Honors Chemistry: Rules for Significant Figures (sig figs, s.f.)

A. Read from the left and start counting sig figs when you encounter the first non-zero digit

1. All non-zero numbers are significant (meaning they count as sig figs)

613 has three sig figs
123456 has six sig figs
2. Zeros located between non-zero digits are significant (they count as sig figs)

5004 has four sig figs
602 has three sig figs
6000000000000002 has 16 sig figs!
3. Trailing zeros (those at the end) are significant only if the number contains a decimal point; otherwise they are insignificant (they do not count)
5.640 has four sig figs
120000. has six sig figs

120000 has two sig figs - unless you're given additional information in the problem
4. Zeros to left of the first nonzero digit are insignificant (they don't count); they are only placeholders!
0.000456 has three sig figs
0.052 has two sig figs
0.000000000000000000000000000000000052 also has two sig figs!

B. Rules for addition/subtraction problems

Your calculated value cannot be more precise than the least precise quantity used in the calculation. The least precise quantity has the fewest digits to the right of the decimal point. Your calculated value will have the same number of digits to the right of the decimal point as that of the least precise quantity.

In practice, find the quantity with the fewest digits to the right of the decimal point. In the example below, this would be 11.1 (this is the least precise quantity).
$7.939+6.26+11.1=25.299$ (calculator answer)
In this case, your final answer is limited to one sig fig to the right of the decimal or 25.3 (rounded up).

C. Rules for multiplication/division problems

The number of sig figs in the final calculated value will be the same as that of the quantity with the fewest number of sig figs used in the calculation.

In practice, find the quantity with the fewest number of sig figs. In the example below, the quantity with the fewest number of sig figs is 27.2 (three sig figs). Your final answer is therefore limited to three sig figs.
$(27.2 \times 15.63) \div 1.846=230.3011918$ (calculator answer)
In this case, since your final answer it limited to three sig figs, the answer is 230 . (rounded down)

D. Rules for combined addition/subtraction and multiplication/division problems

First apply the rules for addition/subtraction (determine the number of sig figs for that step), then apply the rules for multiplication/division.

58	59	60	61	62	63	64	65	66	67	68	69	70	71
${ }^{5} \mathrm{Ce}$	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	145	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
*Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231	238.0	238	244	243	247	247	251	252	257	258	259	260

Honors Chemistry Conversion Factors, Equations and Constants

Weight/Mass	Volume	Length/Distance
16 ounces $=1$ pound	1 liter $=1.0567$ quarts	1 inch $=2.54$ centimeter
1 kilogram $=2.2$ pounds	1 mL $=1$ centimeter (cubed)	1 mile $=5280$ feet $=1.609$ kilometers
454 grams $=1$ pound	1 gallon $=3.78$ liters	1 yard $=3$ feet $=36$ inches $=0.9144$ meters
1 ton $=2000$ pounds	1 quart $=2$ pints $=32$ fluid ounces	1 meter $=39.37$ inches $=3.281$ feet $=1.094$ yards
		1 kilometer $=1094$ yards $=0.6215$ miles
	1 light-year $=5.88 \times 10^{12}$ miles $=9.46 \times 10^{12} \mathrm{~km}$	

Density = M/V Density of water $=1.00 \mathrm{~g} / \mathrm{mL}$ Density of $\mathrm{CO}_{2}=1.977 \times 10^{-3} \mathrm{~g} / \mathrm{mL}$ Density of gas $=\mathrm{d}=\frac{P M}{R T}$	$\begin{aligned} & \text { Energy }=1 \text { calorie }=4.184 \text { joules } \\ & \text { Energy of photon }=\mathrm{hv}=\frac{h c}{\lambda} \\ & \text { Potential Energy }=\mathrm{V}=\mathrm{k} \frac{\mathrm{q} \frac{\mathrm{q} 2}{r}}{r} \end{aligned}$
Pressure and Gas Laws	Radioactive Decay and Planck's Equations Amount remaining $=$ original amount $\times\left(\frac{1}{2}\right)^{n} \quad n=$ number of half-lives Planck's Light Equation $\mathrm{E}=\mathrm{hv}=\frac{\boldsymbol{h} \boldsymbol{c}}{\boldsymbol{\lambda}}$ Planck's Constant $(\mathrm{h})=6.626 \times 10^{-34} \mathrm{~J} * \mathrm{~s}$ Speed of Light (c) $=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\begin{array}{\|ll} \hline \mathrm{pH} \text { Equations } & \\ \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] & \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\ {\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}} & {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}} \\ \mathrm{pH}=\mathrm{pOH}=14 & {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}} \end{array}$	Avagadro's Number (Lorenzo Romano Amedeo Carlo Avogadro) $1 \text { mole }=6.022 \times 10^{23} \text { particles }=N_{A}$ Thermochemistry $\begin{array}{lrl} \mathrm{Q}=\mathrm{mc} \Delta \mathrm{~T} & & \\ m=\text { mass object } \quad c=\text { specific heat capacity } & \Delta T=T_{2}-T_{1} \\ T_{K}=T_{c}+273 & & \text { Enthalpy: } H=E+P V \end{array}$

May the quest continue...

Electromagnetic Spectrum

Intermolecular Forces Sheet; SC1cd

"clouds"					
2	Linear Triatomic, Usually nonpolar CO_{2}		Linear Diatomic Polarity depends upon electronegativity difference Polar if >0.5 Nonpolar if <0.5		In molecules where the outside molecules are different, shapes that tend to be nonpolar usually become polar.
3	Trigonal Planar: $\mathrm{BF}_{3}, \mathrm{SO}_{3}, \mathrm{NO}_{3}{ }^{-}$ 120° Usually nonpolar	 Bent, 120° Usually polar NO_{2}^{-}		Remember to count the number of "clouds" of electrons, not the actual number of electrons. A double or triple bond counts as one effective pair.	Also: If there ever is a two molecule atom (diatomic) that molecule's polarity depends upon the electronegativity difference of the atoms
4	Tetrahedral; 109° : Usually nonpolar $\mathrm{CH}_{4}, \mathrm{CF}_{4}$	 Pyramidal: 107° Usually polar: $\mathrm{NH}_{3}, \mathrm{PCl}_{3}$	 Bent: 104.5° Usually polar: $\mathrm{H}_{2} \mathrm{O}, \mathrm{OF}_{2}$		

2.1		0.5
Ionic	Polar Covalent	Nonpolar Covalent

Chemical Reactions Tables- Cut out the following 2 tables and put them in the back of your composition book. These are reference tables that you will use throughout the year.

Solubility Table
Key: $(\mathrm{s})=$ solid, $(\mathrm{aq})=$ aqueous: soluble in water, $\mathrm{H}_{2} \mathrm{O}=$ water formed $(\mathrm{NE})=$ does not exist,

	$\begin{aligned} & \text { D } \\ & \underset{\sim}{\omega} \\ & \stackrel{\theta}{\tilde{\omega}} \end{aligned}$			$\frac{\Omega}{6}$	$\begin{aligned} & \frac{2}{2} \\ & 0 \\ & 0 \end{aligned}$	O	皆	$\frac{\stackrel{\rightharpoonup}{2}}{\substack{2}}$		$\begin{aligned} & 0 \\ & 0.0 \\ & \underset{\sim}{0} \end{aligned}$		$\stackrel{\mathscr{N}}{\stackrel{\sim}{E}}$	悉
Aluminum	(aq)	(aq)	NE	(aq)	(aq)	NE	(s)	(aq)	(aq)	(s)	(s)	(aq)	(s)
Ammonium	(aq)	NE	(aq)	(aq)	(aq)								
Barium	(aq)	(aq)	(s)	(aq)	(aq)	(s)	(s)	(aq)	(aq)	(aq)	(s)	(s)	(s)
Calcium	(aq)	(aq)	(s)	(aq)	(aq)	(aq)	(s)	(aq)	(aq)	(s)	(s)	(s)	(s)
Copper II	(aq)	(aq)	(s)	(aq)	(aq)	NE	(s)	(aq)	(aq)	(s)	(s)	(aq)	(s)
Hydrogen	(aq)	(aq)	Gas	(aq)	(aq)	NE	$\mathrm{H}_{2} \mathrm{O}$	(aq)	(aq)	NE	(s)	(aq)	(s)
Iron II	(aq)	(aq)	(s)	(aq)	(aq)	NE	(s)	(aq)	(aq)	(s)	(s)	(aq)	(s)
Iron III	(aq)	(aq)	NE	(aq)	(aq)	(s)	(s)	(aq)	(aq)	(s)	(s)	(aq)	(s)
Lead II	(aq)	(s)	(s)	(aq)	(s)	(s)	(s)	(s)	(aq)	(s)	(s)	(s)	(s)
Magnesium	(aq)	(aq)	(s)	(aq)	(aq)	(aq)	(s)	(aq)	(aq)	(s)	(s)	(aq)	(s)
Manganese II	(aq)	(aq)	(s)	(aq)	(aq)	NE	(s)	(aq)	(aq)	(s)	(s)	(aq)	(s)
Mercury II	(aq)	(aq)	NE	(aq)	(aq)	(s)	(s)	(aq)	(aq)	(s)	(s)	(aq)	(s)
Potassium	(aq)												
Silver I	(aq)	(s)	(s)	(aq)	(s)	(s)	(s)	(s)	(aq)	(s)	(s)	(aq)	(s)
Sodium	(aq)												
Strontium	(aq)	(aq)	(s)	(aq)	(aq)	(s)	(aq)	(aq)	(aq)	(aq)	(s)	(aq)	(aq)
Tin II	(aq)	(aq)	NE	(aq)	(aq)	(s)	(s)	(aq)	(aq)	(s)	(s)	(aq)	(s)
Tin IV	(aq)	(aq)	NE	NE	(aq)	(aq)	(s)	(aq)	(aq)	(s)	NE	(aq)	(s)
Zinc II	(aq)	(aq)	(s)	(aq)	(aq)	(s)	(s)	(aq)	(aq)	(s)	(s)	(aq)	(s)

The Sol ubility Rules

1. All common salts of the Group 1A elements and ammonium are soluble.
2. All common acetates and nitrates are soluble.
3. All binary compounds of Group VIIA elements (other than F) with metals are sol uble except those of silver, mercury (I), and lead.
4. All sulfates are soluble except those of barium, strontium, lead, cal cium, silver, and mercury(I).
5. Except for those in Rule 1, carbonates, hydroxides, oxides, and phosphates are insoluble.

Mole Map; SC2

