Honors Chemistry 1

What you should know.

THIS IS NOT ACTUALLY AN ASSIGNEMNT, but within the first week of school, you will be given your first test for honors chemistry that will cover prior chemistry knowledge you have learned in middle school, physics, and last year in biology. This test will be for a grade and all this material will not be covered in class. You will be responsible for reviewing all of this on your own. Use the practice worksheets as well as other resources on the internet (such as Kahn Academy) to help you as your review this information.

HAVE A GREAT SUMMER AND I'M LOOKING FORWARD TO A GREAT YEAR NEXT YEAR!

Mrs. Jorgensen - cynthia.jorgensen@cscslions.org

Math Skills

- Know how to use your calculator the right way
- Most of you will have your TI-nspire calculators and that's great, but a scientific calculator will work great too. Consider getting a second calculator as a backup. Scientific calculators are about $\$ 15$ at Target or Walmart.
- YOU NEED TO HAVE A WORKING, CHARGED CALCULATOR EVERY DAY!!!
- Be aware of how your calculator handles order of operations and when you need to include parentheses.
- Know how to do scientific notation on your calculator.
- For most of you, this is done with the "EE" button. You may experience a lot of calculator mistakes if you try to put in " $\times 10^{\text {a power ". I suggest getting out of that }}$ habit.
- Basic Algebra skill
- Know how to manipulate an equation to solve for a variable
- Know how to round properly
- Know how to calculate a percent
- Fractions
- Know how to add/subtract and multiple/divide fractions
- Convert between a faction and decimal and percent
- Graphing skill
- Know the difference between circle, bar, and line graphs and what each are used for
- Be able to find the line of best fit, linear and nonlinear relationships, and slopes
- Be prepared to interpret a graph and to use a set of data and graph in the appropriate type
- Scientific Notation
- Scientific notation is used to represent really big or really small numbers
- Be able to convert numbers from standard notation to scientific notation and vice versa without a calculator
- Correctly calculate scientific notation problems with your calculator (DO NOT TYPE IN $\times 10$ IN YOUR CALCULATOR, use EE or the equivalent)
- See "Scientific Notation" for practice

The Metric System

- Know the difference between the English system and the Metric system of measurement
- Know the different units for the metric system and their abbreviations
- Know that the metric system is based on the power of 10 and how to convert between different measurements
- See "The Metric System" and "Metric Number Puzzle" for practice

The Periodic Table

- Know the basic organization of the periodic table
- Where the metals, nonmetals, metalloids, line of separation are located
- What the main families/groups of elements are: Transition metals, alkali metals, alkaline earth metals, halogens, noble gasses
- Know that the lanthanide and actinide series have been removed to only allow for the periodic table to fit on a page better. It should look like this \rightarrow

- Be able to find the name, symbol, atomic number, and atomic mass for each element
- See "The Periodic Table" for practice

The Atom

- The structure of the atom
- Protons - positively charged, located in the nucleus, and has a mass of 1 amu
- Protons are what make an element that element; atomic number = \# protons
- Neutrons - no charge, located in the nucleus, and has a mass of about 1 amu
- \# neutrons = Mass - atomic number
- Electrons - negatively charged, located around the nucleus, has no mass (2,000 times less than a proton)
- In a neutral atom, \# electrons = \# protons = atomic number
- Located in energy levels around the nucleus - Bohr Model
- See "Bohr Models" for more practice

Scíentífic \mathcal{N} otation Practíce

Convert the following numbers to Standard Scientific Notation.

1) 0.0023 \qquad 5) 1374000000
2) 471000
3) 2515000
4) 0.0124
5) 0.0000010032
6) 0.0000000000004
7) 201400000000000
\qquad
onvert the following from Standard Scientific Notation to numerical form.
8) 1.37×10^{7}
9) 4.320×10^{6}
10) 2.01×10^{-4}
11) 3.002×10^{-7}
12) 7.90×10^{-13} \qquad 14) 4.98×10^{1}
13) 7.90×10^{-13}
\qquad
\qquad
\qquad
Write down what you would put into your calculator to solve the following problems. DO NOT SOLVE!
14) $4.35 \times 10^{-7}+1.002 \times 10^{-8}$

15) $7.002 \times 10^{5}+1.3 \times 10^{3}$
16) \qquad

Solve the following problems dealing with scientific notation. Put all your answers in scientific notation (with the $\times 10$ not E in your written answer).

$$
\begin{aligned}
& \text { 18) } 9.3 \times 10^{-13} \div 3.1 \times 10^{4}= \\
& \text { 19) } 1.002 \times 10^{2}-7.10 \times 10^{3}= \\
& \text { 20) } 8.00 \times 10^{7} \cdot 1.11 \times 10^{-5}= \\
& \text { 21) } 4.21 \times 10^{12} \div 1.00 \times 10^{-4}= \\
& \text { 22) } 3.0 \times 10^{32}-4.51 \times 10^{29}= \\
& \text { 23) } \frac{5.36 \times 10^{-1}-7.40 \times 10^{-2}}{3.5 \times 10^{-3}}= \\
& \text { 24) } \frac{9.2 \times 10^{4}}{2.9+8.3 \times 10^{4}}= \\
& \text { 25) } 6578.4+3.8 \times 10^{-1} \bullet 0.087-3.21 \times 10^{12}=
\end{aligned}
$$

The Metric System

1. Why is a good idea to have a standard for units?
2. What are the two most widely used standard systems of units and where are they used?
3. What was set up in 1960 for scientific measurement? What is it called?
4. Complete the table for some of the fundamental SI units.

Physical Quantity	Name of Unit	Abbreviation
Mass		
Length		
Time		
Temperature		

5. The metric system is based on the power of tens which uses scientific notation when converting the fundamental units to more convenient sizes by using prefixes. Fill in the following table based on the metric system prefixes.

Prefix	Symbol	Meaning	Scientific Notation
Giga	G	$1,000,000,000$	10^{9}
	M		
		1,000	
Hecto	h		10^{2}
Deca	dK or da	10	10^{0}
Base Unit	No prefix		
Deci			
	c		10^{-6}
		0.001	
Nano			

6. Try converting the following measurements based upon the metric system.

783 dekagrams $=$ \qquad megagrams
0.736 centiliters $=$ \qquad nanoliters

14 kilometers $=$ \qquad meters

109 grams = \qquad kilograms
250 meters $=$ \qquad kilometers
5.6 gigaliters $=$ \qquad liters

Metric \mathcal{N} umber Puzzle

Down

1. $7.4 \mathrm{~km}=$ \qquad m
2. $6.9 \mathrm{cg}=$ \qquad mg
3. $8.7 \mathrm{kl}=$ \qquad L
4. $8000 \mathrm{~g}=$ \qquad kg
5. $10.5 \mathrm{~cm}=$ \qquad mm
6. $5300 \mathrm{ml}=$ \qquad L
7. $12000 \mathrm{mg}=$ \qquad g
8. $12100 \mathrm{mg}=$ \qquad g
9. $2.2 \mathrm{kl}=$ \qquad L
10. $4 \mathrm{cg}=$ \qquad mg
11. $11000 \mathrm{~L}=$ \qquad kl
12. $6 \mathrm{~L}=$ \qquad cl
13. $30 \mathrm{ml}=$ \qquad cl
14. $5.4 \mathrm{~L}=$ \qquad cl
15. $5000 \mathrm{~g}=$ \qquad kg

Across

1. $70 \mathrm{~mm}=$ \qquad cm
2. $60 \mathrm{ml}=$ \qquad cl
3. $8.043 \mathrm{~kg}=$ \qquad g
4. $1600 \mathrm{~L}=$ \qquad kl
5. $1100 \mathrm{ml}=$ \qquad L
6. $2419 \mathrm{mg}=$ \qquad g
7. $4500 \mathrm{~mm}=$ \qquad
8. $1060 \mathrm{cl}=$ \qquad L
9. $38 \mathrm{~mm}=$ \qquad cm
10. $1 \mathrm{~kg}=$ \qquad
11. $20 \mathrm{~mm}=$ \qquad cm
12. $3505 \mathrm{~L}=$ \qquad kl
13. $5.6 \mathrm{cg}=$ \qquad mg
14. $3 \mathrm{cl}=$ \qquad ml
15. $7 \mathrm{~m}=$ \qquad cm

The Periodic Table

Use colored pencils to color in the periodic table.

1. The following elements are metalloids: $\mathrm{B}, \mathrm{Si}, \mathrm{Ge}, \mathrm{As}, \mathrm{Sb}, \mathrm{Te}$, and Po. Color them and be sure to color the key.
2. The elements in periods (rows) 2 through 7 that are to the left of the zigzagged line of separation are metals. Chose a color to outline (don't color!) the metals (don't forget the key).
3. The elements in periods 1 through 6 that are to the right of the zigzagged line of separation are nonmetals. Chose a color to outline (don't color!) the nonmetals (don't forget the key). Don't forget hydrogen...it's a little out of place.
4. Label the line of separation. This is the staircase line that starts between Boron and Aluminum and goes down the middle of the metalloids, finishing between Polonium and Astaine.
5. The alkali metals are in group (column) 1. They have only one electron in their outer shell. They are VERY reactive and have a low melting point. Color the alkali metals (don't forget the key).
6. Alkaline earth metals are located in group 2 . They have 2 electrons in their outer energy level. Color the alkaline earth metals (don't forget the key).
7. The noble gases are found in group 18. Their outer energy level is filled, and they are very nonreactive, colorless gases. Color the noble gases (don't forget the key).
8. Halogens have seven electrons in their outer shell. They are located in group 17 on the periodic table. Halogens react with metals to form salts. Color the halogens (don't forget the key).
9. The transition elements are found in groups 3 through 12 and periods 4 through 7. These elements have either one or two electrons in the outer energy level. They are often used to form alloys because they are hard and have high melting points. Color the transition metals (don't forget the key).
10. Below the main part of the table are two rows of elements. These elements are part of the transition metal section. The top row is called the Lanthanide Series and the bottom section is called the Actinide Series. Label each series and color these rows using the same color you use for the transition metals.

Answer these five questions based upon your periodic table.

1. What is a metalloid? (Hint: notice where they are located on the Periodic Table)
2. List 5 metals.
3. List 5 nonmetals.
4. What does the line of separation separate?
5. Where do the names Lanthanide and Actinide come from? (hint: take a look at your periodic table and take note of the names of elements)

Bohr Models

Draw Bohr Models for the following elements.

1. Hydrogen
2. Selenium
3. Fluorine
4. Titanium
5. Phosphorus
6. Arsenic
7. Argon
8. Silver
9. Lithium
10. Mercury

Answers

 $\begin{array}{lll}\text { 10) } 2.01 \times 10^{-4} & \underline{0.000201} & \text { 13) } 3.002 \times 10^{-7} \\ \text { 11) } 7.90 \times 10^{-13} & \underline{0.00000000000790} & \text { 14) } 4.98 \times 10^{1}\end{array}$ $\begin{array}{ll}\text { 9) } 1.37 \times 10^{7} & 13,700,000 \\ 10) 2.01 \times 10^{-4} & 0.000201\end{array}$ 4) $0.000000000004 \frac{4 \times 10^{-12}}{}$ Convert the following from Standard Scientific ャて100 0001 Lt (τ
£z000 (I
 Name: Key $\begin{aligned} & \text { Block: } \\ & \text { Scientific Notation Practice: }\end{aligned} \quad$ Date:
1.374×10^{9}
2.515×10^{6}
1.0032×10^{-6}
2.014×10^{14}
8) 201400000000000
$\frac{800 \varepsilon 000000^{\circ} 0}{00002}$
 $\frac{2.01 \times h 2 \cdot 1}{501 \times 12 \cdot h}$ ¢1 5 - 01×2 $00100000^{\circ} 0$
000 (LISZ 5) $1374000000 \quad 1.374 \times 10^{9}$

Solve the following problems dealing with scientific notation. Put all your answers in scientific notation
(with the $\times 10$ not E in your written answer).
 20) $8.00 \times 10^{7} \cdot 1.11 \times 10^{-5}=888 \quad 8.88 \times 10^{2}$
19) $1.002 \times 10^{2}-7.10 \times 10^{3}=-6999.8-6.9998 \times 10^{3}$
18) $9.3 \times 10^{-13} \div 3.1 \times 10^{4}=3 \times 10^{-17}$ \square

Metric Number Puzzle $\underset{\substack{\text { Name: } \\ \text { Per: }} \frac{\text { Key }}{\text { Dale: }}-\square}{ }$

 spepmuon rut wey spepow วVL

 Answer these five questions based upon your periodic table.

10. Below the main part of the table are two rows of elements. These elements are part of the transition
metal section. The top row is called the Lanthanide Series and the bottom section is called the
 have either one or two electrons in the outer energy level. They are often used to form alloys 9. The transition elements are found in groups 3 through 12 and periods 4 through 7 . These elements Halogens have seven electrons in their outer shell. They are located in group 17 on the periodic table,
Halogens react with metals to form salts. Color the halogens (don't forget the key).
 Alkaline earth metals are located in group 2. They have 2 electrons in their outer energy level. Color
the alkaline earth metals (don't forget the key). The alkali metals are in group (column) 1. They have only one electron in their outer shell. They are
VERY reactive and have a low melting point. Color the alkali metals (don't forget the key). goes down the middle of the metalloids, finishing between Polonium and Astaine. Label the line of separation. This is the staircase line that starts between Boron and Aluminum and
 metals. Chose a color to outline (don't color!) the metals (don't forget the key). The elements in periods (rows) 2 through 7 that are to the left of the zigzagged line of separation are the key

The Periodic Table of the Elements

$\underset{\text { Name: }}{\text { Ney }}$

