocks together for final alignment



BLAT: Indexing

Genome: cacaattatcacgaccgc

3-mers: cac aat tat cac gac cgc

Index: aat 3      gac 12
cac 0,9    tat 6
cgc 15

cDNA (mRNA -> DNA): aattctcac

3-mers: aat att ttc tct ctc tca cac
0   1   2   3   4   5   6

hits: aat 0,3  -3
cac 6,0   6
cac 6,9  -3

clump: cacAATtatCACgaccgc
|||   |||
aattctcac



BLAT Example

• Enter sequence and parameters



• Get result instantly!!

BLAT Example



Summary of Fast Search

• Fast sequence similarity search

– Break seq, hash DB sub-seq, match sub-seq

and extend, use DP for optimal alignment 

– *BLAST, most widely used, many applications 

with sound statistical foundations

– *BLAT, align sequence to genome, fast yet 

need higher similarity



BLAST score and significance

• Report DB sequences above a threshold

– E value: Number (instead of probability 

pvalue) of matches expected merely by chance

• m, n are query and DB length

• K, are constants

• Smaller E, more stringent

SeKmnE 

  

p(s ³ x) »1- exp[-e-x ]



Are these proteins homologs?

SEQ 1: RVVNLVPS--FWVLDATYKNYAINYNCDVTYKLY

L P    W L   Y N    Y C     L 

SEQ 2: QFFPLMPPAPYWILATDYENLPLVYSCTTFFWLF 

SEQ 1: RVVNLVPS--FWVLDATYKNYAINYNCDVTYKLY

L P    W LDATYKNYA  Y C     L 

SEQ 2: QFFPLMPPAPYWILDATYKNYALVYSCTTFFWLF 

SEQ 1: RVVNLVPS--FWVLDATYKNYAINYNCDVTYKLY

RVV L PS   W LDATYKNYA  Y CDVTYKL 

SEQ 2: RVVPLMPSAPYWILDATYKNYALVYSCDVTYKLF 

Most likely (score = 24)

MAYBE (score = 15)

Probably not (score = 9)



Significance of scores

Homology

detection

algorithm

HPDKKAHSIHAWILSKSKVLEGNTKEVVDNVLKT 

LENENQGKCTIAEYKYDGKKASVYNSFVSNGVKE 

45

Low score = unrelated

High score = homologs

How high is high enough?



Other significance questions

• Pairwise sequence comparison scores

• Microarray expression measurements

• Sequence motif scores

• Functional assignments of genes

• Call peaks from ChIP-seq data



The null hypothesis

• We are interested in characterizing the 
distribution of scores from sequence comparison 
algorithms.

• We would like to measure how surprising a given 
score is, assuming that the two sequences are 
not related.

• The assumption is called the null hypothesis.

• The purpose of most statistical tests is to 
determine whether the observed results provide a 
reason to reject the hypothesis that they are 
merely a product of chance factors.



Gaussian vs.

Extreme Value Distribution (EVD)

Gaussian (Normal) Extreme value



Gaussian





= 68 in.,=3 in.

What is the chance of picking a person at least 75 in. tall P(X75)?

33.2
3

6875
)(zscore 









x
x

From Table:

z=2.33  P=0.01



EVD

 ,

 ,

 ,

Each alignment/score that BLAST returns is the 

very best alignment/score among a large number 

of alignments/scores for those two sequences (ie

and EVD problem).

(Altschul et al, Nat. Genet. 1994)



Computing a p-value

• The probability of 

observing a score >4 

is the area under the 

curve to the right of 4.

• This probability is 

called a p-value.

• p-value = Pr(data|null)



Scaling the EVD

• An extreme value distribution derived from, e.g., the 
Smith-Waterman algorithm will have a characteristic 
mode μ and scale parameter λ.

• These parameters depend upon the size of the query, 
the size of the target database, the substitution matrix 
and the gap penalties.

      xexSP exp1



An example

You run BLAST and get a score of 45.  You then run BLAST on a shuffled 

version of the database, and fit an extreme value distribution to the resulting 

empirical distribution.  The parameters of the EVD are μ = 25 and λ = 0.693.  

What is the p-value associated with 45?

      xexSP exp1

    
 
 

7

7

86.13

2545693.0

10565.9

999999043.01

10565.9exp1

exp1

exp145



















e

eSP



Summary of statistical significance

• A distribution plots the frequency of a given type of 
observation.

• The area under the distribution is 1.

• Most statistical tests compare observed data to the 
expected result according to the null hypothesis.

• Sequence similarity scores follow an extreme value 
distribution, which is characterized by a larger tail.

• The p-value associated with a score is the area 
under the curve to the right of that score.



Applying homology: concept and technology

• Genome evolution
– Mammalian genome evolution

– Human genome variation

– Cancer genome evolution

• Gene finding
– Comparative approaches

– Ab initio approaches 
• Hidden Markov Model

• Protein structure
– Threading

• Regulatory motif finding
– Profile comparison

• Pathway/Network comparison
– PathBLAST

• Conservation
– Ultra conserved elements

– Human accelerated regions



Gene prediction

• Comparing to a known gene from a different 
species

• Using EST evidence (aligning transcript to genome)

• Predicting from sequence (HHM)

• Using conservation
– Signature of coding potential

– What about RNA gene?

• Using other genomics signals
– Specific epigenetic marks of promoters and gene 

bodies 



Modeling gene features

5’ 3’

Exon 1 Exon 2 Exon 3
Intron 1 Intron 2

CNS CNS CNS

[human]

[mouse]



Genscan (Burge and Karlin, 1998)

• Dramatic improvement 
over previous methods

• Generalised HMM

• Different parameter 
sets for different GC 
content regions (intron
length distribution and 
exon stats)



Predicting non-coding RNA?

• From sequence?

– Not clear which properties can be exploited

– Sequence features such as promoters are too 

weak

• Histone modifications + conservation worked





So far, only linear sequence comparison

A C T T G A A T T C G C C T

C

G

A

A

T

T

C

A

C



Expanding the idea of a sequence

http://www.southridgefarms.com/contact.asp
http://www.southridgefarms.com/contact.asp
http://www.southridgefarms.com/account.asp
http://www.southridgefarms.com/account.asp
http://www.extento.hawaii.edu/kbase/crop/crops/fruits.htm
http://www.extento.hawaii.edu/kbase/crop/crops/fruits.htm
http://www.extento.hawaii.edu/kbase/crop/crops/fruits.htm
http://www.extento.hawaii.edu/kbase/crop/crops/fruits.htm
http://www.extento.hawaii.edu/kbase/crop/crops/fruits.htm
http://www.extento.hawaii.edu/kbase/crop/crops/fruits.htm


Central theme of the new algorithm –

compare profiles

A |   6   6   1   0   6   5   0   0

C |   0   0   1   0   0   0   1   5

G |   0   0   4   6   0   1   0   1

T |   0   0   0   0   0   0   5   0

T G C A

- - - -

8 0 0 0

1 0 0 7

0 3 4 1

8 0 0 0

0 1 1 6

1 0 2 5



Met14 vs 

Met2

“DotPlot”

MET14 (1000nt)

Match       = 1

Mismatch =-1

Gray: 1



Met14 vs 

Met2

MET14 (1000nt)

Red: >5



Met14 vs 

Met2
PhyloNet

MET14 (1000nt)

HSPs: 

E < 0.1

TTTCACGTGA
P=1.75E-5

P=0.002

P=0.003

P=0.03 P=0.02



PathBlast, NetworkBlast

Trey Ideker



• Functional DNA often evolves slower than neutral DNA.

• To detect functional elements:
– align genomes of related species, 

– and find regions of high conservation.

• The difference between conservation and constraint. 

Comparative Genomics



Ultra conserved elements

ultra conserved

e.d 12.5





HARs: Human accelerated regions

• 118 bp segment with 18 changes between 

the human and chimp sequences

• Expect less than 1



Human HAR1F differs from the ancestral 

RNA stucture



Aligning Short Reads



Past and Current Sequencing 

Technologies

1992-1999 1999 2003
“old fashioned 

way”

Pre-1992

ABI 373/377 ABI 3700 ABI 3730XL

Fluorescent ddNTPs

Capillaries

Robotic loading

Automated base calling

Reliable*

Fluorescent ddNTPs 

Capillaries*

Robotic loading*

Automated base calling

Breaks down frequently

S35 ddNTPs

Gels

Manual loading

Manual base calling

Fluorescent ddNTPs*

Gels

Manual loading

Automated base calling*

0 and 1st generation sequencing



Next or 2nd-generation sequencingNext generation sequencing technology

454/Roche GS-20/FLX
(Oct 2005)

Illumina/Solexa

1G Genetic Analyser (Feb 2007)

ABI SOLiD
(Oct 2007)



Cluster generationCluster Generation

8 channels (lanes)



IGA without cover



Flow cell imaging
Flowcell imaging



A flow cell

A flow cell contains eight lanes Lane 1
Lane 2

Lane 8

.

.

.

Each lane/channel contains three columns of tiles

Column 1

Column 2

Column 3

Tile
Each column contains 100 tiles

Each tile is imaged four times per 
cycle – one image per base.

20K-30K

Clusters 345,600 images for a 36-cycle run

350 X 350 µm



Data analysis pipelineData Analysis Pipeline

intensity files

Firecrest Bustard

tiff image files 

(345,600) Sequence files

ElandAdditional

Data Analysis Alignment to Genome



Primary tools and analysis tasks

• Image processing
– (unique to each manufacturer)

• Basecalling
– (unique to each manufacturer)

• Align sequence reads to reference genome

• Assemble contigs and whole genomes using 
quality scores and/or paired-end information

• Peak finding for Chip-Seq applications 
– (and statistics to validate, map to regulated genes, 

etc)

• SNP calling/genotyping

• Transcript profiling
– measure gene expression, identifying alternative splicing, etc.



NGS: Sequence alignment

• Map the large numbers of short reads to a 
reference genome

– In a broader sense: Identify similar sequences 
(DNA, RNA, or protein) in consequence of 
functional, structural, or evolutionary relationships 
between the them 

– Applications: Genome assembly, SNP detection, 
homology search, etc

• large ⇒ faster search speed
short ⇒ greater search sensitivity.



Mapping Reads Back

• Hash Table (Lookup table)
– FAST, but requires perfect matches  

• Array Scanning
– Can handle mismatches, but not gaps

• Dynamic Programming (Smith Waterman, Forward, 
Viterbi)
– Indels

– Mathematically optimal solution

– Slow (most programs use Hash Mapping as a prefilter)

• Burrows-Wheeler Transform (BW Transform)
– FAST (memory efficient)

– But for gaps/mismatches, it lacks sensitivity



Many short read aligners



Short read mapping

• Input:

– A reference genome

– A collection of many 25-100bp tags (reads)

– User-specified parameters

• Output:

– One or more genomic coordinates for each tag 

• In practice, only 70-75% of tags successfully 

map to the reference genome.  Why?



Multiple mapping

• A single tag may occur more than once in 
the reference genome.

• The user may choose to ignore tags that 
appear more than n times.

• As n gets large, you get more data, but 
also more noise in the data.



Inexact matching

• An observed tag may not exactly match any position in 
the reference genome.

• Sometimes, the tag almost matches one or more 
positions.

• Such mismatches may represent a SNP or a bad read-
out.

• The user can specify the maximum number of 
mismatches, or a phred-style quality score threshold.

• As the number of allowed mismatches goes up, the 
number of mapped tags increases, but so does the 
number of incorrectly mapped tags.

?



Using base qualities to evaluate

READ: AGGTCCGGGATACCGGGGAC

CHR1: CGGTCCGGGATACCGGGGAC

CHR2: AGGTCCGGGATACCGGGGGT

BETTER! Q: 30

Q: 10+10BETTER!



Hash table (Eland, SOAP)

• Main idea: preprocess genome to speed up queries
– Hash every substring of length k

– K is a tiny constant

• For each query p, can easily retrieve all suffixes of the 
genome that start with p1, p2, … pk.

• Easy to implement.

• Significant speed up in practice.

• Large memory consumption.

• Inexact match is difficult.
– Need multiple hash tables

– More memory



Spaced seed 

alignment (MAQ)

• Tags and tag-sized 

pieces of reference are 

cut into small “seeds.”

• Pairs of spaced seeds 

are stored in an index.

• Look up spaced seeds for 

each tag.

• For each “hit,” confirm 

the remaining positions.

• Report results to the user.



Index the reference genome: Suffix Tree

• Each suffix corresponds 
to exactly one path from 
the root to a leaf

• Edges spell non-empty 
strings

• Construction: linear time 
and space

• Check if a string of 
length m is a substring

• Each substring is a 
prefix of a suffix!



Burrows-Wheeler

(Bowtie, BWA)
• Store entire reference 

genome.

• Align tag base by base 

from the end.

• When tag is traversed, all 

active locations are 

reported.

• If no match is found, then 

back up and try a 

substitution.



Why Burrows-Wheeler?

• BWT very compact:

– Approximately ½ byte per base

– As large as the original text, plus a few 
“extras”

– Can fit onto a standard computer with 2GB of 
memory

• Linear-time search algorithm

– proportional to length of query for exact 
matches



Burrows-Wheeler Transform (BWT)

acaacg$

$acaacg

aacg$ac

acaacg$

acg$aca

caacg$a

cg$acaa

g$acaac

gc$aaac

Burrows-Wheeler Matrix (BWM)

BWT



Key observation

1$acaacg1

2aacg$ac1

1acaacg$1

3acg$aca2

1caacg$a1

2cg$acaa3

1g$acaac2

a1c1a2a3c2g1$1

“last first (LF) mapping”

The i-th occurrence of character X in 

the last column corresponds to

the same text character as the i-th 

occurrence of X in the first column.



Burrows-Wheeler Matrix

$acaacg

aacg$ac

acaacg$

acg$aca

caacg$a

cg$acaa

g$acaac

See the suffix array?

3

1

4

2

5

6



Burrows-Wheeler Transform

• Originally designed for data compression for large text

• Burrows-Wheeler matrix: sort lexicographically all cyclic 
rotations of S$

• BWT(S): the last column of Burrows-Wheeler matrix

• Compression: runs of repeated characters are easy to 
compress using move-to-front transform and run-length 
encoding, etc.

• BWT(S) is a reversible permutation of S



Reverse Burrows-Wheeler Transform

• BW Matrix Property: Last-First (LF) 
Mapping

• The ith occurrence of character X in the 
last column correspond to the same text 
character as the ith occurrence of X in the 
first column



Searching BWT

BWT Exact Matching 

• Start with a range, (top, bot) encompassing all 

rows and repeatedly apply LFc: 

top = LFc(top, qc); bot = LFc(bot, qc) 

qc = the next character to the left in the query 

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000. 

BWT Exact Matching 

• If range becomes empty (top = bot) the 

query suffix (and therefore the query as a 

whole) does not occur 



Searching BWT

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

BWT(agcagcagact) = tgcc$ggaaaac

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

Search for pattern: gca

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

$agcagcagact

act$agcagcag

agact$agcagc

agcagact$agc

agcagcagact$

cagact$agcag

cagcagact$ag

ct$agcagcaga

gact$agcagca

gcagact$agca

gcagcagact$a

t$agcagcagac

gcagcagcagca



Human genome memory footprint

Bowtie index: memory footprint

The Bowtie method
Performance results

Summary

Burrows-Wheeler indexing
Searching for inexact alignments
Avoid excessive backtracking

Bowtieindex: memory footprint

Ultrafast and memory-efficient alignment of short  

DNA sequences to the human genome  
Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg 

Center for Bioinformatics and Computation Biology, University of Maryland, College Park, MD, USA 

http://bowtie-bio.sourceforge.net 

Abstract 

Bowtie Index 

Bowtie is an ultrafast, memory-efficient program for aligning short reads to 

mammalian genomes.  Burrows-Wheeler indexing allows Bowtie to align 

more than 25 million reads per CPU hour to the human genome in a small 

memory footprint: approximately 1.3 gigabytes.  Bowtie extends previous 

Burrows-Wheeler techniques with a novel quality-aware backtracking 

algorithm that permits mismatches.  Multiple processor cores can be used 

simultaneously to achieve greater alignment speed.  Bowtie is free, open 

source software available for download from http://bowtie-bio.sourceforge.net  

Burrows-Wheeler Transform (BWT) 

Burrows-Wheeler Matrix 

Bowtie builds a genome index using a scheme based on the Burrows-Wheeler Transform 

(BWT) [1] and the FM Index [2].  The Burrows-Wheeler Transformation of a text T, 

BWT(T), is constructed as shown below. The Burrows-Wheeler Matrix of T is the matrix 

whose rows are all distinct cyclic rotations of T$ sorted lexicographically.  BWT(T) is the 

sequence of characters in the rightmost column of the matrix.  

the ith occurrence of 

character X in the 

last column… 

…corresponds to the 

same text character as 

the ith occurrence of 

X in the first column  

The Burrows-Wheeler Matrix 

has a property called the LF 

mapping: the ith occurrence of 

character X in the last column 

corresponds to the same text 

character as the ith occurrence 

of X in the first column.  This 

property underlies algorithms 

that use the BWT to navigate 

or search the text.  

351x  

59 x 

Results 

Reads aligned 

(%) 

Bowtie - SOAP-mode 67.4  

SOAP 67.3  

Bowtie - Maq-mode 71.9  

Maq 74.7  

Bowtie Search Algorithm 

Bowtie’s search algorithm is based on the FM Index exact matching algorithm [2].  This 

algorithm proceeds in rounds where progressive rounds calculate the range of matrix rows 

beginning with progressively longer suffixes of the query string. 

The range of rows under consideration at each step is delimited by the red and green 

arrows.  As the algorithm considers additional characters in the query (purple), the arrows 

are updated using the LF mapping (blue).  Rows still under consideration when all query 

characters are exhausted correspond to reference positions matching the query (orange). 

“a” “a” 

“a” “c” “c” “a” 

“a” 

“a” 

“c” 

“a” “a” 

“a” 

acaacg 

  || 

  aaa 

acaacg 

| | 

aaa 

acaacg 

  || 

 aaa 

A Bowtie genome index consists of the BWT plus some auxiliary data structures.  All told, 

the index is only about 65% larger than the input genome.  This is radically smaller than 

other indexing schemes such as suffix trees, suffix arrays, and seed hash tables.  This 

allows Bowtie to run easily and efficiently on a typical computer with 2 gigabytes of RAM. 

To allow mismatches in alignments, 

Bowtie extends on the above algorithm 

by “backtracking” to previously 

matched query characters and making 

substitutions. Bowtie searches the space 

of legal alignments using a quality-

aware, greedy, depth-first search. 

Sequence: 

Phred Quals: 
(higher number = 

higher confidence) 

G C C A T A C G G A T T A G C C 

40 40 35 40 40 40 40 30 30 20 15 15 40 40 40 40 

G C C A T A C G G A C T A G C C 

40 40 35 40 40 40 40 30 30 20 15 15 40 40 40 40 

G C C A T A C G G G C T A G C C 

40 40 35 40 40 40 40 30 30 20 15 15 40 40 40 40 
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Multithreaded search 

Bowtie aligns reads dramatically faster than Maq (http://maq.sf.net) and SOAP (http://

soap.genomics.org.cn), two competing short read alignment tools.  The chart shows 

throughput in reads/CPU hour, running Bowtie 0.9.6, SOAP 1.10, and Maq 0.6.6.  Each 

program was set to report at most one hit per read, a typical setting for resequencing 

applications.  Maq and SOAP were run with default parameters, and Bowtie was run with 

parameters to mimic both programs’ reporting constraints.  Bowtie and Maq were compared 

on a 2.4GHz Intel Core 2 Duo workstation with 2GB of RAM. 

A Bowtie index of the human genome can be 

built on a computer with 2 GB of RAM in 

less than a day (right), though indexing is 

faster with more RAM (left). 

When aligning on computers with multiple 

processor cores, Bowtie’s throughput 

increases significantly.  

Rightmost query positions are the likeliest backtracking targets because shorter suffixes are 

likely to occur in the genome “by chance.”  When more than one mismatch is allowed, 

excessive backtracking can make search very slow. To avoid this, Bowtie uses “double 

indexing”: Bowtie indexes the genome as well as the reverse (mirror image) of the genome.  

Searching the mirror index with a mirror query is equivalent to a normal search that 

proceeds left-to-right instead of right-to-left.  Normal search combined with mirrored 

search avoids most or all excessive backtracking without missing valid alignments. 

Bowtie index of the reference is substantially 

smaller than SOAP’s, which is too large to 

run on most workstations.  Maq achieves a 

small footprint by indexing small batches of 

reads. 

The chart below shows performance for aligning 8.84 million 35-base-pair reads from the 

1000 Genomes pilot (SRA Accession SRR001115) to the human genome (NCBI build 36.3). 

Bowtie has comparable sensitivity to 

SOAP and Maq.  Maq finds some 3-

mismatch alignments when asked for 2-

mismatch alignments, accounting for its 

slightly higher sensitivity. 

acctagattcagaggtcaccataggcacatgcag 

Don’t backtrack to positions 

in this region of  the read 

Allow mismatches in this 

part of  the read 

Matching 

gacgtacacggataccactggagacttagatcca 

Matching 

reverse 

Above: double indexing applied to a 1-mismatch search.  Searches allowing more than one 

mismatch follow a similar pattern, though some excessive backtracking is unavoidable. 

Bowtie Index Suffix Tree Suffix Array Hash Tables 

1.3 gigabytes >35 gigabytes >12 gigabytes >12 gigabytes 

Human genome memory footprint 

Above: Backtracking scenarios leading to 3 distinct 1-mismatch alignments of “aaa” 

Because Bowtie builds a compact index of the genome, Bowtie indexes are easy to 

distribute over the Internet and easy to reuse.  Reuse allows the cost of building or 

downloading the index to be amortized over many runs. Pre-built indexes for model 

organisms including human, chimp, mouse and dog can be downloaded from http://bowtie-

bio.sourceforge.net  

Memory footprint

The index is only about 65% larger than the input genome

This allows Bowtie to run easily and efficiently on a typical computer with 2 GB

RAM.

The Bowtie index can be distributed over the Internet.

Qi Zhang NGSJournal Club Paper Presentation: Bowtie
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