NOTES: Honors Algebra Unit 1: Linear Equations

Day 1~ 2-1 Relations & Functions

Part 1: Use the following words to complete the sentences below:

		Inputs	Dependent	Range	Domain	Independent	Relation	Outputs
			is a set					
				ation is t	he set of a	II	_or x-coordi	nates
3.	The.		of a rel	ation is t	he set of a	II	or y-coordi	nates
		ne orderec	•	. م: داداد:	ممالحة الممالية		المام تحديد	1_
		•	•					
J.	In ar	i equation,	, the output vo	ariable is	called the		variab	ie.
St	tate tl	ne domain	and the rang e	e for eac	h relation.			
1. 3.	At 2	4 calories	s burned per p	2.	-10 -8 -6 -4 -	10 8 4 4 2 2 2 3 4 8 10 10 10 10 10 10 10 10 10 10 10 10 10	3.	1 2 4 5
J.			•		_	deled by $C = 1100$		W 77
4.	build		.5 per square			quare feet. The 1 by C = 125f, wh		:
Pa	ırt 2:	Function	versus not o	function	n activity			
1.	A with	exactly on	is a relat e element in t	ion in wh he range	ich each ele z.	ement of the do	main is paire	ed
2.	has c	at least on e. If the	e element of	the domo asses thi	ain paired w	determine whet ith more than or r more points or	ne element o	f the

Determine whether each relation is a function:

- 1. $\{(1,1), (2,1), (3,1), (4,1), (5,1)\}$
- 2. {(2,1), (2,2), (2,3), (2,4), (2,5)}
- $3. \{(0,2), (0,3), (0,4), (0,5), (0,6)\}$

Part 3: Function Notation

Traditionally, functions are referred to by the letter f, but f need not be the only letter used in function names. The following are but a few of the notations that may be used to name a function: f(x), g(x), h(a), A(t), ...

$$f(x) = x^2$$
 $g(x) = -2x + 4$ $h(a) = a^2 + 5a + 4$ $A(t) = 16t^2 - 4t - 1$

$$y = x^2 + 7$$

 $f(x) = x^2 + 7$
 $f = \{(x, y) \rightarrow y = x^2 + 7\}$

Part 4: Evaluating Functions

To evaluate a function, simply replace the function's variable (substitute) with the indicated number or expression.

1. f(x) = 2x + 5 find f(3).

2. $R(v) = v^3 + 3v^2 - 5v - 6 \text{ find } R(-2)$

- 3. $h(x) = 2x^2 + 6x 3 \text{ find } h(4a)$
- 4. $f(x) = x^2 + 2x 1$ find f(3h + 2)

Vocabulary:

Parent function

Day 2~ Parent Functions

Transformation

Vertical Compression

Translation

- A ______is the simplest form in a set of functions that form a family.
- Each function in the family is a _______of the parent function.
- One type of transformation is a ______.

Vertical

Stretch

- A _____flips the graph of a function across a line, such as the x- or y-axis.
- A ______multiplies all y-values of a function by the same factor greater than 1.
- A _____reduces all y-values of a function by the same factor between 0 and 1.

Linear f(x) = x

Absolute Value f(x) = |x|

Domain: Range:

Domain: Range:

Quadratic $f(x) = x^2$

Square Root $f(x) = \sqrt{x}$

Domain:

Range:

Domain: Range:

Cubic $f(x) = x^3$

Domain:

Range: Exponential $f(x) = b^x$

Domain: Range:

Cube Root $f(x) = \sqrt[3]{x}$

Domain: Range:

Rational
$$f(x) = \frac{1}{x}$$

Domain: Range:

Key Concept: Transformations of f(x)

Vertical Translations

- Translation up k units, k > 0y = f(x) + k
- Translation down k units, k > 0y = f(x) - k

Vertical Stretches and Compressions

- Vertical stretch, a > 1
 y = af(x)
- Vertical compression, 0 < a < 1
 y = af(x)

Horizontal Translations

- Translation right h units, h > 0y = f(x - h)
- Translation left h units, h > 0y = f(x + h)

Reflections

- In the x-axis y = -f(x)
- In the y-axis y = f(-x)

PRACTICE: Graph each pair of functions on the same coordinate plane. Describe a transformation that changes f(x) to g(x).

1.
$$f(x) = x + 6$$
; $g(x) = x - 2$

2.
$$f(x) = -x - 5$$
; $g(x) = x - 4$

3.
$$f(x) = x - 7$$
; $g(x) = x + 4$

4.
$$f(x) = -x - 8$$
; $g(x) = -x + 5$

Day 3~ Absolute Value Equations (1.5)

_is the distance a number is from zero on the number line and distance

$$Ex: |-4| = 4$$

Solving Absolute Value Equations

Absolute Value Equations usually have 2 answers. This is because to get rid of the absolute value bars we have to rewrite the equation as two separate linear equations.

Ex: |x-3| = 27 Rewrite the equation as 2 different equations.

x-3=27 and x-3=-27 Think about which numbers have an absolute value of 27.

The steps to solve an absolute value equation are:

- 1. Isolate the absolute value first.
- 2. Rewrite the equation as two separate linear equations.
- 3. Solve each equation individually to get the two answers.

Ex:
$$|2x + 3| = 15$$

$$2|x-7|=16$$

Solve Multi-step Absolute Value Equations

5

Ex:
$$3|4x-1|-5=10$$

$$2|3x-1|+5=33$$

<u>Extraneous Solution</u>: A solution of an equation derived from an original equation that is _____a solution of the original equation.

Check for extraneous solutions:

$$|2x+5| = 3x+4$$

$$|2x + 3| = 3x + 2$$

Day 3~ Absolute Value Inequalities

Ex: If |x| < 3 that means that its distance from zero is less than 3 spaces.

What number(s) is exactly three spaces from zero?

What are other numbers that are less than 3 spaces away from zero?

Plot this on a number line:

Where do all these numbers seem to lay?

Ex: If $|x| \ge 3$ that means that its distance from zero is more than 3 spaces.

What number(s) is exactly three spaces from zero? _____

Where do these points seem to lie?_

We call these two situations compound inequalities. These two types are called *and* and *or* statements.

<u>And</u>: This is an in-between situation. Your answer would be written # < x < #

<u>Or</u>: This is the "going out" situation. Your answer would be written x < # or x > #

All absolute value inequalities make an and or an or statement. We know which by what the sign is.

Less Thand - Less than Absolute values make and statements **Greator** - Greater than Absolute values make or statements. You can use absolute value inequalities to specify allowable ranges in measurements. The difference between a desired measurement and its maximum and minimum allowable values is the _____

Ex. A manufacturing specification calls for a dimension d of 10 cm. However, there is an allowable tolerance of 0.1 cm. Write an absolute value inequality to describe this situation.

Ex. At the Brooks Graphic Company, the average starting salary for a new graphic designer is \$37,600, but the actual salary could differ from the average by as much as \$2590. Write an absolute value inequality to describe this situation.

Ex. Write an absolute value inequality for a length of 36 ft with a tolerance of 6 inches.

Day 3~ Absolute Value Graphs (2.5)

Graphing Absolute Functions on a calculator (Hint: Use the absolute value key: Math, Number, 1)

Ex. 1
$$y = |x+3|$$

Ex. 2
$$y = |x| - 5$$

Vertex:

Vertex:

Vertex:___

Ex. 3
$$y = |x-2| - 6$$

Ex. 4
$$y = -|x+4|+3$$

Practice:

Use your graphing calculator to graph the Absolute Value Functions below.

1.
$$y = -|x+4|-6$$

$$y = |x - 3| + 1$$

Day 3 ~ Section 2.6 Vertical & Horizontal Translations

$$y = a|x-h|+k$$

Graphs of absolute value functions look like angles.

Examples:

$$f(x) = /x/$$

$$f(x) = 2/x - 1/-4$$

$$f(x) = -|x + 2| + 3$$

of a function is the point where the function reaches a maximum or minimum.

- ❖ In general the vertex of an absolute value equation is located at:
 - A. By Transformation: (on TI-83)

Graph each of the functions below on your calculator with a partner. Explain how each graph differs from the graph of y = |x|.

1.
$$y = |x| + 1$$

2.
$$y = |x| - 2$$

3.
$$y = |x + 1|$$

4.
$$y = |x - 2|$$

- 5. y = -|x|
- 6. y = 3|x|
- 7. y = |3x|
- 8. $y = \frac{1}{3}|x|$
- 9. $y = \left| \frac{1}{3} x \right|$

Summary:

Examples: (without a calculator, explain how each graph would differ from y = |x|)

- 1. y = |x+2| 3 3. y = |2x| + 4
- IV. Use a chart and graph. Be sure to identify the vertex.
 - 1. y = |x-3| + 1

2. y = |2x+4|-3

3. y = |-3x+5|

Day 5 ~ Piecewise Functions

is defined as a function that uses different rules for different parts of its domain.

For example, let's look at an application. Lisa makes \$4/hr baby-sitting before midnight and \$6/hr after midnight. She begins her job at 7 pm.

a) Complete the table below for the total amount of money Lisa makes.

Time	8 pm	9 pm	10 pm	11:30	12:00	12:30 am	1 am	2 am
Hour Sitting		2	3		5		6	7
Amount Earned	\$4							

b) If we want to fill out the entries after midnight in the table above, we need to realize that the function is piecewise; that is, Lisa is paid at two different rates, one for the time she baby-sits before midnight, and another for the time she baby-sits after midnight. Since the rate changes at t=5, we need two different rules: one for t≤5 and one for t>5. Find the two different functions that would define how much money Lisa makes with respect to the number of hours she baby-sits.

Part II: Graphing Piecewise Functions

2)
$$h(x) = \begin{cases} 2x+3 & \text{if } x > 1 \\ 3-x^2 & \text{if } x \le 1 \end{cases}$$

3)
$$h(x) = \begin{cases} |x| - 3 & \text{if } x > 1 \\ -x + 4 & \text{if } x \le 1 \end{cases}$$

Function? Yes or No

Function? Yes or No

Function? Yes or No

f(-4)=

h(4) =

h(o)=

f(3)=

h(-2) =

h(1)=

Part III: Write the equations for the piecewise functions whose graphs are shown below. Assume the units are 1 for every tic mark.

10

5)

Inequalities

II. Graphing Linear Inequalities

- A. To graph linear inequalities:
 - 1. Treat the inequality as an equality and graph the associated line.
 - 2. If you include the line ($\leq \geq$), then use a _____ line

 - If you do not include the line (< >) then use a _____ line.
 Choose a _____ to decide which way to shade.(use (0, 0) unless it lies on the line)

B. Examples:

1) Graph 3x - y < 6

2)Graph 2x − 5y \ge -10

You can graph two-variable absolute value inequalities the same way you graph linear inequalities.

3.
$$y \le |x-4|+5$$

4.
$$-y + 3 > |x + 1|$$

