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Abstract

The tremendously increasing amount of the available data nowadays opens the door to using

third parties to handle data storage and processing. This raises many concerns regarding end-

users’ privacy and whether the targeted third parties are trusted or not. On the one hand, end-

users, either clients or organizations, cannot afford the cost and complexity of processing their

own data by their local trusted components. On the other hand, depending only on third parties,

such as cloud computing services, with no security guarantee in mind, will be more like building

castles out of mud. One possible solution for the former issue is using homomorphic encryption

(HE) techniques. These techniques allow third party services to compute over data while the

data itself remains encrypted. Thus, one can make use of the great computational power offered

by third parties without sacrificing his/her own privacy.

HE could be categorized into two main categories; partially homomorphic encryption (PHE),

and fully homomorphic encryption (FHE). While FHE can help solve privacy issues completely,

it introduces high performance overhead. To avoid such overhead, PHE can be used. Thus, the

main goal of this Thesis is to “explore the efficiency of using PHE techniques in solving real-

world problems, in which computing over encrypted data is a must”.

The contributions of this Thesis are multi-fold. We selected three different domains of appli-

cations; securing electronic voting (e-voting) systems, defeating Hardware Trojans (HTs) in

FPGA-based designs, and operating blindly over encrypted images. The common part of all

the above different domains is the availability of secure data that needs to be processed by third

parties without being revealed.

In the context of securing e-voting systems, we implement an FPGA-based e-voting system,

which uses a VGA screen and a Xilinx Spartan 3E FPGA board as a voting site and a remote

server to collect results. We launch a couple of attacks on the system by injecting an HT in

our e-voting machine to tamper with the voting results. We show the role of HE in securing

our design via the usage of ElGamal cryptosystem. Protection techniques are proposed and

implemented. Then, they are evaluated by showing their delay, power, and area overheads. The

reported power overhead is negligible, the delay overhead does not exceed 10%, and the device

resources overhead does not exceed 4%.

In the context of defeating HTs in FPGA-based designs, we implement two designs that support

PHE (multiplicative only and additive only) based on ElGamal encryption/decryption scheme.

Furthermore, we integrate the two designs together and introduce a dual-circuit design that

achieves a higher improvement in area and power than a regular design that combines the two

original separated designs. Our architectures are implemented on a Spartan-6 FPGA board from

Xilinx. The area reduction reached 30% and savings in power consumption were 20% for en-

cryption and 12% for decryption.
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In the context of operating blindly over encrypted images, we introduce CryptoImg, a library of

modular privacy preserving image processing operations over encrypted images using the homo-

morphic properties of Paillier cryptosystem. Secure operations, such as image adjustment, spa-

tial filtering, edge sharpening, edge detection, morphological operations, and histogram equal-

ization, are safely outsourced to third-party servers with no privacy issues. We present how

these operations can be implemented with much less time overhead, and a single communica-

tion round. CryptoImg can be used from either mobile or desktop clients with low client-side

overheads. Experiments show the efficiency of our proposed library. For instance, the image

negation operation in the encrypted domain requires less than one minute with zero error using

1024-bit key size.

To conclude, the Thesis successfully managed to show the efficiency of using PHE techniques,

such as ElGamal and Paillier, as a replacement of FHE ones in three different real-world prob-

lems, which require computing over encrypted data. The overheads accompanied by using such

techniques are reasonable compared to the huge overheads of the FHE techniques reported in

the literature.



Summary

Encryption is the art of converting text messages into a secret code using a certain encryption

key. Hundreds of years ago, people used to propose new encryption algorithms to secure their

own data and protect their privacy. Unfortunately, once the data is encrypted, it would remain

in its secret-useless form till a certain key is used to decrypt it. Homomorphic encryption is the

kind of encryption that permits one to perform useful computations on encrypted data without

decrypting them. The results of these computations are equivalent to the results of the similar

computations done over the plain data. By this way, one could safely allow third parties to make

useful computations over his own data without scarifying his privacy.

Building on the above description, the Thesis aims at exploring the efficiency of using homomor-

phic encryption techniques in solving real-world problems, in which computing over encrypted

data is a must. Although homomorphic encryption includes two different categories; the fully

homomorphic encryption techniques, and the partially homomorphic encryption ones, the The-

sis focuses on the second category only. The reason behind this research direction is to avoid

the high overheads associated with the usage of fully homomorphic encryption methods.

The Thesis is divided into six chapters, along with the table of contents, list of figures, list of

tables, abbreviations, symbols, and the references.

The Thesis contents are presented hereafter.

Chapter 1 presents the introduction to the Thesis. It mainly highlights the motivation behind the

proposed work. It also states the Thesis contributions, which span through three different appli-

cations. Each contribution/application is illustrated in a separate chapter with its experimental

setup and numerical results.

Chapter 2 describes the needed background about homomorphism and surveys existing fully and

partially homomorphic encryption schemes. It mainly focuses on the two partially homomorphic

cryptosystems, used in this work; ElGamal and Paillier.

Chapter 3 illustrates the first Thesis contribution, which is using homomorphism in E-voting

systems. It introduces a couple of possible attacks and countermeasures to an FPGA-based vot-

ing machine. The full hardware implementation is described and the countermeasures overheads

are highlighted.

Chapter 4 introduces the second contribution, which is securing FPGA-based designs from

Hardware Trojans using homomorphism. The Thesis implements two partially homomorphic

encryption designs based on ElGamal encryption/decryption scheme. The first design is a mul-

tiplicative homomorphic, whereas the second one is an additive homomorphic. The design

realization on a low-cost FPGA is described and the area/timing results are reported.
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Chapter 5 describes the third contribution, which is a cloud-based library, CryptoImg, which

allows performing image processing operations over encrypted images. New algorithms are

introduced and the communication/computation overhead are stated using various test cases.

Chapter 6 concludes the work, states the list of contributions, and discusses some possible future

work directions.

Keywords

Electronic voting, ElGamal Encryption, Fully homomorphic encryption, Hardware Tro-

jans, Homomorphism, Image Processing, Paillier Encryption, Partially homomorphic

encryption, Secure computations.
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Chapter 1

Introduction

The principal target of our introductory chapter is to highlight the motivation behind

this work, state the main contributions of the Thesis, and define its organization.

1.1 Motivation

The keyword “Homomorphism” originally comes from the concatenation of two an-

cient Greek words; homos, which means “same”, and morphe, which means “shape” or

“form” [1]. So, homomorphism could be interpreted as “the same shape”. The word

was first used in algebra, where it means a certain transformation of one algebraic set to

another one preserving all the relations between the first set elements in the second one

too [2]. In the domain of cryptography, Homomorphism is used along with encryption.

Homomorphic encryption is the notation used to describe the kind of encryption, which

can be used to perform different arithmetic operations on encrypted data to directly ob-

tain an encrypted result. Thus, using such encryption techniques enables the execution

of specific computations, while maintaining the privacy of both the input data and the

results. Depending on the number of arithmetic computations that are supported by an

algorithm, a homomorphic encryption can be considered as either fully homomorphic

encryption (FHE) or partially homomorphic encryption (PHE).

Nowadays, the homomorphic property of various cryptosystems, such as ElGamal and

Paillier encryption schemes, is used to build many applications, such as secure vot-

ing systems [3], introduce privacy-preserving face recognition [4], fingerprint recogni-

tion [5], zero-knowledge watermarking [6], and location-based services. Furthermore,

the use of cloud computing services, in which computations performed on user data are

1
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outsourced to a public cloud, raises the need for a final solution to maintain the pri-

vacy of user data. On one hand, clients have many privacy and security concerns over

their data. On the other hand, third-parties are vulnerable to malicious interventions or

monitoring like hacking or eavesdropping. Combining those two opposite requirements

together establishes one of the main motivations behind this work.

While FHE can help solve privacy issues, it is also desirable to reduce the performance

overhead introduced by such methods. Thus, it is a good practice to utilize PHE tech-

niques in the desired applications, instead of the FHE ones, to avoid such overheads. As

a result, we started this research with the aim of designing and implementing efficient

algorithms to use homomorphic encryption techniques in performing secure compu-

tations over encrypted data. We selected three different areas of applications; securing

electronic voting (e-voting) systems, defeating Hardware Trojans (HTs) in FPGA-based

designs, and operating blindly over encrypted images. We only used PHE techniques to

reach our goals, as will be shown in coming chapters.

1.2 Main Contributions

The contributions of this Thesis could be categorized into three main parts as follows:

1. Secure e-voting

(a) Implementing an e-voting machine using Xilinx FPGA board.

(b) Injecting an HT within the FPGA design to tamper voting results.

(c) Providing a protection technique against the proposed attack.

(d) Showing the different overheads resulting from the protection technique,

such as area, timing, and power.

(e) Introducing two other attacks and their protection scenarios.

2. Secure FPGA-based designs

(a) Discussing new ideas to have a blind data processing by the third party IP

with a minimal cost.

(b) Implementing ElGamal encryption scheme, which is a multiplicative PHE

scheme and the CRT-based ElGamal (CEG) encryption scheme, which is

additive PHE scheme, on a low-cost FPGA and showing the resource utiliza-

tion, timing performance, and power analysis of both schemes.
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(c) Introducing a dual-circuit design that supports both, multiplicative and addi-

tive homomorphic properties and providing the obtained savings on area and

power over a regular design that has no resource sharing.

3. Secure image processing

(a) Proposing a secure framework to perform image processing computations

over images stored on a third-party server based on Paillier cryptosystem.

(b) Supporting basic image processing operations such as image adjustment op-

erations, spatial filtering, edge detection, morphological operations, and his-

togram equalization.

(c) Discussing the benefit of integrating Paillier cryptosystem with a floating-

point support in decreasing the pre/post processing in the similar work men-

tioned in the literature.

(d) Introducing a user friendly Android application to submit encrypted images

for secure processing.

1.3 Thesis Organization

The Thesis is organized as follows. Chapter 2 describes the needed background about

the PHE cryptosystems, used in this work. Chapter 3 illustrates the first contribution,

which is using homomorphism in E-voting systems. It introduces a couple of possible

attacks and countermeasures to an FPGA-based voting machine. The full hardware im-

plementation is described and the countermeasures’ overheads are highlighted. After

that, Chapter 4 introduces the second contribution, which is securing FPGA-based de-

signs from Hardware Trojans (HTs) using homomorphism. The design realization on a

low-cost FPGA is described and the area/timing results are presented. Then, Chapter 5

describes the third contribution, which is a cloud-based library, CryptoImg, that allows

performing image processing operations over encrypted images. New algorithms are

introduced and the communication/computation overhead are stated using various test

cases. Finally, Chapter 6 concludes the work and states some possible directions for

future work.





Chapter 2

Background

The aim of this chapter is to give a brief description of the idea of homomorphism,

survey existing fully and partially homomorphic encryption schemes, with emphasis

on the ElGamal and Paillier security schemes. Moreover, the chapter highlights the

different attributes used to classify Hardware Trojans, as they are our main topic of

interest in Chapters 3 and 4.

2.1 Fully Homomorphic Encryption (FHE)

As the most commonly used computations include the usage of both kind of basic op-

erations; the addition and the multiplication, partially homomorphic encryption (PHE)

techniques are not sufficient. As a result, FHE was introduced by Rivest, Adleman, and

Dertouzos around forty years ago [7]. However, the research community had to wait till

2009. when it has been revisited again by Gentry [8]. The most attracting point regard-

ing Gentry’s proposal is that it was the first feasible FHE cryptosystem. In general, a

FHE technique is a kind of encryptions, which provides the capabilities to perform any

operation directly on encrypted data by converting it into a circuit of a certain depth.

In general, FHE includes four basic algorithms: Keygen, Encrypt, Decrypt, and Eval.

The Keygen algorithm is responsible for generating the required keys. The Encrypt and

Decrypt algorithms are used for encrypting and decrypting the plaintext messages, re-

spectively. The Eval algorithm is built based on three different algorithms: Add, Mult,

and Recrypt. The Add and Mult algorithms are used for addition and multiplication

operations over ciphertexts, while the Recrypt operation cleans the ciphertext from

the noise due to the homomorphic addition and multiplication operations. Without this

5
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function the scheme would be Somewhat Homomorphic and therefore it would only

evaluate circuits of a fixed depth.

Since its introduction in 2009, there were many trials to introduce more FHE techniques.

For instance, Van Dijk et al. introduced a FHE technique based on ideals defined over

integers [9]. Gentry et al. enhanced his FHE implementation by adding many tricks to

overcome the performance degradation issues of FHE [10]. However, they did not fully

managed to handle them. For instance, the key generation process in this implementa-

tion required an overall time of two seconds in the best case and two hours in the worst

case. The main cause of this low performance was due to the noise, which resulted

from performing new successive homomorphic operations. To get rid of such noise,

FHE cryptosystems used to recrypt the messages after every homomorphic operation.

The overheads corresponded to the Recrypt operation was very high and affected the

whole system performance.

One shot towards reducing the FHE overheads was the introduction of the somewhat

homomorphic encryption (SHE) cryptosystems. They have less overheads compared to

FHE cryptosystems, as they eliminate the need for the high cost Recrypt operation. As

a side effect, the SHE techniques can only perform a limited number of homomorphic

operations. Many authors in the literature tried to tackle the noise problem by introduc-

ing new SHE techniques. For instance, Brakerski et al. suggested using the concept

of learning with errors (LWE) to reduce the accumulative noise [11]. This new idea

allowed computing more operations on encrypted data, i.e., circuits with deeper depth,

using the lower overheads of the SHE cryptosystems.

In 2012, López-Alt, et al. introduced a SHE cryptosystems, which handle inputs from

more than one public key [12]. Bos et al. proposed another FHE scheme, in which

the security of the system only relies on the standard assumptions of lattice [13]. In

the same context, three researchers led by Gentry described a LWE-based FHE scheme,

which is highly customized to evaluate the advanced encryption standard (AES) circuit

efficiently [14]. The results reported in their paper showed that their proposal was ca-

pable of successfully evaluating a single AES encryption operation within five minutes.

Although new FHE and SHE cryptosystems had made a noticeable enhancements com-

pared to previous ones, the large ciphertext sizes and timing overheads remain a ma-

jor obstacles in the way of using such cryptosystems. Those overheads are very high

while being compared to the overheads of the PHE cryptosystems. This opens the door

for using hardware to accelerate the computations of FHE techniques. For example,

Göttert et al. implemented FPGA-based modules for lattice-based computations, which

represented a major part of the FHE cryptosystems [15]. Moreover, Pöppelmann and
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Güneysu introduced an efficient hardware implementation of a FHE technique based

on the ring-learning-with-errors (RLWE) theorem [16]. However, these implementa-

tions did not achieve a stable state that allowed them to be used efficiently in real-world

applications. Thus, we focus on PHE in this Thesis.

2.2 Partially Homomorphic Encryption (PHE)

As mentioned before, PHE has been introduced many years ago. It gives the chance

to perform only one kind of operations, either addition or multiplication, on ciphertexts

without revealing data. For example, let us consider the two messages, m1 and m2,

where both messages are encrypted and their ciphertexts are given by E(m1) and E(m2),

respectively. If the multiplication of the two ciphertexts is equivalent to the ciphertext

of the multiplication of the two messages as shown in (2.1), we call this a multiplicative

homomorphic scheme. On the other hand, if the multiplication of the two ciphertexts

equals the ciphertext of the addition of the two messages as shown in (2.2), we call this

an additive homomorphic scheme.

E(m1)×E(m2) = E(m1×m2) (2.1)

E(m1)×E(m2) = E(m1 +m2) (2.2)

One of the earliest discoveries in the area of PHE was the Goldwasser-Micali encryption

scheme [17]. This technique offers the ability to perform homomorphic operations

with respect to the bitwise xor logic operation. The security of the former technique

relied on the “quadratic residuosity problem”. There also exist PHE techniques that

support another kind of operation, the addition operation. Benaloh [18] and Paillier [19]

cryptosystems are two stunning examples for the additive PHE methods.

On the other hand, there exist two well-known schemes, which are multiplicative ho-

momorphic schemes. The first one is the Rivest-Shamir-Adleman (RSA), which is con-

sidered as one of the most excessively used public-key cryptosystems [20]. The second

is ElGamal encryption scheme [21]. In this Thesis, we selected ElGamal and Paillier

cryptosystems to be used in our proposed solutions.
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2.2.1 ElGamal Scheme

ElGamal cryptosystems is an efficient and widely used technique, which has many ap-

plications in different domains. To illustrate its functionality, let us assume that we

have two users, called Alice and Bob, respectively. Alice has a certain message m and

she would like to send it to Bob. ElGamal process works as follows. Bob generates his

keys by choosing a secret random exponent k and a generator g. So, his public key is

(g,h), where h = gk(mod n) and n is a large prime. Before sending m to Bob, Alice must

generate a random exponent l and sends the ordered pair (c1,c2) to Bob, where c1 and

c2 are defined by (2.3) [21].

c1 = gl(mod n)

c2 = hl×m(mod n) (2.3)

Bob can easily decrypt the ciphertext using (2.4).

m = c1
−k× c2(mod n) (2.4)

This PHE scheme is considered homomorphic with respect to multiplication because

if (x1,y1) and (x2,y2) are valid encryptions for messages m1 and m2, with the same key,

then (x1x2,y1y2) is a valid encryption of m1m2 [21].

Hu et al. proposed a simple modification to make ElGamal additively homomorphic

by placing the message m in the exponent [22]. So, if we encrypt two messages m1

and m2 using (2.3) but multiply hl with gm instead of m, the multiplication of the two

ciphertexts results in a valid encryption of gm1+m2 . The problem here is that recovering

the message requires finding the solution of the Discrete Logarithm Problem (DLP).

ElGamal security itself is built upon the hardness of the DLP. To solve this problem, they

introduced a new scheme, called CRT-based ElGamal (CEG) scheme, which depends on

the Chinese Remainder Theorem (CRT). They managed to convert a single large-space

DLP problem into multiple small-space DLP problems. This allows obtaining m1 +m2

easily, while retaining the full security of the scheme, as shown later.
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2.2.2 CRT-based ElGamal (CEG) Scheme

To illustrate how CEG works, let us reuse the previous example of Alice and Bob. In

the first step, Bob selects a secret random exponent k along with a generator g. He also

chooses di for i = 1, . . . , t, such that gcd(di,d j) = 1 for i 6= j. So, Bob’s public key

is (g,h,(d1, . . . ,dt)), where h = gk(mod n) and n is a large prime. For encryption, Alice

sends the encryption of message m as a t-tuple of pairs (c1,c2) by using (2.5).

c1 = gli(mod n)

c2 = hli×gmi(mod n) (2.5)

where mi = m (mod di) and li is a generated random exponent for i = 1, . . . , t. Bob can

decrypt the ciphertext using (2.6) and (2.7).

m =CRT−1[(logg(c2i× c−k
1i
(mod n)), i = 1, . . . , t)] (2.6)

CRT−1[ci] =
t

∑
i=1

ci
d
di
(

d
di

−1
mod di)mod d (2.7)

Correctness and efficiency of the illustrated scheme is discussed in details in [22]. As

part of this work, we implement the CEG scheme in hardware and show its resource

utilization and power consumption in Chapter 4.

2.2.3 Paillier Cryptosystem

Our CryptoImg system, described in Chapter 5, relies upon the homomorphic properties

of the Paillier cryptosystem [19]. Paillier cryptosystem is one of the most widely used

PHE schemes.

To briefly describe the Paillier cryptosystem, Alice can select any two large prime num-

bers, for example p and q. Then, let N = pq. Now, we can define a new domain ZN2 ,

where ZN2 = {0,1, . . . ,N2− 1}. The set of non-negative integers, which have multi-

plicative inverse modulo N2 is denoted by Z∗N2 , where Z∗N2 ⊂ ZN2 . Then, she needs to

select a number g from Z∗N2 , where g satisfies the conditions in (2.8).
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gcd(L(gλ mod N2),N) = 1 (2.8)

where L(u) = u−1
N and λ = lcm(p−1,q−1). By the end of the key generation process,

Alice would have the pair (g,N) as a public key and λ as a private key. It is worth

mentioning that the length of N should be greater than 1024 bits to ensure a powerful

security level.

Before sending the message m to Bob, Alice should encrypt it using (2.9)

c = E(m,r)

= gmrNmodN2 (2.9)

where c ∈ ZN2 denotes the ciphertext and r is another random exponent. It is worth not-

ing that the Paillier cryptosystem is a provable semantically secure encryption system

whose security guarantees are proven based on the computational hardness assumption

of the Decisional Composite Residuosity (DCR) problem.

Equation (2.10) gives an optimized notation for the encryption process.

c = E(m,r)≡ JmK (2.10)

For Bob to obtain the actual message m from the ciphertext, c, he should compute the

operations mentioned in (2.11).

m = D(c,λ )

=
L(cλ modN2)

L(gλ modN2)
modN (2.11)

Paillier cryptosystem is an additive HE scheme as it provides a public-key operation ⊕z

over two encrypted integers, which is equivalent to their plain-text addition, as shown

in (2.12). It also supports a self-blinding operation ⊗z, which allows multiplication of

encrypted integer by a plaintext scalar d, as shown in (2.13) ∀m1,m2 ∈ ZN [19].
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DEC(Jm1K⊕z Jm2K) = DEC((Jm1K× Jm2K)mod n2)

= (m1 +m2)mod n (2.12)

DEC(Jm1K⊗z d) = DEC(Jm1Kd mod n2)

= (m×d)mod n (2.13)

2.3 Hardware Trojan

Nowadays, HT is considered one of the hot research directions due to the popularity

of the usage of hardware ICs in various domains [23]. Those applications include, but

not limited to, cars, cell phones, satellites, medical devices, and strategically military

components.

HT is simply defined as a malicious alteration of one’s own hardware. This alternation

may, under specific rare circumstances, result in information leakage out of the system

or functional changes of the system itself [24]. As shown in Figure 2.1, those kinds

of malicious circuitry can be injected by either third party IP owners or fabrication

facilities. This obviously threatens the entire design community.

2.4 Hardware Trojan Taxonomy

The aim of this section is to make the reader familiar with the different types of HTs

in general and to briefly highlight the various categories that could be used to classify

them.

Generally speaking, HTs can be divided into five main categories, as shown in Fig-

ure 2.2. As introduced by Karri et al., the classification is based on phase of insertion,

level of abstraction, methods of activation, effects, and location [26].

2.4.1 Phase of Insertion

In order to have a fabricated IC in hand, the chip passes through many phases. Those

phases are specification, design, fabrication, testing, and packaging. Each phase of them

introduces a possible chance for an attacker to insert an HT.
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FIGURE 2.1: Possible stages for launching Hardware Trojan (HT) attacks by third parties
during IC life cycle [25].

Firstly, the specification phase, could be described as the phase in which the designer

states the main the properties of the IC, such as the desired functionality, the maximum

amount of power consumption, the allowable size, and the accepted delay. One possible

way to insert an HT here is to manipulate one of the required constraints of the IC.

In our proposed solution of Chapter 4, we care about the data itself, which is being

encrypted using a PHE scheme before traveling to the suspected third party IPs. Thus,

manipulating the requirements of those third party IPs in the specification phase would

not leak any further information.

After that, the design phase comes to business. All the previously prepared character-

istics are taken into consideration by the designers while writing the hardware codes.

This phase may also require the usage of ready-made implementations from different

vendors. That opens the door for inserting unwanted HTs. Again, this will not affect

our solution as even if the used IPs are suspicious, they will know nothing about our

encrypted data.

The fabrication and assembly phases are more related to the ASIC flow, where com-

plete designs are moved to the fabrication facilities in order to produce them. If such
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facilities are untrusted, they may add more logic to the users’ design before fabricating

them. Additionally, they may connect the outputs of the users’ IP to a hidden node dur-

ing the assembly process. This node could be used later to leak important information

about the IP behavior. So, we need to make sure that at least the encryption/decryption

hardware architectures that we use within our solution is produced at home or using

trusted manufacturers.

Finally, the testing phase also may be used by an intruder to bypass certain testing

vectors that might lead to the discovery of his/her own HT inserted in a previous phase.

So, it is very critical to insure the trustworthy of the testing engineers and make sure

that the testing coverage is good enough. For our proposed solution, we can safely work

with malicious third party IPs as our data is always in an encrypted form.

2.4.2 Level of Abstraction

Here, we move to the second class of HT taxonomy, where the target level of abstraction

plays the main role. For the attacker, he/she can insert the HT within different levels,

such as the system level, development environment level, register-transfer level (RTL),

gate level, transistor level, and physical level.

On the system level, main IPs are well defined and the required protocols of communi-

cation are selected. Any change in those pre-stated points might lead to a misbehavior

of the final circuit. One rigid example is introduced in Chapter 3 where the unused bits

of the input data could be used to launch an attack on the e-voting machine. This should

not happen as those bits are designed to be unused by any system module in the first

place.

The development environment is a generic name enclosing the processes of simula-

tion, synthesis, placement and routing, etc. The mentioned processes are done using

electronic design automation (EDA) tools, which might be used by an outsider to insert

HTs. Furthermore, malicious simulation tools could be designed in order to bypasss

certain rare conditions that might be a root for HT.

Regarding the register transfer level (RTL), it gives the attacker high flexibility to

affect the functionality of the original IP. An intruder can insert any additional logic to

the actual code to act as an HT. The added logic can be able to work independently

or wait for a certain trigger as will be highlighted in a coming categorization [28]. The

same rules are applicable for the gate level, in which the attacker can monitor the inputs,

outputs, and interconnections between design components.
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As the gates are mainly built out of transistors, the transistor level is a possible level

at which an HT could be inserted. In this case, the HT could appear as the usage of a

transistor with different electrical characteristics than the golden one. That might have

a noticeable effect on the implementation timing delay and power consumption.

At the physical level, the final layout of the circuit is determined. This includes the

real size of each component, their locations on the board, and the spacing between each

component and its neighbors. An attacker with access to this level of abstraction can

modify the dimension of a single wire/component in order to disable the complete IP.

2.4.3 Methods of Activation

One efficient way to classify HTs is to investigate the mechanisms, which are used

by HT owner to activate them. In this context, we have three main types of HTs; the

“always-on” HT, the “internally-triggered” HT, and the “externally-triggered” HT.

The always-on HTs are up and running throughout the life of the infected IP. For ex-

ample, any HT that is inserted in the physical level could fall under this category.

On the other hand, there exist HTs that remain silent until a certain condition occurs.

They are called “triggered” HTs. Those kind of Trojans are very dangerous as the

majority of them depends on rare conditions, which could not be discovered in the

regular testing phase, to be activated.

If the event, needed to trigger the HT, comes from an outside source, we called those

HTs, externally-triggered. The e-voting example of Chapter 3 best describes this kind

of Trojans, where the HT within the Microblaze core is only activated when it receives

a pre-defined trigger from the input keypad.

On the other hand, the internally-triggered HTs become active only if a certain condi-

tion is reached from within the infected architecture itself. For instance, an HT could be

activated when the internal finite state machine (FSM) of the implementation reaches a

certain state or when an internal counter reaches a certain large value.

Finally, it is worth mentioning that some “triggered” HTs continue to work after being

activated, while others return back to their silent state after a certain amount of time.
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2.4.4 Effects

The major issue caused by HTs is their malicious side effects. Hence, it would be

helpful to use the different evil effects caused by HTs to classify them. Although there

are many undesirable effects for HTs, we will only consider the widely-known ones.

On the top of the list comes the change in functionality effect. An HT injected in any

fabrication phase could easily change one or more of the IP functions to completely

different ones. The functionality change might be as small as altering the value of a

single IP output or as large as disabling the whole system.

Downgrading performance is a well-known side effect of HTs. A Trojan of this type

might increase the architecture critical path or add more useless sequential logic to

consume larger amounts of power. Furthermore, HTs could be designed to leak infor-
mation regarding the working IP. The types of leaked information are numerous, such

as the applied voltage/current, operational frequency, etc. Those information could be

used to estimate the actual functionality of the infected IP. Moreover, HTs might leak

sensitive users’ information while the infected IPs are running, so users privacy are

badly affected.

Furthermore, HTs could be used to cause denial-of-service (DoS). That means an HT

forcing a certain module to consume a limited circuit resource, like (current, power,

network bandwidth). This will cause the rest of the architecture resources to be out of

service and hence decreasing system reliability.

2.4.5 Location

Trojans can also be categorized based on their actual locations within the targeted ar-

chitecture. A global HT could affect the whole design, while a local HT is limited to

a certain part of the architecture. This part could be the main processor core [29], dif-

ferent memory blocks, input/output ports, power supply, or the clock grid. Based

on the HT location, one could estimate the dangerous of it. An HT inserted within the

power supply circuit might disable the whole architecture, while an HT hidden within

the memory could leak sensitive information about the users’ data.

It is obvious that a certain HT could be successfully classified to more than one of the

previously mentioned categories. For instance, an HT could be inserted in the main pro-

cessor within the design phase, be written as an RTL code, be triggered by an external

event, and cause a performance downgrade.



Chapter 3

E-voting Attacks and Countermeasures

Since more than 50 years, electronic voting (e-voting) systems have been first intro-

duced. Many changes have been made upon them over the decades. They started to

be widely used as they do offer various advantages over the traditional voting methods.

However, e-voting also introduces many security challenges that need to be handled

wisely, otherwise, it might bomb the whole voting process. E-voting machines may

contain harmful back-doors, which can affect the dependability of the system.

Through this chapter, one of the e-voting challenges is introduced; the existence of a

hardware Trojan (HT) that totally tampers the voting results. We used a Xilinx FPGA

board to implement a simple e-voting machine. Here, the idea of homomorphism ap-

pears via the usage of CRT-based ElGamal (CEG) cryptosystem to encrypt the votes

before sending them to the main server. We inject an HT within the FPGA design to

tamper voting results. We provide a couple of protection mechanisms and evaluate them

by showing their overheads. Our solution adds about 4% as per logic resources and less

than 10% as per timing delay. The additional power consumption is almost negligible.

Furthermore, we highlight the differences between our proposed protection mechanisms

and other techniques from the literature.

Starting with the motivation in Section 3.1, we make the literature review in Section 3.2.

We then introduce a full e-voting system implementation in Section 3.3. After that, we

show a simple scenario for an untrusted machine and how it would be used to affect the

election results in Section 3.4. We introduce protection against the proposed Trojan in

Section 3.5. Furthermore, we suggest other attacks and countermeasures in Section 3.6.

The evaluation is mentioned in Section 3.7. Finally, Section 3.8 concludes the chapter.
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3.1 Motivation

Democracy as an expression means “ruling by people”. Citizens need to have access

to concrete information and to be capable of freely selecting their representatives to

claim living in a democratic environment. Democracy itself mainly depends on the

election process to satisfy population needs. Elections give the advantages for the cit-

izens to freely select their representatives. No one can deny that the election process

integrity is very important to ensure the integrity of democracy itself. Additionally, for

the populace to accept the election results, the election system itself must fulfill a set

of requirements. These requirements include, but are not limited to, transparency, ro-

bustness, and venerability. Without those features, the election system would be very

questionable. Through out the mankind history, there existed a lot of election exam-

ples, which had been manipulated in order to redirect their output. Thus, designing an

“acceptable” voting system, whatever its basis is electronic or paper-based system, is a

critical operation that must go through many dedicated filters and competing criteria to

verify it.

As shown in Figure 3.1, when a voting system uses a computerized element to either

record, check, or collect votes, we can call this system an e-voting one. These types of

systems started to become widely used as they introduce many advantages to all election

parties; citizens, candidates, and election administrators [30]. Citizens seem to prefer

electronic voting systems due to their privacy and accessibility. Candidates and election

administrators usually enjoy the efficiency and speed of the entire e-voting process.

Administrators, specifically, prefer e-voting lower cost compared to normal voting on

the long run. If it is implemented properly, an e-voting system can eliminate a lot

of common avenues of fraud, increase accessibility, speedup the process of collecting

results, give more accurate and trusted results, increase convenience for voters, and

reduce the cost of the entire elections process specially on the long run.

The process of designing an efficient and satisfyable election system is a critical process

that requires special care. Common people usually have less trust in computerized

operations because of the major stories about system crashes and hacking threats. As a

result, e-voting elections must be more secure and trustworthy. Kohno et al. discussed

some of e-voting system problems, such as certain vulnerabilities to network threats, the

incorrect usage of cryptographic techniques, the escalation of unauthorized privileges,

and the poor software development processes [31].

Here, we select an FPGA-based e-voting system to be the basis of our work [32]. The

security of the selected e-voting system relies on utilizing the PHE additive property of
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FIGURE 3.1: E-voting versus regular voting.

the CRT-based ELGamal scheme [22]. We propose three different scenarios to launch

malicious attacks on the system and suggest the suitable countermeasures.

3.2 Related Work

E-voting security is one of the most important topics nowadays. The Caltech MIT

Voting Technology Project highlighted that the public confidence in any voting system

not only depends on the system reliability but also on the security of the system it-

self [33]. Kumar and Begum introduced an Electronic Voting Machine (EVM) and its

variation [34]. They also discussed issues of EVM, Taxonomy, and Bio-metric-based

EVM. Additionally, Yumeng et al. reviewed the research on the e-voting schemes that

aims at achieving a trusted voting system with all its properties and possible challenges.

Fauzia et al. described an implementation of a secure yet efficient e-voting system

based on the “Fujioka-Okamoto-Ohta” protocol [35]. The proposed implementation

includes the automation of an online voting system providing some new features that

were not previously offered in the literature. Those features include allowing voters to

verify their own votes, introducing simple and easy to use interface, keeping the privacy

of voters’ choices, and preventing either ineligible voters from voting or eligible voters

from voting twice.

Another design of an e-voting machine was introduced by Alam et al. [36]. The authors’

principal goal of the project was not to design a perfectly efficient device. Instead, the

authors’ goal was to design a mother component, which could be easily adopted to any

recent technology. Their machine also used the voter’s ID to recognize valid voters and

to prevent multiple votes from the same voter as well.
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Talking about FPGA-based e-voting systems, Wollinger et al. provided a summary

of security issues that might arise in case of performing cryptographic operations on

FPGAs [37]. They mainly focused on how to preserve secrets within the FPGA device

itself against certain attacks, such as the “readback attack”, which aim to read out the

FPGA’s SRAM contents or its bitstream. The SRAM contains valuable information

about the data used. The bitstream, which define the FPGA configuration, may allow

an attacker to use reverse-engineering to estimate the actual logic design within it.

FPGA manufacturers, such as Xilinx and Intel FPGA, provided features to prevent those

reverse-engineering attacks [38]. For instance, they protected their FPGA chips against

“IP core theft” attacks by encrypting the bitstream itself. Then, during the booting

phase, the FPGA can launch an internal module that stores the key, which could be

used to decrypt the bitstream in order to use it. In this scenario, an invader that has

already read the encrypted bitstream would not be able to learn anything. He/She will

not also be capable of performing any queries in order to read the decryption key from

the FPGA.

On the other hand, Alkabani and Koushanfar presented an alternative method protecting

the secrecy of the FPGA’s bitstream by leveraging chip-to-chip behavioral variations in

order to achieve what is called active hardware metering [39]. The method, which they

used mainly depends on making the FPGA configuration unique for any given chip. So,

the movement of a certain configuration from one chip to another would not cause a

correctly functioning implementation.

Oksuzoglu et al. presented a minimal design of a secure e-voting system [32]. They re-

alized their implementation using a simple FPGA board from Xilinx. They named their

proposed system “VoteBox Nano” as they have already followed the same guidelines

firstly illustrated by the original “VoteBox”. They only restricted some network features

so as to fit on a cheap FPGA. It is a very simple design running without any operating

system (OS). It only consists of an FPGA connected to an interface screen (VGA) and a

keypad to allow the voter to select his desired candidate and confirm her choice. For the

VoteBox Nano, secrecy of the design itself was not the main problem. The main issue

was how to detect tampering.

Drimer et al. described an algorithm, which permits the FPGA to safely reject any unde-

sirable configuration updates [40]. Dutt et al. proposed the idea of “parity groups” [41].

They simply added parity bits to the logic components implemented on the FPGA. By

this method, modifying any block of the internal logic blocks will directly cause a parity

failure with no corresponding changes elsewhere.
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In case of obtaining machine components from third parties, design is exposed to further

challenges that need to be faced. That includes hardware spywares and hidden back-

doors. Old-fashioned testing and verification methods are not the suitable candidates

for detecting the issues, resulting from HTs. Generally, HTs are not designed to be

activated at test time as they mainly depend on certain rare conditions to trigger them.

In the last decade, various techniques have been proposed to detect HT within FPGA-

based designs. Those techniques could be divided into two main parties; architectural

techniques [42], and side-channel dependent ones [43, 44]. Those techniques would be

discussed in detail in Subsection 4.2.

3.3 E-voting System Overview

The implemented e-voting system is similar to VoteBox Nano design [32]. Figure 3.2

shows an overview of the full e-voting system. A voter logins to any of the e-voting

boxes, which are distributed over the country. Then, e-voting box encrypts the vote us-

ing CEG encryption algorithm, which is an additive PHE technique. Encrypted votes are

sent to the main secured server via a network connecting the whole country holding the

elections. Each single vote would be represented by a v-tuple of encrypted zeros/ones,

where v is the total number of voting states (candidate 1, candidate 2, candidate 3, etc.).

The main server will receive the encrypted votes, use the homomorphic property to add

them together, and send the final encrypted results to the election supervisor. The de-

cryption methodology, performed by the supervisor, follows the same concept of CEG

Algorithm used in encrypting votes. Finally, voting results can be ready on even the

same day without human interference.

Figure 3.3 shows an abstraction of our proposed e-voting box. The true random number

generator (TRNG) core block is responsible for generating keys, which are required for

vote encrypting. TRNG depends mainly on post-processing of digitized noise. Every

encrypted value in the system needs a unique random number. We should highlight that

choosing a TRNG algorithm is critical as numbers prediction may allow the attacker to

decrypt the ciphertexts. It is worth mentioning that the voter’s privacy mainly depends

on the hardness of predicting the selected random numbers. Input keypad and VGA

screen cores represent the input and output modules, respectively. The machine screen

will display the names of the candidates with their numbers arranged from 1 to n. The

voter will use the keypad buttons to select his candidate and confirm his choice. He/She

can also control some other features, such as determining the screen brightness.
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FIGURE 3.2: The e-voting process.

Xilinx MicroBlaze is the main block in the design [45]. Its main block diagram is shown

in Figure 3.4. It is a virtual microprocessor, which is built by adding blocks of code,

called cores, within a Xilinx FPGA. It presents a 32-bit Harvard RISC architecture with

separate 32 bit instruction and data buses. Hence, it supports executing programs and

accessing data from both on-chip and external memory at the same time. It is specially

FIGURE 3.3: Abstract view of our proposed e-voting machine.
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optimized for Xilinx FPGA boards. The white items, such as the program counter, the

special purpose registers, the bus interfaces, and the ALU, represent the backbone of

the MicroBlaze architecture. On the other hand, the gray-shaded items represent the

MicroBlaze optional features that could be added or removed based on the application

needs.

MicroBlaze is connected to other cores using the Fast Simplex Link (FSL). FSL is an

interconnect, which supports a point-to-point communication in only one direction. It

provides a direct communication between any two IPs on the FPGA when implementing

an interface to the FSL interconnect. The MicroBlaze is capable of supporting up to 8

FSLs [45].

FIGURE 3.4: MicroBlaze block diagram [45].

3.4 Scenario for a Possible Attack

An untrusted FPGA-based voting machine may be used to tamper with the legal votes of

users. Attacking vendor may inject cores connected to the MicroBlaze via FSL. These

cores are responsible for dealing with inputs from the keypad and interfacing with the

output screen. The attacker may add a hidden core that replaces the user’s vote with

another one, if it receives a special external trigger. In our case study, we assume that

the voting system contains a secret core connected to the MicroBlaze core and takes its

input from the FSL coming from the input keypad core, as shown in Figure 3.5.
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We propose a scenario in which an attacker uses the input keypad as follows. He/She

will press the push button that control screen brightness with a secret sequence depend-

ing on the position of the wanted candidate. That secret sequence would be translated

into data sent to the MicroBlaze via the FSL in the unused bits beside the regular data.

As a result of triggering the MicroBlaze back-door, all the coming sent votes will sup-

port the wanted candidate whatever the voter chooses. Repeating that several times on

several machines will affect the whole election results significantly.

FIGURE 3.5: Block diagram of using a malicious secret core within an untrusted e-voting
machine.

3.5 Protection Against Proposed Attack

There are several ways to protect our system from untrusted third party IPs. We suggest

to use the Simple Blockage (SB) method introduced in [46] with a simple improvement.

The authors of the original work proposed to obfuscate the output of the IP under sus-

pection before sending any data out of it. Later on, they will undo that obfuscation step

at the receiver’s input. This idea would help protecting data from leaking and avoiding

injected triggering. They introduced using either RC4 or other simple obfuscating func-

tion. Here, we choose to protect the design using a simple xoring function, as shown in

Figure 3.6 and Figure 3.7. Obfuscation will take place between keypad and MicroBlaze.

In our case, the data transmitted via the FSL is 32-bit.

We enhance the SB method by resetting any unused bits to zero before receiving them

at the MicroBlaze, as shown in Figure 3.8. We only allow the trusted-known used bits

to go. Obfuscating the unused bits cost is wasted and will be omitted. Furthermore,

an attacker may depend on the unused bits to discover our simple obfuscating func-

tion. We did not use the partial reconfiguration feature to change obfuscating function

periodically as proposed in [46], as the partial reconfiguration feature doubles FPGA
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FIGURE 3.6: Simple obfuscating function depending on data xoring.

FIGURE 3.7: Inverse obfuscating function in order to retrieve data.

and e-voting box area cost. Subsection 3.7.2 shows function overheads in details. Our

technique would prevent the trigger that would turn the secret core on.

FIGURE 3.8: E-voting protection against proposed attack.

3.6 Other Attacks and Countermeasures

In this section, we discuss a couple of other feasible attacks and propose the suitable

countermeasures for them.
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3.6.1 Sequence Cheat Code Attack

In Section 3.4, we assumed that the secret core trigger will be sent to the MicroBlaze

core in the unused bits in one data packet. That is called single-shot cheat code as

described in [47].

Another possible attack may be based on sending a bigger cheat code within a number

of successive pieces. Those pieces could be represented by using different cycles/inputs.

This attack is called sequence cheat code attack. These successive cheat codes can be

introduced to the system through the FSL bus connecting the input keypad core and the

MicroBlaze.

Waksman and Sethumadhavan proposed two different ways to solve cheat code is-

sues [47]. One for the single-shot cheat code using data obfuscation (i.e., encrypting the

suspected IPs input values in order to eliminate any malicious codes). Another way is

to use sequence-breaking against sequence cheat code. The sequence breaking method

suggests to pseudo-randomly scramble the order of inputs, which enters the suspected

IPs. By this way, we can prevent those untrusted units from recognizing the malicious

sequences of inputs, which can activate an HT.

However, our proposed method in Section 3.5 is capable of protecting the design from

that external trigger either if it is single-shot cheat code or even sequence cheat code.

So, we do not have a need for extra hardware for handling sequence cheat code, and

that is an advantage of our proposal over Waksman methodology.

3.6.2 Used Bits Attack

Now, let us introduce another attack where we suggest that keypad core is infected with

no extra hidden cores. So, the trigger will be sent in the used bits. In all previous attacks,

we assumed that the special trigger is sent in the unused bits of the data packet. The main

risk is that the MicroBlaze sees that confidential data (user’s vote) in unencrypted form

and thus can manipulate it. Additionally, this core, along with many other hardware

cores, are usually obtained as a third party IP. In this case, using our technique to secure

data transfer would not prevent triggering the hidden back-door because the trigger will

be obfuscated at the output of the untrusted IP (input keypad core), transferred via the

FSL, and then return back to its original form at the input of the MicroBlaze core.

We should mention that Waksman and Sethumadhavan presented a solution for this

attack by using data obfuscation for computational units [47]. The selection of the
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correct method for obfuscation mainly depends on the IP type. The authors suggested

classifying the IPs into two main classes; computational IPs and non-computational

ones. For the later class, the IPs do not actually perform any computations on the data.

As a result, the authors simply used an encryption method to obfuscate the data values

before entering the non-computational IP.

On the other hand, for computational IPs (as in our proposed attack here), data encryp-

tion is much more complicated than the non-computational case. In certain scenarios,

duplicating the whole design might be more efficient than using obfuscation. This high

complexity will appear in our case because our computational unit uses ElGamal Al-

gorithm for public key encryption [21]. They suggested using the third party computa-

tional IP without giving it the advantage of recognizing the data. They depend mainly

on HE schemes, as shown in (3.1). But, the main problem of this solution will be the

overhead cost of all e-voting boxes.

Gamal(xy) = Gamal(x)Gamal(y) (3.1)

In case one wants to encrypt a certain data value x, where x represents the vote in our

case, using ElGamal Algorithm on a special purpose encryption core, the following

steps should be followed.

1. Use a TRNG module in order to generate a random value y and calculate its en-

cryption result Gamal(y)

2. Use a trusted, regular ALU to compute z = xy, where x is the user’s vote to be

encrypted.

3. Send z to the encryption core that should returns Gamal(z) = Gamal(xy), which

will be sent to the main server.

4. Add the received encrypted votes Gamal(z) at the server side.

5. Decrypt the summation result and use a trusted ALU on the server side to divide

the result by y.

We use the untrusted cryptographic unit within the e-voting box to encrypt the vote, x,

without allowing this untrusted component of knowing the actual vote value. This will

protect from the triggering code injected in the real data.



Chapter 3. E-voting Attacks and Countermeasures 28

3.7 Evaluation

Here, we will describe the experimental setup, which we used for creating the e-voting

system. Furthermore, the numerical results for the area and power overheads are men-

tioned in detail.

3.7.1 Experimental Setup

The total experiment was done by using Spartan 3E starter kit [48]. The needed logic

is implemented using Verilog. Figure 3.9 illustrates the experiment setup. Our FPGA

board is connected to a VGA screen via a VGA cable. The input keypad is connected

to the FPGA using a PS2 interface.

FIGURE 3.9: Experimental setup for the e-voting system.

Figure 3.10 represents the used FPGA kit. It mainly includes a Xilinx XC3S500E

Spartan-3E FPGA (FG 320 package, with a−4 as a speed grade), 232 user Input/Output

pins, Over 10,000 logic cells, 16 Mbits of SPI serial Flash, SPI serial Flash configura-

tion, DDR memory interfaces, 64 MByte of DDR SDRAM, PS/2 mouse or keyboard
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port, VGA display port, 50 MHz clock oscillator, and a MicroBlaze 32-bit embedded

RISC processor.

FIGURE 3.10: The Xilinx Spartan 3E starter kit overview [48].

3.7.2 E-voting Protection Results

Here, we evaluate the effect of using the protection technique, introduced in Section 3.5,

on device resources, power, and time delays. Each time we make a comparison between

results coming from the protected design and the original untrusted design. Further-

more, we analyze the overhead of resetting only the used bits in the first experiment.

Then, we examine using the simple obfuscation function.

3.7.2.1 Resetting Unused Bits

Table 3.1 presents device utilization summary for the untrusted system and the protected

one. The first column represents logic resources. The second and third columns repre-

sent the original system data and the protected one, respectively. The last column shows

the protection overhead.
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TABLE 3.1: Device utilization for untrusted and protected systems (with and without resetting
unused bits) showing overhead percentage.

Untrusted system Protected system

Logic resources Without resetting With resetting Overhead

unused bits unused bits (%)

No. of used slice flip flops 3,401 3,428 0.79

No. of used 4-input LUTs 4,266 4,396 3.05

Total no. of used 4-input LUTs 4,391 4,521 2.96

Power is also calculated using Xilinx Power Analyzer (XPA) [49] at 50 MHz clock.

Table 3.2 shows the power comparison between the untrusted system and the protected

one. It was found that dynamic power, which represents the power dissipated in clocks,

logic, signals, DSPs, and IOs, slightly increased after inserting the protection method

while the leakage power remains constant.

TABLE 3.2: Power comparison between original and protected systems (with and without
resetting unused bits).

Power consumption (W)

Logic Untrusted system Protected system

resources Without resetting With resetting

unused bits unused bits

Logic 0.009 0.009

Signals 0.007 0.008

BRAMs 0.006 0.006

MULTs 0.001 0.001

DCMs 0.041 0.043

IOs 0.340 0.340

Leakage 0.094 0.094

Total 0.498 0.501

From the timing prospective, we used the Post-PAR Static timing report generated from

Xilinx Platform Studio (XPS) v14.6 to get the design statistics. For the untrusted design,

the minimum period is 16.757 ns (max frequency: 59.677 MHz). The maximum net

delay is 2.059 ns. For the protected design, the minimum period is 15.846 ns (max

frequency: 63.107 MHz). The maximum net delay is 2.265 ns. So, delay overhead is

0.206 ns, which is below 10%.
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3.7.2.2 Using Enhanced SB Method

Table 3.3 presents device utilization summary for the untrusted system and the pro-

tected one, when using the enhanced simple obfuscation method which is described in

Section 3.5. The first column represents logic utilization. The second and third columns

represent the original system data and the protected one, respectively. The last column

shows the protection overhead.

TABLE 3.3: Device utilization for untrusted and protected systems (with and without enhanced
Simple Blockage) showing overhead percentage.

Untrusted system Protected system

Logic resources Without With Overhead

enhanced SB enhanced SB (%)

No. of used slice flip flops 3,401 3,436 1.03

No. of used 4-input LUTs 4,266 4,437 4.00

Total no. of used 4-input LUTs 4,391 4,562 3.89

The power is calculated using XPA at 50 MHz clock. Table 3.4 shows the power com-

parison between the untrusted system and the protected one. It was found that dynamic

power increased after inserting the protection method while the leakage power remains

constant.

TABLE 3.4: Power comparison between original and protected systems (with and without
enhanced Simple Blockage).

Power consumption (W)

Logic Untrusted system Protected system

resources Without With

enhanced SB enhanced SB

Logic 0.009 0.009

Signals 0.007 0.007

BRAMs 0.006 0.006

MULTs 0.001 0.001

DCMs 0.041 0.043

IOs 0.340 0.340

Leakage 0.094 0.094

Total 0.498 0.500
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From the timing prospective, we use the Post-PAR Static Timing Report generated from

XPS to get the design statistics. For the untrusted design, the minimum period is 16.757
ns (max frequency: 59.677 MHz). The maximum net delay is 2.059 ns. For the pro-

tected design, the minimum period is 19.737 ns (max frequency: 50.666 MHz). The

maximum net delay is 2.264 ns. So, delay overhead is 0.205 ns.

3.8 Conclusion

In this chapter, we highlighted e-voting challenges. In addition to that, we implemented

an e-voting system using a VGA screen and a Xilinx FPGA board. After that, an HT was

injected in our e-voting FPGA in order to manipulate the final results. We showed the

role of HE in securing our design via the usage of ElGamal cryptosystem. Our proposed

attack mainly relies on targeting the unused portion of the message bits moved between

the input IP and the MicroBlaze main core. We suggested two different mechanisms to

handle this problem. We showed that our proposed solution has minimum side effects

on the circuit power and timing delays. The reported power consumption overhead

was very low and the overhead on the timing delay overhead was below 10%. Device

resources overheads did not exceed 4%.

The work discussed in this chapter was published in the tenth International Symposium

on Frontiers of Information Systems and Network Applications (FINA 2014), held in

conjunction with the 28th IEEE International Conference on Advanced Information

Networking and Applications (AINA-2014) in Victoria, BC, Canada, 2014 [50].
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Homomorphic Data Isolation for
Protection against Hardware Trojans

In this chapter, we are going to utilize the concepts of homomorphism in the domain of

securing FPGA-based designs, specially for protection against HTs. During the last

decade, the number of FPGA-based designs has been dramatically increased. That

greatly affects the FPGA revenues, which exceeded the 4 Billion Dollars level in the

last few years. That is mainly because of the high flexibility offered by FPGAs com-

pared to other hardware-based platforms, like ASICs, and its high efficiency compared

to software-based solutions, like general purpose processors. For foregoing reasons,

FPGA-based designs’ security has become a critical issue that needs to be highly taken

into consideration.

In order to protect FPGA-based design against HTs, we select ElGamal homomorphic

scheme as a basis for our work and implement two PHE schemes based on it. The first

scheme is a multiplicative homomorphic one, whereas the second one is an additive

homomorphic one. In order to evaluate our proposed designs, we implement all our ar-

chitectures on a low-cost Spartan-6 FPGA board from Xilinx. Then, we report the logic

area utilization, timing delay, and the total consumed power. Furthermore, we present

a dual-circuit design, which combines our two introduced designs; the multiplicative

and additive one. We utilize the idea of resource sharing to reduce the area overhead as

much as possible.

The remaining parts of this chapter are organized as follows. The motivation is de-

scribed in Section 4.1. Related work is provided in Section 4.2. HT protection using

PHE is introduced in Section 4.3. The proposed methods and implementations are illus-

trated in Section 4.4. Then, Section 4.5 provides the experimental results and presents

33
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the actual overheads of the suggested architectures. Finally, Section 4.6 concludes the

chapter.

4.1 Motivation

Increasing the complexity of systems proclaims the outsourced manufacturing concept

nowadays. As a result, a considerable number of trust issues, within the design in-

dustry, has been raised. Anyone with access to any step of the manufacturing process

could alter the final product to inject an HT. As defined in Chapter 2, HT is simply a

malicious alteration of one’s own hardware. This alternation may, under specific rare

circumstances, result in information leakage out of the system or functional changes of

the system itself. Those kinds of malicious circuitry can be injected by either third party

IP owners or fabrication facilities.

There is a critical need to generate novel methods, which are capable of enhancing

the trust measures between the designers, fabrication facilities, and end-users. From

their own point of view, end-users require more guarantees from fabrication facilities.

They need their own products to be stable in the working environment, not leaking

any private information in future uses, and of course not being controlled by unknown

entities. Additionally, the widespread of the design/fabrication process among several

parties has a direct effect on increasing the difficulty of HT detection and protection.

We believe that HE is one possible way to resolve the foregoing issue and provide a

feasible solution for defeating HTs.

In this chapter, we are discussing new ideas to have a blind data processing by the third

party IP with a minimum cost. We achieve our goals by implementing ElGamal encryp-

tion cryptosystem, which is considered a multiplicative PHE technique and the CRT-

based ElGamal (CEG) encryption cryptosystem, which is considered an additive PHE

technique, on a low-cost FPGA and showing the resource utilization, performance, and

power analysis of both schemes. In addition to that, we introduce a dual-circuit design

that supports both, multiplicative and additive homomorphic properties and provide the

obtained savings on area and power over a regular design that has no resource sharing.

4.2 Related Work

As our work is mainly directed towards increasing the protection of FPGA-based de-

signs against HT threats, we first survey the HT detection techniques and the proposed
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solutions to recover from them. In general, HT detection techniques could be grouped

within two major classes; side-channel dependent techniques, and architectural tech-

niques [42]. Side-channel dependent techniques mainly work on detecting the existence

of any HT logic in a certain architecture by finding the HT circuit overload on various

architecture parameters. For instance, the overall delay with respect to a golden circuit

or the total power consumption compared to a non-infected one are two possible exam-

ples of these parameters. So, the final target of such techniques is to localize the impact

of the HT on the architecture without waiting for them to be active. For instance, Jin et

al. recorded path delay information from various trusted chips and used the collected

data as a reference for detecting the existence of HTs in untrusted chips [43]. As such

measurements differ from chip to another, even if all chips are trusted, Yoshimizu sug-

gested using the idea of symmetric path delays to detect HTs [51]. His proposal relied

on the fact that the timing delay differences between a pool of symmetric paths would

remain unchanged only if no HT exists. In addition to that, Rad et al. investigated the

effect of an HT on the transient current of an IC power supply via the usage of statistical

techniques [52].

On the other hand, architectural techniques aim to enhance the probability of activating

HTs during testing phases. Salmani et. al inserted dummy flip-flops in the design

in order to increase a Trojan activity [53]. The authors used a transition probability

threshold to help them choosing the suitable locations for the flip-flops insertion in

order not to badly affect the total logic area. In the context of gate level HT detection,

Rajendran et al. suggested a new technique for protecting the architecture, of both

FPGAs and ASICs, via the usage of ring oscillators (ROs) [54]. The authors added

more logic gates to the architecture in order to convert architecture paths to ROs. As

a result, they could detect the presence of HTs by monitoring any changes that may

happen in the frequency of the ROs.

In addition to that, Al-Anwar et al. developed a new methodology to protect the designs

versus a hardware Spyware [55]. In their work, the authors introduced multiplexing

between multiple variants implementations, so they decreased the probability of leaking

sensitive information. Then, they proposed detecting the infected third party FPGA

implementations by using cyclic redundancy check (CRC). In another work, Al-Anwar

et al. enhanced the previous methodology by using partial reconfiguration technology

to remove an infected IP [56, 57]. Furthermore, they introduced voting between the

output of an odd number of similar third party IPs from different manufacturers in order

to get a safe output.
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It is obvious that all the foregoing HT detection methods need a golden, i.e., non-

infected, chip to operate. That requirement represents a real problem as it is feasible

only if the design is completely done by only one system designer and does not utilize

any component from a third party vendor [58]. Those methods will become completely

useless if the designer decides to make use of any IP from a third party. In order to

overcome this fatal issue, Baumgarten et al. suggested utilizing configurable logic bar-

riers inside the architecture [59], preventing the activation of any HT added during

the IC manufacturing stages. Additionally, Zhang and Tehranipoor suggested using

ATPG methods, code coverage analysis, and formal verification to ensure if the circuit

is Trojan-altered or not [60]. They believed their proposed methods could be a suitable

way to eliminate the need for a non-infected architecture as a reference. Additionally,

Moein et al. have recently proposed a detailed comparison between different HTs’ at-

tributes in order to enhance the detection methods [61, 62]. In another work, Moein

et al. also suggested an approach to implement different HT attacks and countermea-

sures [63].

In a different context, Konstantinou et al. offered an FHE-based solution for trust issues,

which usually occur between IP users and owners, respectively [64]. The authors mainly

targeted the functional verification part of the IP securing phases. Their suggestion

includes creating a functionally similar version of the original IP design in the encrypted

domain. Moreover, they used FHE-encrypted test vectors to verify the functionality of

the targeted IP. Thus, the design itself and the input vectors are privacy-preserving even

if they were outsourced to a third party. Unfortunately, their experiments showed a

slowdown that reached a three orders of magnitude. That was expected due to the high

overheads that come with the usage of the FHE techniques, which we tried to overcome

by depending on PHE only in this work.

4.3 HT Protection using PHE Overview

Consider the case where a third party IP is needed to carry out some operation on data

A and will produce output data B. Figure 4.1 shows the ideal world, where the third

party IP does not have any access to the real data as it is homomorphically encrypted.

This will give us the capability to carry out the required operation by the third party

IP without revealing the original data. Thus, we can retrieve the result B after the

decryption process.
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FIGURE 4.1: Homomorphic encryption to protect from Hardware Trojans.

4.4 HT Protection using PHE Methods

Here, we introduce our suggested methods for defeating HT in third party IPs. First,

we propose two schemes that support PHE for the third party IP, which performs one

type of operation (multiplication only or addition only). Then, we combine the two

methods in a dual-circuit design that supports both multiplication and addition to satisfy

applications that utilize the two operations.

4.4.1 Sufficient PHE Support

Upon classifying the IPs based on processing type, one concludes that there is no need

to afford the high cost of FHE if the third party IP does only one type of operation. It

is totally sufficient to have PHE encryption/decryption before/after the suspected IP. In

other words, if the suspected IP is used in an e-voting system and only does addition

operation to count votes on the server side, it is enough to support one of the additively

homomorphic schemes mentioned before in Subsection 2.2 [50]. For non computational

suspected IPs, it is adequate to do simple obfuscation functions before the suspected IP

and do the inverse of that function afterwords.

Here, we discuss two hardware implementations that support PHE using ElGamal ho-

momorphic encryption technique, described in Subsection 2.2.1. The first implementa-

tion is the main ElGamal encryption/decryption scheme [21], which is a multiplicative

homomorphic scheme, whereas the second one is the CEG scheme [22], which is an

additive homomorphic scheme.
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(A) Encryption.

(B) Decryption.

FIGURE 4.2: Block diagram for ElGamal encryption/decryption scheme.

4.4.1.1 ElGamal Scheme Implementation

Figure 4.2 shows the block diagram of our implementation of ElGamal encryption/de-

cryption scheme. The encryption module consists of two Montgomery modular mul-

tipliers, two Montgomery modular exponentiators, and a finite state machine (FSM)

controller that is responsible for synchronizing other components’ inputs and outputs to

perform the encryption operations defined in (2.3). The decryption module consists of

one Montgomery modular exponentiator, one modular divider, and an FSM controller

that is also responsible for synchronizing other components’ inputs and outputs to per-

form the decryption operations defined in (2.4). Both modules use a clock and reset

signals as inputs. Reset and done signals are utilized to define the start and the end of

module operations, respectively. The message m, ciphertexts C1 and C2, and the public

key h are all k bits vectors, where k is a user-defined integer.
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Montgomery multipliers are used in the design as the Montgomery’s algorithm is con-

sidered one of the most efficient and widely used algorithms for modular multiplica-

tion [65]. Besides Montgomery, there exists a couple of modular multiplications meth-

ods, such as the “double, add, and reduce” method and the “multiply and reduce” one.

However, those techniques have more complex computations than the Montgomery’s

algorithm [66]. The main operations included within the binary Montgomery multi-

plier are addition, subtraction, and shift operation. Shift is used instead of the division

operation, which is a time-consuming operation in conventional modular multiplica-

tion. Actually, the Montgomery multiplier computes Z = X ×Y ×R−1mod M instead

of Z = X ×Y mod M, where R is a chosen integer that should be a power of two and

relatively prime to M. So, in this case, the operands of the process need to be converted

into Montgomery’s domain before this multiplier is used and out of the Montgomery’s

domain after using the multiplier.

Generally speaking, the modular exponentiation operation is done by performing suc-

cessive number of modular multiplication operations. For our modular exponentiators,

the LSB-first algorithm using Montgomery multiplication is used. This algorithm com-

putes Z = Y X mod M in k executions of a loop that, in turn, includes at most two Mont-

gomery multiplication operations, which are executed concurrently. That improves the

performance of the module [66].

The decryption part of the scheme includes the usage of a modular divider module. We

implemented the plus-minus algorithm as it gives the shortest computation time with a

cost-effective area [67]. The key generation module consists mainly of a Montgomery

exponentiation circuit and a TRNG module, which is not in the scope of this chapter.

Finally, we should mention that the usage of only one multiplier and one exponentiator

is enough to achieve the desired encryption results, but that results in a high critical path

delay.

4.4.1.2 CEG Scheme Implementation

Figure 4.3 shows the block diagram for our implementation of the CEG encryption/de-

cryption scheme. This design is quietly different from ElGamal design discussed before

as the encryption operations defined in (2.5) requires the usage of multiple Montgomery

exponentiators. As the timing delay needed by one exponentiator is more than the delay

of a single multiplier, the FSM controller is modified to utilize only one Montgomery

multiplier. A modular reducer circuit is used to handle the operation of reducing m into

several mi based on the relation of mi = m(mod di) for i = 1, . . . , t.
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(A) Encryption.

(B) Decryption.

FIGURE 4.3: Block diagram for the CRT-based ElGamal (CEG) encryption/decryption
scheme.

For the decryption module, it consists of one Montgomery modular exponentiator, one

Montgomery modular multiplier, one modular divider, one modular adder, FSM con-

troller, and a single block of memory used to facilitate the implementation of the inverse

CRT needed in (2.6) [22]. Input and output vectors are now k× t bits instead of k bits,

where t is the number of ciphertext pairs.

4.4.2 Dual-Circuit Design

The main motivation for this design is that some third party IPs require the usage of

more than one single type of operation. For instance, an IP may need to perform both

addition and multiplication but not at the same time. One can imagine the functionality

of that IP as a simple ALU that uses a selection line to switch its mode between two

different operations. In this case, using one type of PHE schemes would not be suf-

ficient. We have to implement two different schemes, such as implementing the two
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schemes described above, in order to prevent the attacker from revealing the ALU input

and output data. We suggest a solution for this issue by combining the two previously-

proposed schemes, ElGamal and the CEG, in a single dual-circuit design. Thus, the

proposed design supports both additive and multiplicative homomorphism. Moreover,

another possible example for an application that needs the availability of both homomor-

phic operations is when we have two unique IPs in a design and the first IP performs

addition while the second IP performs multiplication. Assuming that both IPs will not

work on the same time, one can instantiate only one instance of our dual-circuit module

and control its functionality to perform the needed operation of any of the two IPs, when

needed, with the minimal cost in area and power consumption.

Furthermore, we try to share resources as much as we can between the two schemes

in order to have minimal design cost. For example, computing C1 in (2.3) and (2.5)

needs an exponentiation operation. The same situation occurs when computing C2 as

we need an exponentiation operation followed by a multiplication operation. The only

difference is that the modified versions in (2.5) reuse their modules many times based

on the value of t. Thus, we use the duality concept that enables us of sharing as much

resources between the two circuits in order to reduce the design area. As the CEG

scheme uses the same basic blocks of ElGamal scheme with some additional blocks, we

depend on the same architecture shown in Figure 4.3 and add a select signal that chooses

between the multiplicative homomorphic and the additive homomorphic circuits. The

FSM controller is modified to be able of handling the two cases with the same building

modules. The case is the same for the key generation and decryption modules. By

using this simple idea, we manage to decrease the area cost a lot and allow for the two

homomorphic properties to be available on a single module. That completely solves

the issue of the third party IP, which needs to perform both addition and multiplication

operation.

4.5 Evaluation

This section evaluates the performance of our proposed methods, described in Sec-

tion 4.4, in terms of resource utilization, delay, and power consumption.

4.5.1 Experimental Setup

The proposed methods are implemented on Xilinx Spartan-6 XC6SLX75 with FGG484

package and -2 speed grade [48]. We use Xilinx Integrated Synthesis Environment (ISE)
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14.6 tool to obtain the logic and performance results after placement and routing [68].

The power is calculated using Xilinx Power Analyzer (XPA) [49] at 100 MHz clock.

4.5.2 PHE Methods Results

Table 4.1 shows the resource utilization of our two PHE schemes, ElGamal and CEG,

using vectors of size equals 8 bits.

TABLE 4.1: Resource utilization of ElGamal and CRT-based ElGamal (CEG) encryption/de-
cryption schemes for k = 8 bits.

Logic resources
Encryption Decryption

ElGamal CEG ElGamal CEG

Number of Registers 295 614 207 364

Number of LUTs 420 715 259 442

Number of BRAMs 0 0 0 1

Table 4.2 shows the maximum operating frequency of the two proposed PHE schemes

along with the needed number of cycles to finish their work.

TABLE 4.2: Timing performance of ElGamal and CRT-based ElGamal (CEG) encryption/de-
cryption schemes for k = 8 bits.

Encryption Decryption

ElGamal CEG ElGamal CEG

Frequency (MHz) 161.277 164.352 123.870 121.862

No. of cycles 171 480 153 512

From power prospective, Table 4.3 shows the power analysis for ElGamal encryp-

tion/decryption scheme and the CRT-based one. It was found that the dynamic power

slightly decreased in case of encryption and increased in case of decryption due to the

usage of the memory component and its logic controller in decryption. The leakage

power remains constant in the both cases.

4.5.3 Dual-Circuit Design Results

Here, we compare the results of our proposed dual-circuit design to using regular two

IPs, one for ElGamal and another for CEG design without any resource sharing between

them. We want to assess the gain of our resource sharing. In order to differentiate
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TABLE 4.3: Power consumption (mW) of ElGamal and CRT-based ElGamal (CEG) encryp-
tion/decryption schemes for k = 8 bits.

Logic resources
Encryption Decryption

ElGamal CEG ElGamal CEG

Logic 3.84 5.47 2.70 3.69

Signals 2.82 4.69 2.01 3.23

BRAMs 0.00 0.00 0.00 0.74

IOs 16.51 8.99 5.23 2.74

Clocks 5.65 7.87 4.21 5.87

Leakage 65.00 65.00 64.00 64.00

Total 93.82 92.02 78.15 80.27

between the two designs, we call the first design, Dual ElGamal, while the second

design is called Regular ElGamal.

Firstly, Table 4.4 shows the area reduction that results from using our Dual ElGamal

design over Regular ElGamal design. The area reduction column is calculated using

(4.1). It is clear that the idea of dual-circuit design has greatly improved the usage of

hardware resources.

Reduction space(%) =
Regular area−Dual area

Regular area
×100. (4.1)

TABLE 4.4: Area reduction of our dual ElGamal design over the regular ElGamal design for k
= 8 bits.

Logic resources

Encryption Decryption

Regular Dual Area Regular Dual Area

ElGamal ElGamal reduction ElGamal ElGamal reduction

(%) (%)

Registers 909 635 30.14 536 364 32.09

LUTs 1137 735 35.36 626 457 26.99

BRAMs 0 0 00.00 1 1 00.00

Table 4.5 gives the maximum operating frequency of our Dual ElGamal design and

the Regular ElGamal design using vectors of size k = 8 bits. The number of cycles

here represents the clock cycles needed to perform one multiplicative homomorphic



Chapter 4. Homomorphic Data Isolation for Protection against Hardware Trojans 44

TABLE 4.5: Timing comparisons between our dual ElGamal design and the regular ElGamal
design for k = 8 bits.

Encryption Decryption

Regular Dual Regular Dual

ElGamal ElGamal ElGamal ElGamal

Frequency (MHz) 161.277 158.51 117.099 121.344

No. of cycles 651 662 665 665

TABLE 4.6: Power consumption (mW) of our dual ElGamal design and the regular ElGamal
design for k = 8 bits.

Logic resources

Encryption Decryption

Regular Dual Regular Dual

ElGamal ElGamal ElGamal ElGamal

Logic 9.25 6.29 5.91 3.82

Signals 8.14 6.02 5.67 3.49

BRAMs 0.00 0.00 0.74 0.74

IOs 25.27 10.83 5.67 3.61

Clocks 11.78 6.89 8.78 4.86

Leakage 65.00 65.00 65.00 64.00

Total 119.44 95.03 91.77 80.52

operation followed by one additive homomorphic operation. The needed number of

cycles to get the final output is the same in both designs, except that the encryption part

of our dual designs utilizes more clock cycles. That is due to the usage of only one

Montgomery multiplier instead of two, as illustrated in Section 4.4.

From power prospective, Table 4.6 shows the power analysis for our Dual ElGamal

design and the Regular ElGamal design. The usage of the duality idea results in an ob-

vious improvement in total power consumption as it eliminates the power consumed by

the duplicated modules. The savings in power consumption are 20.44% for encryption

and 12.26% for decryption.
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4.6 Conclusion

In this chapter, we highlighted the importance of homomorphic encryption in defeating

HTs in third party IPs. As PHE is sufficient enough with some third party IPs, we

implemented two designs that supports PHE (multiplicative only and additive only)

based on ElGamal encryption/decryption scheme.

Furthermore, we integrated the two designs together and introduced a dual-circuit de-

sign that achieved a great improvement in area and power over a regular design that

combines two IPs, one for ElGamal and another for CEG, without any resource shar-

ing between them. Our architectures were implemented on a low-cost Xilinx Spartan-6

FPGA and area, delay, and power results were reported. The area reduction reached

30% and savings in power consumption were 20% for encryption and 12% for decryp-

tion.

The work discussed in this chapter was published in the IEEE Computer Society Annual

Symposium on VLSI (ISVLSI 2015) at Montpellier, France [30].





Chapter 5

CryptoImg: Privacy Preserving
Processing over Encrypted Images

Cloud computing services provide a scalable solution for the storage and processing

of images and multimedia files. However, concerns about privacy risks prevent users

from sharing their personal images with third-party services. In this chapter, we present

the design and implementation of CryptoImg, a library of modular privacy preserving

image processing operations over encrypted images. By using PHE, CryptoImg allows

the users to delegate their image processing operations to remote servers without any

privacy concerns. Currently, CryptoImg supports a subset of the most frequently used

image processing operations, such as image adjustment, spatial filtering, edge sharpen-

ing, histogram equalization, and others. We implement our library as an extension to the

popular computer vision library OpenCV. CryptoImg can be used from either mobile or

desktop clients. Our experimental results demonstrate that CryptoImg is efficient while

performing operations over encrypted images with negligible error and reasonable time

overhead on the supported platforms.

The organization of the rest of this chapter is as follows. The motivation is discussed

in Section 5.1. Section 5.2 surveys some of prior work related to applying secure op-

erations on images over encrypted domain and using Paillier encryption scheme for

securing image storage and retrieval. Section 5.3 describes the CryptoImg architecture.

Section 5.4 describes our proposed secure operations in details. Section 5.5 provides

our experimental evaluation results. Finally, Section 5.6 concludes the chapter.

47



Chapter 5. CryptoImg: Privacy Preserving Processing over Encrypted Images 48

5.1 Motivation

Cloud computing is one of the fastest growing technologies. In 2015, Gartner research

selected cloud computing as one of the top ten technology trends. Software-as-a-Service

(SaaS) is a class of cloud computing that allows thin clients, such as mobile devices or

web browsers, to make use of centrally hosted software services on demand [69]. Dur-

ing the past few years, there has been a proliferation of commercial SaaS solutions for

various application domains including image editing. For example, services like Adobe

Creative Cloud [70], and Pixlr [71] allow the user to upload pictures from his/her per-

sonal computer (PC) or mobile device (Mob) in order to apply different image enhance-

ments online.

However, image processing on the cloud presents a serious threat to user’s privacy. A

malicious service provider can look into the user private photos in order to discover

sensitive information such as identity, friends, visited places, etc. As privacy is a crucial

issue for end users, mitigating privacy concerns is necessary to increase the adoption of

online image processing services.

In this chapter, we present CryptoImg, a library of modular image processing operations

over encrypted images. We implement our operations by extending the OpenCV library

and employing the Paillier cryptosystem [19]. The major enhancement, which Cryp-
toImg introduces as compared to previous work in the field, discussed in Section 5.2,

is that CryptoImg can efficiently perform the needed computations with minimal over-

head, while guaranteeing the secrecy of private images. CryptoImg omits the need for

multiple non-collided servers [72]. Moreover, CryptoImg supports different operations

including image adjustment, spatial filtering, edge sharpening, edge detection, morpho-

logical operations, and histogram equalization over encrypted images. In addition to

that, we are the first to support secure morphological operations besides other image

processing operations in one package.

To formulate our problem, we mainly study the problem of protecting the confidentiality

of private images against third-party services performing image processing. Our threat

model assumes that the clients trust their own hardware and locally-running software

programs, but they do not trust third-party remote servers. Although the pressure of

market competition forces service providers to perform the requested image enhance-

ment operations correctly, these servers might threaten the user’s privacy by abusing the

given images to uncover private information for their own business interest. By giving

the server access to nothing more than encrypted images, our system is secure under the

“honest-but-curious” adversary model.
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We rely on the Paillier cryptosystem which is provably secure using the hardness of

the DCR assumption [19]. This means that it is infeasible for any attacker to break the

encryption unless he/she has an efficient algorithm that can solve a family of problems

that are computationally intractable. Compared to previous work in image processing

over encrypted images, our solution provides better security guarantees than the model

adopted by [72, 73], which requires more than one server and becomes insecure against

colluding servers.

5.2 Related Work

We survey some of prior work related to applying secure operations on images over

encrypted domain and using Paillier encryption scheme for securing image storage and

retrieval. We highlight the differences between the previous work and ours.

Recently, various privacy preserving algorithms using HE have emerged in different

domains including: information retrieval, data mining, and image processing. Shortell

and Shokoufandeh addressed the problem of privacy-preserving image processing by

using FHE to process the data while encrypted [74]. They used their solution to imple-

ment brightness/contrast filter. Moreover, they extended FHE to support FP numbers

via multiplying each value by a factor of 10d , where d depends upon the precision of

the desired decimal digits up to which we want to process the FP numbers. However,

the reported execution time was 15 minutes on a scaled down image and three hours on

the original image.

Lathey and Atrey [72] introduced a privacy-preserving method for image processing

based on Shamir’s Secret Sharing (SSS) scheme [75]. This method distributes the image

enhancement task among multiple servers to ensure privacy. Their solution supports a

number of low-level image processing tasks carried out on encrypted images, such as

spatial filtering, anti-aliasing, edge enhancement, and dehazing. Although this approach

allows performing both addition and multiplication operations over encrypted data, the

security of this model is guaranteed only if the computation is distributed over n (>1)

entities with no more than k among them are colluding. This model is impractical,

as it requires non colluding servers, i.e., the targeted cloud servers are not permitted

to communicate with each others, and thus provides only weak security guarantees.

Moreover, they employed different pre-processing for each secure operation. Therefore,

a sequence of secure operations cannot be done without decryption and re-encoding.
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Hu et al. proposed a double-cipher method to implement nonlocal means (NLM) de-

noising over encrypted images [76]. As the NLM operation includes exponentiation,

which is a non linear operation, the authors encrypted the plain image with two differ-

ent cryptosystems before sending to the cloud. The first one was the Paillier scheme,

in order to enable the mean filter, and the other was obtained by a distance-preserving

transform, in order to enable the nonlocal search. However, their proposed method

has higher communication overhead, due to outsourcing two different ciphers for every

image. They also enabled only a single type of image processing operations. Gomath-

isankaran et al. also introduced a HE method to ensure user privacy during the process

of medical image analysis. They encrypted the images with the homomorphic Residue

Number System (RNS) encryption scheme and sent the encrypted shares to the cloud

to perform simple filtering and edge detection operations on them. In their work, they

addressed the issue of operating on negative numbers in encrypted domain by encoding

the negative values into two’s complement 16-bit positive values. They conducted their

experiments on magnetic resonance images with the usage of 64-bit keys [77].

Moreover, secure multi-party computation (SMC) has been utilized to protect privacy

of outsourced images. Hu et al. implemented two secure linear filtering protocols [73].

The first one relied on a combination of rank reduction and random permutation. The

second one is based on random perturbation with the help of a third party entity. In the

context of secure image retrieval, Zhang et al. proposed a secure image retrieval method

for cloud computing, which is implemented based on content-based image retrieval

(CBIR) framework [78].

Hsu et al. proposed a privacy-preserving realization of the well known computer vision

algorithm, scale-invariant feature transform (SIFT) [79], which is used for detecting

and describing local features in image [80]. Their proposal was based on Paillier cryp-

tosystem with integer values support only. This limitation resulted in significant errors,

specially with the rounding operation in their gaussian filter coefficients. We handle this

issue by using an appropriate encoding technique.

5.3 CryptoImg System Overview

As shown in Figure 5.1, CryptoImg consists of two parties: client and server. The

client represents either an individual PC or Mob, while the server is a powerful system

offering processing and storage services over the cloud. The client owns private image

data and desires to make use of the server image processing services, while keeping the

confidentiality of the submitted image against unauthorized access. To achieve this goal,



Chapter 5. CryptoImg: Privacy Preserving Processing over Encrypted Images 51

FIGURE 5.1: System Architecture of CryptoImg.

the client encrypts the image before submitting it to the server. Using the PHE properties

of Paillier cryptosystem, the server can perform operations over the encrypted image

without revealing the source plain-image. The output encrypted image is sent back to

the client to decrypt and display the processed image.

It is worth mentioning that, Paillier cryptosystem is defined over a group of positive in-

tegers Zn, while in practice many operations should happen over real numbers. There-

fore, an encoding function EN with minimal quantization error is needed in order to

perform secure computation over floating point (FP) numbers. We define φadd and φmul

as the error introduced due to addition and multiplication operations, as shown in (5.1)

and (5.2), respectively. An optimal encoding mechanism should have φmul = φadd = 0.

Prior work over encrypted data represents FP numbers through multiplying by a large

scaling factor as done in [74]. However, this representation has φmul equals the scale

factor after each multiplication operation. Thus, it cannot be used with arbitrary number

of multiplication operations over FP numbers.

φadd := abs(EN(m1 +m2)− (EN(m1)+EN(m2) )) (5.1)

φmul := abs(EN(m1×m2)− (EN(m1)×EN(m2) )) (5.2)

Therefore, we have chosen to use the same approach developed by Google’s Encrypted

BigQuery Client [81], which represents FP number by a mantissa m and a non-positive



Chapter 5. CryptoImg: Privacy Preserving Processing over Encrypted Images 52

exponent e. A FP number in plaintext is represented by pair (m, e). In encrypted domain,

FP number is represented by a pair of an encrypted mantissa using Paillier cryptosys-

tem and an unencrypted exponent (JmK, e). Self blinding and additive homomorphic

over floats are denoted by ⊗ and ⊕, respectively. By using the addition and multi-

plication primitives (⊕z, ⊗z) of the Paillier cryptosystem, we can perform FP number

addition and multiplication, as shown in Protocol 1. Additionally, signed numbers are

handled by assigning the ranges [0,n/3] and [n/3,2n/3] for positive and negative num-

bers, respectively, whereas the remaining range (2n/3,n) is used for overflow detection.

Subtraction accordingly over encrypted floats is denoted by 	.

Protocol 1 Secure FP Numbers Processing.

Multiplication: JcK = a⊗ JbK
JmcK = ma⊗z JmbK
ec = ea + eb

Addition: JcK = JaK⊕ JbK
if ea ≤ eb

JmcK = JmaK⊕z (Baseeb−ea⊗z JmbK), ec = ea

if ea > eb
JmcK = JmbK⊕z (Baseea−eb⊗z JmaK), ec = eb

5.4 Secure Operations in Encrypted Domain

The following subsections give details about the supported image processing operations

by CryptoImg.

5.4.1 Secure Image Adjustment

Image adjustment is done by applying transformation T on an image I, which produces

the resultant image R. We denote the individual pixels values in images I and R by i

and r, respectively. Therefore, the relationship between input pixels i and output pixels r

can be represented by (5.3).

r = T (i) (5.3)

CryptoImg supports brightness control and image negation, as techniques for image

adjustment.
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For brightness control, the client requests to adjust the brightness of his/her image by

adding value v, encrypting it along with the image pixels using his public key, pk,

and sends both the encrypted value JvK and encrypted image JIK to the server. The

server computes the encrypted values, JrK, of output pixels for all pixels in the image

using (5.4). Then, the server sends the encrypted image back to the client who will

decrypt using its secret key sk.

JrK = JiK⊕ JvK (5.4)

CryptoImg supports secure Image negation where the server computes the encrypted

output pixel according to (5.5), for all pixels in input image with grey levels in the

range [0,L−1].

JrK = JL−1K	 JiK (5.5)

5.4.2 Secure Noise Reduction

Noise reduction and anti-aliasing operations are essential for many applications like

medical and remote sensing images processing. Smoothing filter in spatial domain is a

very common operation for anti-aliasing and noise removal, which is equivalent to a low

pass filter (LPF) applied in the frequency domain. We denote the output image by Ispt

whose individual pixels (u,v) are computed by performing average filter represented

in (5.6). The filter f (u,v) is applied first to m× n patch around (u,v) pixel, then the

intensity values of this patch are averaged.

JIspt(u,v)K =
1

m×n
⊗

m,n

∑
u=1,v=1

f (u,v)⊗ JI(u,v)K (5.6)

The challenging part in mapping the average filtering operation to encrypted domain

(ED) is how to map the division operation, which may result in a non integer result.

As the original Paillier cryptosystem supports only operations over integers, we used

our encoding technique, described in Section 5.3. It enables us to multiply by the FP

term 1/(m× n). Furthermore, arbitrary spatial filter masks can be applied in (5.6), as

we do not restrict the filter value to be positive integers. On the other hand, authors

in [74] did not support negative value in the filter mask.
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(A) Prewitt.

(B) Sobel.

(C) Robinson.

(D) Kirsh.

FIGURE 5.2: The different edge detection operators supported by CryptoImg. h1 and h2 rep-
resent the horizontal and vertical kernels, respectively [82].

5.4.3 Secure Edge Detection and Sharpening

Edge detection is one of the extremely important steps facilitating high-level image

analysis [83]. Edges are pixels where image brightness changes abruptly, therefore gra-

dient operators are commonly used to discover such pixels in the image. CryptoImg
supports different kind of edge detection operators as Prewitt, Sobel, Robinson, and

Kirsh, which are able to detect edges in different directions [82]. Those operators, which

approximates the first derivative, are shown in Figure 5.2. Client sends the encrypted

image to the server associated with the required operator identifier. Horizontal ker-

nel h1 and vertical kernel h2 are convoluted with the encrypted image to find encrypted

horizontal JGxK and vertical JGyK gradient components, as shown in (5.7) and (5.8).

The client decrypts the resultant to find the gradient magnitude G =
√

Gx
2 +Gy

2 and

gradient direction Θ = atan2(Gy,Gx) .

JGx(u,v)K =
m,n

∑
u=1,v=1

h1(u,v)⊗ JI(u,v)K (5.7)

JGy(u,v)K =
m,n

∑
u=1,v=1

h2(u,v)⊗ JI(u,v)K (5.8)

Additionally, edge sharpening operation in [74] can be reformulated, as shown in (5.9),

in order to decrease the number of operations in the encrypted domain. Subtracting the
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blurred image ILPF from the original one removes the low pass frequency component

and yields the edge representation of the original image I. A positive constant, k, is

used to control the amount of sharpening. For high-boost filtering, k is greater than one,

while it equals one in case of unsharp masking. JILPFK can be obtained using (5.6) using

the appreciate mask.

JIshrp(u,v)K = ((k+1)⊗ JI(u,v)K)	 (k⊗ JILPF(u,v)K) (5.9)

5.4.4 Secure Morphological Operations

Morphological operations represent a relatively separate part of image processing. They

are widely used in many applications, such as document analysis, character recognition,

industrial inspection, and the analysis of microscopic images in fields, like geology, bi-

ology, and material science. The basic idea in binary morphological operations, studied

in this work, is to probe an image I with a pre-defined shape, called the structuring el-

ement B with size m× n. The main two operations in binary morphology are erosion

and dilation. Based on these two operations, more complex morphological operations

can be computed, such as opening, closing, and shape decomposition. Protocol 2 de-

scribes the secure erosion and dilation operations. The erosion threshold value T equals

the number of ones in B. Conversely, the threshold value T is equal to 1 to perform

dilation.

Protocol 2 Secure Morphological Operations.

1: Client sends JIK to the server associated with the requested structuring element B.
2: Server performs JL(u,v)K = ∑

m,n
u=1,v=1JI(u,v)K.

3: Server sends JLK to the client.
4: Client decrypts JLK using his private key. Then, image thresholding is applied on L using

threshold value T .

Additionally, it is worth mentioning that neither erosion nor dilation are invertible trans-

formations. In other words, if a certain image is eroded and then dilated, the original

image is not re-obtained. Moreover, eroded or dilated image could not be returned

back to their original image using any other morphological operations. On the other

hand, erosion followed by dilation creates an important morphological operations called

“opening”, whereas the dilation followed by erosion is called “closing”. Opening and

closing are two important morphological operations used to eliminate tiny image details

and connecting small image objects, respectively.
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5.4.5 Secure Histogram Equalization

Histogram equalization is a commonly used operation for contrast enhancement. It aims

to create an image with equally distributed brightness levels over the whole brightness

scale. As shown in Protocol 3, this goal is performed by calculating the cumulative

image histogram Hc for the input image. Then, a monotonic pixel brightness transfor-

mation T (p) is applied such that the desired output histogram is almost uniform over

the whole brightness scale. Original image histogram is denoted by H and its size is G.

Image size is w× `. Intensity level is denoted by p.

Protocol 3 Secure Histogram Equalization.
1: Client sends encrypted image histogram H.
2: Server computes the brightness transformation T (p) as following:

JHc(0)K = JH(0)K
JHc(p)K = JHc(p−1)K⊕ JH(p)K,where p = 1,2, · · ·G−1
JT (p)K = (G−1)/(w× `)⊗ JHc(p)K.

3: Server sends JT K.
4: Client decrypts and applies T (p) on each image pixel.

5.5 Evaluation

The aim of this section is to describe the experimental setup needed to test our proposed

library, CryptoImg. In addition to that, the visual outputs and numerical timing results

are shown and discussed in separate subsections.

5.5.1 Experimental Setup

CryptoImg is implemented in C++ using GMP v6.0.0 [84] and NTL v9.5.0 [85]. as

an extension to the popular computer vision library OpenCV [86]. We also developed

an Android client application, which is implemented in Java. Our implementation of

Paillier cryptosystem extends the work of [87] to introduce the FP support described

earlier in Section 5.3.

For our experiments, we used a Intel Xeon(R) desktop machine with 8 cores at 2.20 GHz

running Ubuntu 64-bit operating system. Our Android client application is installed on

Nexus 5 (NX) mobile device, with Quad-core 2.30 GHz Krait 400 CPU.
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Negation Brightness LPF Edges

(a) Input (d) Input (g) Input (j) Input

(b) PD output (e) PD output (h) PD output (k) PD output

(c) ED output (f) ED output (i) ED output (l) ED output

FIGURE 5.3: Visual output evaluation for the first operations set applied in plaintext domain
(PD) and encrypted domain (ED) using 10−8 precision level.

5.5.2 Visual Output Results

We performed a number of experiments to evaluate the performance of different oper-

ations supported by CryptoImg. We applied the operations to a number of gray level

images from the public CVG-UGR gray level image database [88]. The dimensions of

every image is 512× 512 pixels and every pixel is represented by 8 bits. In case of

morphological operations, selected binary images from another database [89]. Morpho-

logical operations are applied on binary images.

Figures 5.3 and 5.4 show the result of the proposed set of operations using a preci-

sion of 10−8. The precision determines the exponent of the encoded FP number us-

ing blogBase precisionc. Here, we only show one output for each method. Figure 5.3-a

represents the original images, which is encrypted using user Paillier public key and

submitted to the server to obtain image negation. Figure 5.3-c shows the output after

applying image negation in encrypted domain (ED). On the other hand, Figure 5.3-b
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Sharpening Dilation Erosion Equalization

(m) Input (p) Input (s) Input (v) Input

(n) PD Output (q) PD Output (t) PD Output (w) PD Output

(o) ED Output (r) ED Output (u) ED Output (x) ED Output

FIGURE 5.4: Visual output evaluation for the second operations set applied in plaintext domain
(PD) and encrypted domain (ED) using 10−8 precision level.

shows the output of image negation in the plaintext domain (PD) using normal OpenCV

APIs.

Figure 5.3-d through Figure 5.3-f show the same for brightness adjust. Additionally,

Figure 5.3-i shows the decrypted output after applying secure averaging operation on

Figure 5.3-g using a 3×3 filter. The visual effect of secure blurring and noise removal

is compared with Figure 5.3-h, which is the normal average filter in the PD. For the

sake of testing edge detection techniques, a simple Sobel filter is used to detect edges in

Figure 5.3-j the outputs of the ED and PD are shown in Figure 5.3-l and Figure 5.3-k,

respectively.

On the other hand, edge sharpening with k = 1.0 is applied on Figure 5.4-m. Edge

sharpening in ED and PD are shown in Figure 5.4-o and Figure 5.4-n, respectively.

Additionally, an example for the morphological operations is represented by applying a

dilation operation on Figure 5.4-p. The output in PD and ED are shown in Figure 5.4-q

and Figure 5.4-r, respectively. We also applied an erosion operation on Figure 5.4-s.

The output in PD and ED are shown in Figure 5.4-t and Figure 5.4-u, respectively.



Chapter 5. CryptoImg: Privacy Preserving Processing over Encrypted Images 59

Finally, Protocol 3 is applied on Figure 5.4-v to perform histogram equalization in ED.

The result is shown in Figure 5.4-x which is compared with PD outputs in Figure 5.4-w.

By comparing the output of operations in both encrypted and plain domains, we find that

all our secure methods introduce zero error, except LPF and edge sharpening, which

introduce a low error at higher precision. Table 5.1 shows the effect of choosing the

precision level in the secure LPF and edge sharpening operations. The error is calculated

by comparing the output in PD and ED. Based on that, we choose 10−8 as a reasonable

precision.

5.5.3 Computation Time Results

We used two different implementations for Paillier cryptosystem for PC and Mob. Ta-

ble 5.2 shows the computation time that CryptoImg takes to encrypt/decrypt images

using different key sizes. The encryption/decryption process is done pixel by pixel.

Therefore, if the original image size is n× n× 8 bits and a k bit key is used, the size

of the encrypted image would equal approximately 2k×n×n bits. That represents ap-

proximately a k/4 expansion factor. Histogram equalization operation does not require

the encryption of all pixels. Only the histogram is encrypted, as explained in Protocol 3.

Zheng and Huang [90] suggested a way to tackle this issue by using characteristics of

image format to compress the image after encryption. That helps limiting ciphertext

expansion, while preserving the homomorphic property. Although their method had a

smaller ciphertext expansion factor compared with the element-wise encryption method

used here, it did not preserve the pixel location in ED, so position-aware operations like

filtering and edge detection failed. Only image manipulation techniques would work

well.

TABLE 5.1: Precision effect on the introduced CryptoImg error.

Precision
Average Error Standard Deviation

LPF Sharpening LPF Sharpening

10−2 0.768 0.644 0.471 0.485

10−4 0.145 0.013 0.352 0.112

10−6 0.145 0.013 0.352 0.112

10−8 0.145 0.012 0.352 0.112

10−10 0.145 0.012 0.352 0.116
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TABLE 5.2: Execution Time (sec) of the Paillier encryption/decryption of image using different
key sizes on both personal computer (PC) and mobile device (Mob) clients. We used 512×512

images for PC and 256×256 images for Mob.

Key Size 256 512 1024 2048

Encrypt-PC 23.9164 156.905 1154.29 7670.49

Decrypt-PC 1.39223 1.93554 4.06813 9.62313

Encrypt-Mob 13 73 575 3701

Decrypt-Mob 10 48 325 2268

TABLE 5.3: Execution Time (sec) of the proposed operations using 1024-bit and 2048-bit keys
on both personal computer (PC) and mobile device (Mob) clients in plaintext domain (PD) and

encrypted domain (ED). The server is modeled as the PC. We used 512×512 images.

Operation PD

ED

Pre-processing Server Post-processing

PC Mob 1024-bit 2048-bit PC Mob

Negation 0.00122 0 0 42.4737 137.925 0 0

Brightness 0.00108 0 0 0.81994 2.39777 0 0

LPF 0.00763 0 0 180.508 609.199 0 0

Sobel filter 0.00642 0 0 147.567 482.195 0.0012 0.0940

Sharpening 0.00977 0 0 238.257 807.528 0 0

Dilation 0.00008 0 0 4.04937 10.8085 0.0005 0.0198

Erosion 0.00009 0 0 4.04937 10.8085 0.0006 0.0198

Equalization 0.00174 0.00182 0.177 0.01446 0.04835 0.0007 0.0290

Table 5.3 shows timing results of running our protocols using a PC or Mob clients with

the configuration given in Section 5.3. For obtaining a high level of security, we set

the Paillier key length to 1024-bits and 2048-bits in all scenarios. Edge sharpening is

the most expensive operation, as it needs successive computations. The relatively high

cost of the encryption process could be amortized by storing an encrypted version of the

image on a cloud storage. The image is encrypted once and could be used as an input

for many secure image processing operations.

Based on our results, we conclude that performing operations over encrypted images

adds more cost in terms of computation time, communication, and storage. The added

cost increases as the length of encryption key increases. However, our protocols add

minimal computation overhead, which is orders of magnitude less than prior work
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(e.g., [74]) and also minimal communication overhead, only one round between the

client and server.

It is worth mentioning that not all image processing operations can be directly imple-

mented in CryptoImg. For instance, operations that require sorting/comparison, such as

median filtering [82], would require more communication rounds between the client and

server. Some gray-scale transformations, such as contrast manipulation, would not be

feasible in ED as they rely on the knowledge of the original intensity value of the pixel

to be able to map this value to another intensity value. More complicated algorithms,

such as SIFT, could be supported in ED at the cost of adding more communication

rounds between the client and server, a similar approach was used by [80].

5.6 Conclusion

In this chapter, we introduced CryptoImg, a library of modular privacy preserving image

processing operations over encrypted images based on the homomorphic properties of

Paillier cryptosystem. Secure operations, such as image adjustment, spatial filtering,

edge sharpening, edge detection, morphological operations, and histogram equalization,

are safely outsourced to third-party servers with no privacy issues.

We presented how this operations can be implemented with much less time overhead,

and single communication round. Moreover, CryptoImg can be used from either desk-

top or mobile clients with low client-side overheads. Experiments showed the efficiency

of our proposed library. For instance, the image negation operation in the encrypted do-

main required less than one minute with zero error using 1024-bit key size.

The work discussed in this chapter was a joint work done with University of California

at Los Angeles and was published in the 2nd IEEE Workshop on Security and Privacy

in the Cloud (SPC), held in conjunction with the IEEE Conference on Communications

and Network Security (CNS 2016) at Philadelphia, PA, USA, 2016 [91].





Chapter 6

Conclusion and Future Work

This chapter summarizes the work done in this Thesis. It also gives ideas for possible

future work directions.

6.1 Conclusion

In this work, we tackled the problem of computing securely over encrypted data. Instead

of going through the non-practical techniques of FHE, our target was to implement PHE

methods and extend their functionality. We used three different applications to illustrate

our idea. Numerical results showed the efficiency of our proposed ideas.

To conclude, the Thesis successfully managed to show the efficiency of using PHE tech-

niques, such as ElGamal and Paillier, as a replacement of FHE ones in three different

real-world problems, which require computing over encrypted data. The overheads ac-

companied by using such techniques are reasonable compared to the huge overheads of

the FHE techniques reported in the literature.

6.2 Contributions

The Thesis provides three main contributions in the fields of securing e-voting ma-

chines against intruders [50], securing FPGA-based designs against untrusted third

party IPs [92], and securing image processing operations over untrusted clouds [91].
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6.2.1 Secure E-voting

The first domain of application was the e-voting domain. In this part, we highlighted

e-voting challenges. We also implemented an e-voting system using a VGA screen

and Xilinx FPGA board. Then, an HT was injected in our e-voting FPGA in order to

manipulate the final results. We showed the role of homomorphic encryption in securing

our design via the usage of ElGamal cryptosystem. Our proposed attack mainly relies

on targeting the unused portion of the message bits moved between the input IP and the

MicroBlaze main core. We suggested two different mechanisms to handle this problem.

The first mechanism relied on resetting the unused bits of the sent data, where as the

second mechanism utilized the SB method for data obfuscation. Moreover, we proved

that our proposed solution has minimum side effects on the circuit power and timing

delays. The reported power consumption overhead was very low and the overhead on

the timing delay overhead was below 10%. Device resources overheads did not exceed

4%.

6.2.2 Secure FPGA-based Designs

Our second selected application is directly related to defeating Hardware Trojans in

third party IPs using PHE techniques. PHE is sufficient enough with some third party

IPs, which require a single type of operation or require both type of operations but

not simultaneously. Thus, we implemented two designs that supports PHE (multiplica-

tive only and additive only) based on ElGamal encryption/decryption scheme. Further-

more, we integrated the two designs together and introduced a dual-circuit design that

achieved a great improvement in area and power over a regular design that combines

two IPs, one for ElGamal and another for CEG, without any resource sharing between

them. Our architectures were implemented on a Spartan-6 FPGA board from Xilinx.

Area, delay, and power results were reported. The area reduction, compared to a reg-

ular non-shared design, reached 30% and savings in power consumption were 20% for

encryption and 12% for decryption.

6.2.3 Secure Image Processing

Finally, we investigated the domain of securing image processing calculations. We in-

troduced CryptoImg, a library of modular privacy preserving image processing opera-

tions over encrypted images using the homomorphic properties of Paillier cryptosystem.
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Secure operations, such as image adjustment, spatial filtering, edge sharpening, edge de-

tection, morphological operations, and histogram equalization, are safely outsourced to

third-party servers with no privacy issues. We presented how these operations can be

implemented with a reasonable overhead and a single communication round. Moreover,

CryptoImg can be used from either mobile or desktop clients with low client-side over-

heads. Experiments showed the efficiency of our proposed library. For instance, the

image negation operation in the encrypted domain required less than one minute with

zero error using 1024-bit key size.

6.3 Future Work

The work presented in this Thesis could go on a couple of possible future work direc-

tions.

6.3.1 Secure E-voting

The work described in Chapter 3 could be extended by adding more attacks whether

on the ElGamal encryption scheme itself [93] or on the process of sending the packets,

containing votes, from the e-voting machine to the main server [94].

6.3.2 Secure FPGA-based Designs

The work proposed in Chapter 4 can be extended through the evaluation of the hardware

designs using different real-time scenarios and applications would prove the feasibility

and efficiency of the implemented techniques against the FHE ones.

6.3.3 Secure Image Processing

Finally, it will be interesting to explore the feasibility of using the current secure oper-

ations, provided in Chapter 5, as building blocks to support more complex image pro-

cessing algorithms. In addition to that, we could investigate the approaches suggested

by Li et al. in order to reduce ciphertext expansion, which resulted from the usage of

Paillier cryptosystem with very large keys [95].
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 شكر

أود أن أشكر الله عز وجل نسان ما لم يكن يعمم. الرحيم رب العالمين الذي عمم الإ الثناء كمو لله الرحمن
  ىذا العمل. إتمامي الفرصة والقوة والقدرة عمى عمى منح

ن تعبر عن مدي طيع أبدا أدائما ما تواجيني صعوبات شديدة في كتابة كممات الشكر فالكممات لا تست
بر عن امتناني العميق لمشرفيَ عمع ذلك سوف أبذل قصاري جيدي. أولا، أود أن أوامتناني و ثنائي 

عمي القباني وذلك عمي توجيييما  دكتورة يسرا محسنمحمد شحاتة بدور و  دكتور حسن ;فاضلالأ
جو تو كتابتو بوجو عام. كما أود أن أأن النتائج المدونة بيذا العمل و ملاحظاتيما اليامة بشالمستمر و 
 المتواصل. كامل الخراشي عمي دعمو الدائم و  ستاذ الدكتور محمد واثق عميبالشكر للأ

نور ومصطفي الأ ن جامعة كاليفورنيا لوس أنجموس وىم عمروسمائيم مأشكر أيضا الباحثين التالية أ
 الفصل الخامس. ك عمي معاونتيم لشخصي في تطوير ومراجعة محتوياتذلالزنتوت وماني سيرفستافا و 

عمي جيدىم طوال فترة إعداد ىذه الرسالة. عمي دعميم المتواصل طوال عمري و  شكر والديَ أود أن أ
تمتع بالكثير من جوانب الحياة خارج نطاق صدقائي الرائعين الذين جعموني أمتنان لألأني الإيضا يمأ

   العمل.

 

 

 

 

 

 

 

 



مبثٍخ ٌٍجشِغخ اٌزظّيّبد اٌخبطخ ثّظفٛفخ اٌجٛاثبد إٌّطميخ اٌ٘ٛ رأِيٓ عٙبَ اٌضبٔي ٌٙزٖ اٌشعبٌخ َٚ الإيمذ  انفصم انرابع

رٌه ثبعزخذاَ اٌخبطيخ اٌزّبصٍيخ. ؽيش يمَٛ اٌجبؽش ثزٕفيز ٔظبِي رشفيش رّبصٍي عضئييٓ ِؼزّذا ػٍي ضذ أؽظٕخ طشٚادح ٚ

ثيّٕب يذػُ إٌظبَ اٌضبٔي ٔظبَ اٌزشفيش اٌّغّي ثبٌغًّ. يّزبص إٌظبَ الاٚي ثىٛٔٗ يذػُ خبطيخ اٌزّبصٍيخ ٌؼٍّيخ اٌضشة 

يضب اٌزٕفيز اٌؼٍّي ٌٍزظّيُ اٌغبثك ػٍي ِظفٛفخ اٌجٛاثبد إٌّطميخ اٌمبثٍخ أبصٍيخ ٌؼٍّيخ اٌغّغ. يششػ اٌفظً خبطيخ اٌزّ

 إٌزبئظ اٌضِٕيخ.يضب ٔزبئظ اٌّغبؽخ إٌّطميخ ٚأؼ ٌٍجشِغخ ِٕخفضخ اٌضّٓ وّب يٛض

 

عشاء سح ػٓ ِىزجخ ثشِغخ عؾبثيخ رغّؼ ثئ٘ٛ ػجبخيش ٌٙزٖ اٌشعبٌخ ٚٚالأعٙبَ اٌضبٌش الإيغزؼشع   انفصم انخايس

ػٍيٙب ِٓ ؽيش ػذد ِشاد صبس اٌّزشرجخ يٛضؼ الااٌّشفشح. يمذَ اٌفظً طشق عذيذح ٚػٍّيبد ِؼبٌغخ اٌظٛسػٍي اٌظٛس 

 رٌه ثٛاعطخ ػذد ِٓ الاخزجبساد اٌؼٍّيخ. الارظبي ٚاٌؼٍّيبد اٌؾغبثيخ اٌّغزخذِخ ٚ

 

ٛي اٌّغزمجٍيخ ٌلإضبفخ شع ػذدا ِٓ اٌؾٍيغزؼِٚٚب اشزٍّٗ ِٓ إعٙبِبد ػٍي ٍِخض ٘زا اٌؼًّ ًّ زيش  دسانفصم انسا

 ٌي ٘زا اٌجؾش.إ

 

اٌخبطيخ  ،أؽظٕخ طشٚادح اٌزشفيش اٌزّبصٍي اٌىٍي، ،ٔظبَ اٌزشفيش اٌغًّ ،اٌزظٛيذ الاٌىزشٚٔي – انًفتاحيةانكهًات 

 .، اٌزشفيش اٌزّبصٍي اٌغضئي، رأِيٓ اٌؾغبثبدٔظبَ اٌزشفيش ثيٍش ِؼبٌغخ اٌظٛس، ،اٌزّبصٍيخ

 

 

 

 

 

 

 

 

 

 



 ًهخص ان
 

رٌه ثبعزخذاَ ِفزبػ ٌٍشفشح. ِٕز ِئبد اٌغٕيٓ، اػزبد إٌبط سِٛص عشيخ ٌٚي فيش ٘ٛ فٓ رؾٛيً اٌشعبئً إٌظيخ إْ اٌزشإ

ٔٙب رجمي عشيخ اٌؾع، ثّغشد رشفيش اٌجيبٔبد فئؽّبيخ خظٛطيبرُٙ. ٌغٛء ق رشفيش عذيذح ٌزأِيٓ ثيبٔبرُٙ ٚػٍي رمذيُ طش

يؼزجش اٌزشفيش اٌزّبصٍي ٔٛع ِٓ أٔٛاع اٌزشفيش ٌٚىٕٗ يغّؼ  ٚغيش ِفيذح ؽزي يزُ فه شفشرٙب ثبعزخذاَ اٌّفزبػ اٌّلائُ.

ػٓ ٔزبئظ ِب ٔبد اٌّشفشح ِجبششح ثذْٚ اٌؾبعخ إٌي إصاٌخ رشفيشُ٘ ِغجمب. أعشاء ػٍّيبد ؽغبثيخ ِفيذح ػٍي اٌجيبٌٍشخض ثئ

اٌطشيمخ، يّىٓ  ثٙزٖبِخ ػٍي اٌجيبٔبد اٌغيش ِشفشح. ٚ٘زٖ اٌؼٍّيبد اٌؾغبثيخ فٙي رظجؼ ِىبفئخ رّبِب ٌٕزبئظ ٔظيشارٙب اٌّم

 عشاء ػٍّيبد ِفيذح ػٍي ثيبٔبرٗ اٌخبطخ ثذْٚ اٌزضؾيخ ثخظٛطيزٗ.ٌٍشخض اٌغّبػ ٌطشف صبٌش ثئ

 

ً عبٌيت اٌزشفيش اٌزّبصٍي في ؽىشبف ِذي فبػٍيخ اعزخذاَ أٌي اعزٌشعبٌخ إرٙذف ٘زٖ اثٕبء ػٍي اٌٛطف اٌغبثك، 

اٌشغُ ِٓ رضّٓ اٌزشفيش ػٍي ٚ عشاء اٌؼٍّيبد فيٙب ػٍي اٌجيبٔبد اٌّشفشح ضشٚسح ٘بِخ.اٌّشىلاد اٌٛالؼيخ اٌزي يؼزجش إ

٘زٖ اٌشعبٌخ يٕظت ػٍي ْ رشويض اٌزشفيش اٌزّبصٍي اٌغضئي، فئّ٘ب اٌزشفيش اٌزّبصٍي اٌىبًِ ٌٚي ٔٛػيٓ ِخزٍفيٓ ٚاٌزّبصٍي إ

ٌي سغجزٕب في رفبدي الاصبس اٌغبٔجيخ اٌشذيذح اٌّزؼٍمخ ثبعزخذاَ بٔي فمظ. يشعغ اٌغجت ٚساء ٘زا الإرغبٖ اٌجؾضي إإٌٛع اٌض

  طشق اٌزشفيش اٌزّبصٍي اٌىٍيخ.

 

الاخزظبساد ٚي ٚاٌغذابي اٌٛاسدح ثبٌشعبٌخ ٚالاشىضبفخ اٌي لٛائُ ثبٌّؾزٛيبد ٚثبلإٌي عزخ فظٛي رٕمغُ اٌشعبٌخ إ

 يضب لبئّخ ثبٌّشاعغ.أٚ اٌشِٛصٚ

 

 ػٓ ِؾزٛيبد اٌشعبٌخ فٙي وبٌزبٌي.ِب أ

 

٘زٖ  عٙبِبدإيضب ثجيبْ ٘زا اٌؼًّ. وّب يمَٛ أاٌشئيغي ٚساء رمذيُ  فضيٛضؼ اٌؾبٌشعبٌخ ٚيغزؼشع ِمذِخ ا  انفصم الاول

ٌي ثبلإضبفخ إ ِٓ ٘زٖ اٌزطجيمبد في فظً ِٕفظًاٌزي رزفشع اٌي صلاصخ رطجيمبد ِزٕٛػخ. عيزُ ششػ وً رطجيك اٌشعبٌخ ٚ

 إٌزبئظ اٌشلّيخ.اٌزغبسة اٌؼٍّيخ ٚ

 

اٌغضئيخ. وّب يشوض اٌىٍيخ ٚ ثٕٛػيٙب طشق اٌزشفيش اٌزّبصٍييخ اٌلاصِخ ػٓ خبطيخ اٌزّبصٍيخ ٚيمذَ اٌخٍفيخ اٌؼٍّ  ثاَيانفصم ان

  ثيٍش.اٌغًّ ٚ ;٘زا اٌفظً ثشىً خبص ػٍي ٔظبِي اٌزشفيش اٌزّبصٍي اٌغضئييٓ

 

٘ٛ اعزخذاَ اٌخبطيخ اٌزّبصٍيخ في أٔظّخ اٌزظٛيذ ٚي في ٘زٖ اٌشعبٌخ ٚالإعٙبَ الأ يششػ ثبٌزفظيً  ثانثانفصم ان

الاٌىزشٚٔي. ؽيش يمَٛ ٘زا اٌفظً ثزمذيُ ػذدا ِٓ اٌٙغّبد اٌّؾزٍّخ ػٍي ِبويٕخ رظٛيذ اٌىزشٚٔي ِجٕيخ ثبعزخذاَ 

ضبفخ اٌي طشق اٌؾّبيخ ِٓ رٍه اٌٙغّبد. وّب يغزؼشع اٌفظً اٌششػ ( ثبلإخ ٌٍجشِغخِظفٛفخ اٌجٛاثبد إٌّطميخ اٌمبثٍ)

 ٌٍزطجيك إٌّفز ٚوزٌه الاصبس اٌغبٔجيخ ٌٍؾٍٛي اٌّمزشؽخ.اٌىبًِ 

 



% ثبلاضبفخ 03ٌزٛفيش في اٌّغبؽخ فخ ثٛاثبد ِٕطميخ لبثٍخ ٌٍجشِغخ ؽيش ثٍغ ِمذاس ازٕفيز اٌزظّيّيٓ ػٍي ِظفٛث لّذٚ

 % ػٍي اٌزشريت.20% 03ٌٚؼٍّيزي اٌزشفيش ٚفه اٌزشفيش ثّمذاس ٌي رٛفيش اٌطبلخ اٌلاصِخ إ

اٌظٛسػٍي ػٍّيبد ِؼبٌغخ عشاء لإ ثشٔبِظبلزشاػ ٍي اٌظٛس اٌّشفشح، فمذ لّذ ثِب ِٓ عٙخ اعشاء اٌؼٍّيبد ِجبششح ػأ

ٌزشفيش اٌزّبصٍي اٌّؼشٚف ثيٍش. رٌه ثبلاػزّبد ػٍي ٔظبَ ااٌّؾبفظخ ػٍي خظٛطيخ رٍه اٌظٛس ِٚغ  اٌظٛس اٌّشفشح

طشاف اٌؾبدح اعزخشاط الأضبءح اٌظٛس ٚرٕميزٙب ٚصيبدح ؽذرٙب ٚؼذيً إِضبي رفي رؾٛيً اٌؼٍّيبد الإِٔخ ِٓ أ ذثزٌه ٔغؾٚ

ٓ رٕفيز اٌؼٍّيبد ويف يّى ٚضؾذرزؼٍك ثبٌخظٛطيخ. وّب أي ِشبوً صبٌضخ ثذْٚ أٌي عٙخ وزٌه اٌؼٍّيبد اٌشىٍيخ إِٕٙب ٚ

اٌزؼبًِ ا اٌجشٔبِظ ٌي ِب عجك، يّىٓ ٌٙزظبي. ثبلإضبفخ إِشاد الارصبس عبٔجيخ ِّىٕخ ِٓ ؽيش اٌضِٓ ٚلً ااٌغبثك روش٘ب ثأ

عجيً اٌّضبي، اؽزبعذ ػٍّيخ  يخ فبػٍيزٙب. ػٍيصجزذ اٌزغبسة اٌؼٍّأ لذٚ اٌٙٛارف إٌمبٌخ ٚي اٌّىزجيخ أعٙضح اٌؾبعت الاٌِغ أ

عشائٙب في اٌّغبي اٌّشفش ثّمذاس خطأ يغبٚي اٌظفش ٚثبعزخذاَ ِفزبػ ػىظ إؽذي اٌظٛس إٌي ألً ِٓ دليمخ ٚاؽذح لإ

  ثذ. 2301رشفيش ؽغّٗ 

اٌغًّ ٚثيٍش وجذيً ٌطشق ظٙبس فبػٍيخ اعزخذاَ طشق اٌزشفيش اٌزّبصٍي اٌغضئيخ ِضً فمذ ٔغؾذ اٌشعبٌخ في إفي اٌخزبَ، ٚ

عشاء ػٍّيبد ؽغبثيخ ػٍي اٌجيبٔبد اٌّشفشح. ٚرؼزجش صخ رطجيمبد ػٍّيخ ِخزٍفخ رغزٍضَ إاٌزشفيش اٌزّبصٍي اٌىٍيخ ٚرٌه في صلا

الاصبس اٌغبٔجيخ اٌّظبؽجخ لاعزخذاَ طشق اٌزشفيش اٌزّبصٍي اٌغضئيخ رٍه ِمجٌٛخ ِمبسٔخ ثبلاصبس اٌغبٔجيخ اٌضخّخ اٌّظبؽجخ 

 ثؾبس اٌغبثمخ.يش اٌزّبصٍي اٌىٍيخ وّب ِٛضؼ ثبلأخذاَ طشق اٌزشفلاعز

 

 

 

 

 

 

 

 

 



 انًستخهص

 
ِبَ اعزخذاَ ششوبد ِٓ ي رذع اٌجبة ِفزٛؽب ػٍي ِظشاػيٗ أإْ اٌىّيخ اٌضخّخ ِٓ اٌجيبٔبد اٌّزٛفشح في ػظشٔب اٌؾبٌ

اٌّزؼٍمخ ثخظٛطيخ  يذ ِٓ اٌشىٛنرخضيٕٙب. ٘زا ِٓ شأٔٗ أْ يضيش اٌؼذثغشع اٌزؼبًِ ِغ ٘زٖ اٌجيبٔبد ٚ طشف صبٌش

 عٛاء وبٔٛا -يغزطيغ اٌّغزخذِْٛ را ِب وبٔذ ششوبد اٌطشف اٌضبٌش رٍه ِٛصٛق ثٙب أَ لا. فّٓ عٙخ، لا إاٌّغزخذِيٓ، ٚ

ذاَ ِىٛٔبد عشاء اٌؼٍّيبد اٌّطٍٛثخ ػٍي اٌجيبٔبد اٌخبطخ ثُٙ ثبعزخرؼميذ إرؾًّ رىٍفخ ٚ -ٚ ِؤعغبد ػبدييٓ أفشادا أ

جخ ِضً خذِبد اٌؾٛع -ّبد فمظ ػٍي ششوبد اٌطشف اٌضبٌش خشي، عيؼذ ِغشد الاػزِٓ عٙخ أعيطشرُٙ. ِٚؾٍيخ رؾذ 

ذ اعزخذاَ ٔظُ اٌزشفيش اٌزّبصٍي الاِبْ ثبلاػزجبس وّٓ يجٕي للاػب ؽظيٕخ ِٓ اٌطيٓ. ٌٙزا يؼخز اٌغشيخ ٚثذْٚ أ -اٌغؾبثيخ 

عشاء ػٍّيبرٙب ػٍي اٌجيبٔبد ِغ إٌظُ ٌششوبد اٌطشف اٌضبٌش ثئؽذ اٌؾٍٛي اٌّّىٕخ ٌٍّشىٍخ اٌغبثك روش٘ب ؽيش رغّؼ ٘زٖ أ

ِٓ ٕ٘ب يّىٕٕب الاعزفبدح ِٓ اٌمذساد اٌؾغبثيخ اٌضخّخ ٌٙزٖ اٌششوبد ثذْٚ اٌزضؾيخ اٌؾفبظ ػٍي عشيخ ٘زٖ اٌجيبٔبد. ٚ

 ثخظٛطيزٕب.

خش ٔظبَ رشفيش رّبصٍي وبًِ. ثيّٕب الأؽذّ٘ب ٔظبَ رشفيش رّبصٍي عضئي ٚأٌي ٔٛػيٓ سئيغييٓ رٕمغُ ٔظُ اٌزشفيش اٌزّبصٍيخ إ

عبٔجيخ شذيذح ػٍي  ااصبسيغجت ٔٗ ؽً ِشىٍخ اٌخظٛطيخ ثظٛسح ربِخ فئ يّزبص ٔظبَ اٌزشفيش اٌزّبصٍي اٌىبًِ ثمذسرٗ ػٍي

. ٌٙزا وبْ اٌغشع الاعبعي ٌٙزٖ ِٓ أعً رفبدي ٘زٖ الاصبس، يّىٕٕب اعزخذاَ ٔظبَ اٌزشفيش اٌغضئي ػٛضب ػٕٗداء. ٚالأ

عشاء اٌزي يٍضَ فيٙب إغضئيخ في ؽً اٌّشىلاد اٌٛالؼيخ ٚاعزىشبف ِذي فبػٍيخ اعزخذاَ طشق اٌزشفيش اٌزّبصٍي اٌ٘ٛ اٌشعبٌخ 

 .اٌؼٍّيبد ػٍي اٌجيبٔبد اٌّشفشح ِجبششح

بء ػٍي اٌمضأِيٓ ٔظُ اٌزظٛيذ الاٌىزشٚٔيخ، ٚ٘ي رد ؽيش رُ اخزيبس صلاصخ رطجيمبد ِخزٍفخ ٚعٙبِبرمذَ ٘زٖ اٌشعبٌخ ػذح إ

ٍيبد ِجبششح عشاء اٌؼّأخيشا إ، ٚاٌجٛاثبد إٌّطميخ اٌمبثٍخ ٌٍجشِغخ بدّظفٛفاٌزظّيّبد اٌخبطخ ثؽظٕخ طشٚادح داخً أ

ٌي اٌزؼبًِ ِؼٙب ٘ٛ رٛافش ثيبٔبد ِشفشح في ؽبعخ إ ْ اٌؼبًِ اٌّشزشن ثيٓ ٘زٖ اٌزطجيمبد اٌّزٕٛػخػٍي اٌظٛس اٌّشفشح. إ

 ن خظٛطيخ ٘زٖ اٌجيبٔبد.ثٛاعطخ طشف صبٌش ثذْٚ أزٙب

ٌجٛاثبد إٌّطميخ اٌمبثٍخ ِظفٛفخ اثبعزخذاَ  ٔظبَ رظٛيذ اٌىزشٚٔيثٕبء رُ ٌزظٛيذ الاٌىزشٚٔيخ، رأِيٓ ٔظُ ا ِٓ عٙخ

ٕظبَ ثبلزشاػ ػذد ِٓ اٌٙغّبد ػٍي اٌ ؼيذ ٌؾظش إٌزبئظ. وّب لّذٌي خبدَ اٌىزشٚٔي ثشبشخ رظٛيذ ثبلإضبفخ إغخ ٌٍٚجشِ

دٚس  يضب أٚضؾذإٌٙبئيخ. أؽظٕخ طشٚادح ثذاخٍٗ ثٙذف اٌزلاػت ثٕزيغخ اٌزظٛيذ اٌغبثك روشٖ ِٓ خلاي صساػخ أ

شػ وزٌه طشق اٌؾّبيخ شش اٌزّبصٍي اٌّغّي اٌغًّ ٚاٌزشفيش اٌزّبصٍي في رأِيٓ اٌزظّيُ ِٓ خلاي اعزخذاِٗ ٌٕظبَ اٌزشفي

اعزٙلان اٌطبلخ خ إٌبعّخ ػٕٙب ِٓ ؽيش اٌّغبؽخ ٚاٌضِٓ ٚرمييُ رٍه اٌطشق ثٕبء ػٍي الاصبس اٌغبٔجيصُ، رُ  اٌّمزشؽخ. ِٚٓ

% وزٌه اعزٙلان ِظبدس اٌغٙبص 23ؽيش ثٍغ اٌّؼذي الاضبفي ٌٍطبلخ اٌّغزٍٙىخ ؽذا ضئيلا وّب ٌُ يزغبٚص اٌزأخيش اٌضِٕي 

 %.1اٌّغزؼًّ ٌُ يزؼذي اي 

 ثزٕفيز ، لّذاٌجٛاثبد إٌّطميخ اٌمبثٍخ ٌٍجشِغخ بدّظفٛفاٌخبطخ ث اٌزظّيّبدخ طشٚادح داخً ؽظٕأِٓ عٙخ اٌمضبء ػٍي 

ػٍي ٔظبَ اٌزشفيش  ثبلاػزّبد رٌهيذػّبْ ػٍّيخ اٌغّغ ثّفشد٘ب ٚػٍّيخ اٌضشة ثّفشد٘ب ٚ ٔظبِي رشفيش رّبصٍي عضئييٓ

ػٍي ٔظبَ صٕبئي يّزبص ثزٛفيش ثبٌغ في اٌّغبؽخ ٌي رٌه لّٕب ثذِظ إٌظبِيٓ ِؼب ٌٍؾظٛي ثبلإضبفخ إاٌّغّي ثبٌغًّ. 

 ٚاٌطبلخ اٌّغزٍٙىخ ِمبسٔخ ثبٌٕظبِيٓ ِٕفشديٓ.
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