

Federal Aviation Administration

Dan Frias 11/02/16

HONEYWELL CLEEN II Open Discussion – November 2016

UNLIMITED RIGHTS Agreement Number: DTFAWA-15-A-80017 Contractor Name: Honeywell International Inc. Address: 111 S. 34th Street Phoenix, Arizona 85072-2181

Honeywell

21-15790(02)-2

©2016 Honeywell International Inc. All Rights Reserved.

Agenda

- Elevator Speech
- CLEEN II Technologies
- Project Schedule
- Project Year 1 Accomplishments
- Project Year 2 Plans
- Project Technologies
- Summary

1

CLEEN II Elevator Speech

• The Honeywell CLEEN II program matures technologies to reduce fuel burn and NOx emissions with a SABER Compact Combustor and Advanced Turbine Blade Outer Air Seal System (BOAS).

Broad base of Commercial & Military Turbine Products That Can Benefit From CLEEN Technologies

3,000 to 10,000 lb thrust for commercial and military aircraft

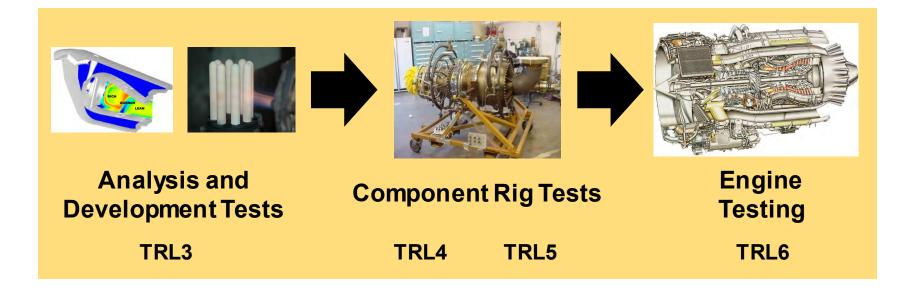
urbeprop

terra a star a d

Turboprop Engines 575 to 1,600 shp for commercial and military aircraft

Turboshaft Engines 500 to 5,000 shp for tanks, commercial and military rotorcraft B08-147

Honeywell


Over 150,000 Turbine Engines Delivered – Large Installed Base

©2016 Honeywell International Inc. All Rights Reserved.

CLEEN II Technologies Summary

CLEEN Technology Name	Goal Impact	Benefits and Applications
SABER Compact Combustor	Fuel burn Emissions	 Reduce weight (fuel burn) Reduce emissions Super mid-sized class business jet for turbofan Entry into service (EIS) 2025
Advanced Turbine BOAS System	Fuel burn	 Improved turbine efficiency (fuel burn) Applicable to turbofan, turboshaft, turboprop engines, and to large auxiliary power units (APUs) EIS 2025

Project Schedule - Technology Maturation Approach

TRL = Technology Readiness Level

A Systematic Approach Toward Reducing Risk

©2016 Honeyw ell International Inc. All Rights Reserved.

Project Schedule

	20	2015 2016						20	17			20	18			20	19			2020			
Technology	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
						PDR				CDR				Dev T	est(1)		Dev T	est(2)	_	ndura Igine`			
SABER Compact Combustor						+			+	+		п +	RL 3-4	-		TRL 4-5	+						
Advanced Turbine BOAS						•	-		+	-	×L 3-4		+			Test	[TRL 4-5		TRL 6		
Legend	TRL3	т	RL4	TRL	.5	TRL6		Techn	ology I	Develo	pment	Rig Te	st 🕇	I	Engine	Test B	uild, Te	est and	Analys	is]		

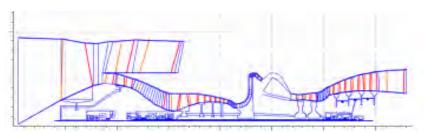
Project Year 1 Accomplishments

Systems Engineering

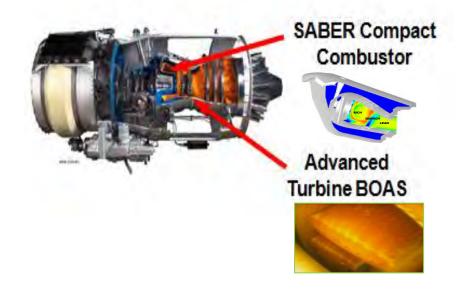
 Completed System Preliminary Design

• BOAS

 Preliminary BOAS System Design Complete


SABER Compact Combustor

- Completed Sub-Component Rig Design


Program Management

- Submitted Program Task Plan
- Submitted Program Risk Assessment
- Submitted 11 Monthly Reports

Completed Several Technology Preliminary Designs

Honeywell's FAST1D Software

Project Year 2 Plans

Systems Engineering

- Complete System Detailed Design

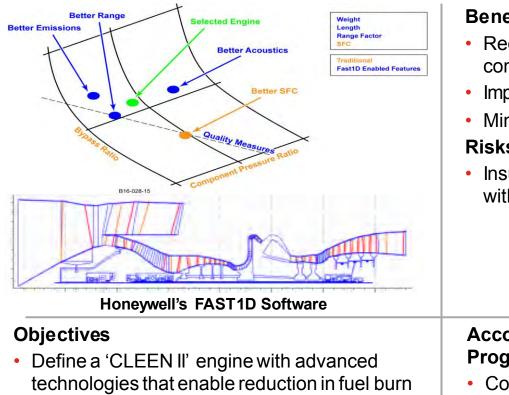
• BOAS

- Complete Rig Design
- Conduct Development Tests
- Complete BOAS Materials Downselect

SABER Compact Combustor

- Conduct Component Rig Tests
- Complete NASA Component Rig Hardware Design
- Program Management
 - Continue Monthly Reports
 - Participate in May/November Consortiums

Several Technology Development Tests Planned for Year 2



Development Tests TRL 3

Component Rig Tests TRL 4/5

Systems Engineering

Benefits

- Reduced engine thrust specific fuel consumption (TSFC)
- Improve power-to-weight ratio
- Minimize fuel burn and NOx emissions

Risks/Mitigations

Insufficient aircraft fuel burn assessment/work with Gulfstream and Georgia Tech

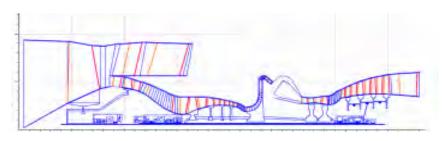
Accomplishments/Milestones Since Program Start

Completed PDR

Schedule

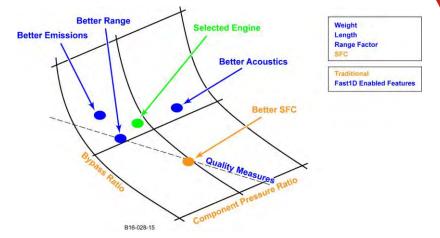
- **Customer PDR Review** (11-16)• (10-17)
- Customer DDR Review

Work Statement


Complete PDR •

and reduction in NOx emissions

Complete DDR


(complete) (future effort)

System Engineering - Preliminary Design

Honeywell's Fast1D thermodynamic modeling

- Flowpath generation
- Component efficiency prediction
- Disk sizing
- Bearing compartment sizing
- Weight trends
- Detailed design tasks are moved forward in process
- New component designs and system trades are evaluated throughout the engine

Understanding the Design Space

- Parametric studies used to define viable solution design space
- Traditional results (SFC) are captured along with other important design features
- Fast1D provides a holistic, simultaneous look at basic engine performance PLUS mission range and fuel, acoustic, emissions, engine geometry, length, weight and quality measures

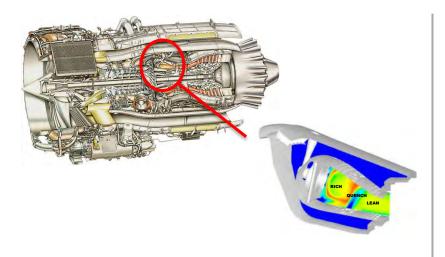
Honeywell

Big benefit comes from a system solution optimization

21-15790(02)-2

©2016 Honeyw ell International Inc. All Rights Reserved.

Systems Engineering – Technology Assessments


Gulfstream Aerospace Corporation

- Perform Quantitative assessment of fuel burn for engine/aircraft integration
- Perform assessment updates as program technologies mature in CLEEN II

Georgia Institute of Technology

- Provide independent assessment
- Perform Fleet-wide impact assessment

SABER Compact Combustor

Benefits

- Fuel burn reduction
- NOx emissions reduction

Risks/Mitigations

Operability Rig altitude relight tests
Achieving NOx goal NASA rig test
Combustor life Rig and engine tests

Objectives

- NOx emissions reduction
- Reduce weight through innovative design

Work Statement

- Complete Design (in process)
- Complete Fabrication
- NASA Rig test
 (future effort)
- Complete Dev Engine Test (future effort)
- Complete TRL6 Engine Test (future effort)

Accomplishments/Milestones Since Program Start

Completed preliminary rig test design

Schedule

- Complete Design
 (5-18)
- Complete Fabrication (8-19)
- NASA Rig Test
 (8-19)
- Complete Dev Engine Test
 (10-18)
- Complete TRL6 Engine Test
 (12-19)

Honeywell

(in process)

Program Testing – SABER Compact Combustor

	20	15	2016					2017 20								20	19			2020			
Technology	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
						PDR				CDR				Dev T	est(1)		Dev T	est(2)		nduraı Igine T			
SABER Compact Combustor						+			+	∔ π	XL 3-4	π +	RL 3-4	-	N	TRL 4-5	+	1			RL 6 RL 6		
Advanced Turbine BOAS		T	RL4	TRL	.5	TRL6		Techn	+ ology	Develo	pment	Rig Te	+ st +		Engine	Test B	uild, Te	est and	Analys	is			

SABER Combustor – Honeywell Rig Tests

Obtain data to correlate predicted results and select sub-system design

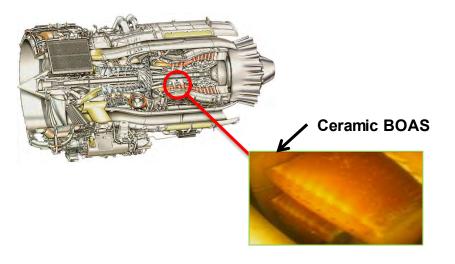
- CFD analysis and Mechanical design complete
- Completed selection of initial combustor sub-components to be tested
- Testing planned for late Q4 2016

SABER Compact Combustor – NASA Rig Test

QUICK FACTS

Description

The ASCR is a high-pressure, high temperature combustion rig which simulates engine test conditions up to a pressure of 900 PSIG and a temperature of 1300°F non-vitiated (no combustibles) at 50 lb/sec air flow. The facility supports research on multiple fuel injector test hardware for large aircraft engine development, and full scale annular combustor development for regional aircraft engine development.


Name:	Advanced Subsonic Combustion Rig
Inlet Pressure:	150-900 psig
Inlet Temperature:	250° to 1300°F (non-vitiated)
Inlet Airflow:	5 to 50 lb/sec
Exhaust:	atmospheric or altitude
Facility Manager (Acting):	Gwynn.A.Severt@nasa.gov

Source: <u>http://facilities.grc.nasa.gov/ascr/quick.html</u>

- Honeywell to test the CLEEN II annular combustor system in the NASAAdvanced Subsonic Combustion Rig (ASCR)
- ASCR provides data at relevant combustor engine operating conditions for the CLEEN II cycle.
 - Validate Combustor Emissions

- Combustor Performance
- Liner Metal temperatures
- Test planned for Q2 2019

Advanced Turbine BOAS System

Objectives

Improve HP turbine efficiency

Work Statement

- Complete Design (in process)
- Complete Fabrication (in process)
- Complete Dev Engine Test (future effort)
- Complete TRL6 Engine Test (future effort)

Benefits

• Fuel burn reduction

Risks/Mitigations

- · Insufficient material durability/rig and engine test
- Insufficient performance/alternate BOAS design

Accomplishments/Milestones Since Program Start

Preliminary sub-element testing underway

Schedule

- Complete Design (9-18)
- Complete Fabrication (12-18)
- Complete Dev Engine Test
 (10-18)
- Complete TRL6 Engine Test
 (12-19)

Program Testing – Advanced Turbine BOAS System

	20	15		20	16			20	17			20	18			20)19			20	020	
Technology	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
						PDR				CDR				Dev T	est(1)		Dev T	est(2)		ndura Igine 1 Y		
SABER Compact Combustor						+			+	+		п -	RL 3-4			TRL 4-5	+				TRL 6	
Advanced Turbine BOAS						+-	-		+	TT	8L 3-4		+			IASA Rig Test	[1	RL 4-5		TRL 6	
Legend	TRL3	Т	RL4	TRL	.5	TRL6		Techn	ology	Develo	pment	Rig Te	st 🕇		Engine	Test B	uild, Te	est and	Analys	is		

17

BOAS - Thermal Gradient Rig

- Obtain data to understand the characteristics and failure modes of CMC under stress induced by a thermal gradient.
 - Use existing mechanical research rig that was repurposed for thermal mechanical testing.
 - Rig operating conditions and requirements defined
 - Design and analyses complete
 - Test plan complete and Instrumentation requirements defined
 - Initial testing planned for Q4 2016

21-15790(02)-2

BOAS – CMC/Combustor Rig Test

Obtain data to correlate predicted results for CMC shroud design

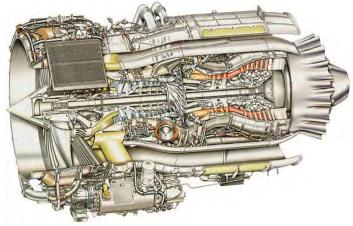
- Analysis and Mechanical design complete for CMC Shroud
- Test Rig Concept Design in progress for CLEEN II combustor annular rig tests.
- Testing planned for Q4 2017

Program Testing – Engine Testing

	20	15		20	16			20	17			20	18			20	19			2020			
Technology	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
						PDR				CDR				Dev T	est(1)		Dev T	est(2)		indura ngine			
SABER Compact Combustor						+			+	+		п -	RL 3-4	•		TRL 4-5	+		1 1	L			
Advanced Turbine BOAS						+-	-		+	П	RL 3-4		+		-	NASA Rig Test			TRL 4-5	1	TRL 6		
Legend	TRL3	Т	RL4	TRL	5	TRL6		Techn	ology	Develo	pment	Rig Te	st 🕇	1	Engine	Test B	uild, Te	est and	Analys	is			

Program Testing – Engine Testing

Development Test(1) – Q4 2018


- HPT BOAS Technology assessment

Development Test(2) - Q4 2019

 SABER Compact Combustor liner wall temperature assessment

Endurance Engine Test – Q2 2020

- Engine Emissions assessment
- Endurance Engine test to support TRL 6 validation of SABER Compact Combustor and BOAS Technologies

TRL 6 Engine Testing

Summary

- The Honeywell CLEEN II program is progressing well to mature the SABER Compact Combustor and the Advanced Turbine BOAS to reduce fuel burn and NOx emissions
 - Systems Engineering
 - Program completed the system PDR and look forward to completing the system DDR in Year 2
 - BOAS
 - Preliminary BOAS System Design complete
 - Planning to complete Rig Design, conduct several development tests and down-select the BOAS Material configuration in Year 2

- SABER Compact Combustor

- Completed Sub-Component Rig Design leading to component rig tests in Year 2
- Plan to complete NASA Component Rig Hardware Design in Year 2