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Preface

Since radiolabeled estrogens were first observed in the early 1960s to be
preferentially concentrated in estrogen target organs — observations that
gave rise to the concept of an “estrogen receptor (ER),” it has become clear
that many human breast cancers are dependent on estrogen for their growth.
Estrogens’ mitogenic effects are mediated through ERs o and 3, which is the
therapeutic target for hormonal therapies. The purpose of the book is to
provide an up-to-date resource on the role of hormone receptors in breast
cancer. Since approximately 1 of 8 women in the United States and 1 of 12
women in European countries are affected by breast cancer, there has been a
massive effort to understand the mechanisms of hormone action. This
explosion of information has led to exciting new areas of gene-specific
targeting of the disease and breast cancer prevention. Paradigm shifts in
treatment options and sequencing of hormonal therapies have recently
occurred in breast cancer management, necessitating close cooperation and
communication between translational scientists and physicians. This book is
focused on providing this communication.

The 11 chapters of this book examine many aspects of hormone
receptors, including basic and translational information on the molecular
biology of the ERs, the utility of the ERs for the clinical management of
breast cancer as it relates to assessing clinical outcome and selecting
appropriate therapy, a review on the biology of ER and its role in the
diagnosis and treatment of breast cancer, the importance of non-nuclear ER
expression in breast cancer and other endocrine target tissues, the importance of
ERs o and [ inaggressive breast tumors of African-American women, cross-
talk between BRCAT1 and ER, and a detailed discussion of the role of ER in
metastasis of breast cancer. We have included the latest clinical information on
sequencing of hormonal therapies in breast cancer, the use of biomarkers in
presurgical neoadjuvant trials, the problem of clinical hormone resistance,
strategies to utilize hormonal prevention in high-risk patients, and the
elucidation of hormone-responsive phenotypes as defined by state-of-the-art
molecular expression profiling.
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Hormone Action and Clinical Significance
of the Estrogen Receptor o

Matthew H. Herynk, Jennifer Selever, Janagi Thirugnanasampanthan,
Yukun Cui, and Suzanne A.W. Fuqua

Clinical Relevance of ERox

ERa expression in breast cancer has many functions, including tumor growth
enhancement, serving as an efficacious therapeutic target, and being a prog-
nostic and predictive factor. Thus, a great deal of research has attempted to
delineate the roles of ER« in human breast cancer. It has long been known that
approximately two-thirds of human breast cancers express ER« and that
estrogen drives tumor growth through its receptor. Because of its role in
tumor growth, the ER« signaling pathway is a highly useful axis for hormonal
manipulation. Several types of drugs have been developed for this purpose,
including SERMs (selective estrogen receptor modulators), aromatase inhibi-
tors, and pure antagonists. These agents will be discussed in greater detail in
subsequent chapters.

Several assays have been developed for the detection of ER«a in breast cancer
patients. The dextran-coated charcoal (DCC) assay utilizes radiolabeled steroid
ligand to detect ER« (reviewed in [1]). Since cutoff values for defining ER«
status vary among different laboratories using this assay, there can be ambi-
guity in the definition of certain tumors. However, using this assay can be
advantageous in that it can provide reproducible quantitation of ER« under
proper conditions. Another method that detects ER« is the use of antibodies
directed against specific epitopes of the receptor [2, 3]. This method also has a
disadvantage in that there are procedural variations among different labora-
tories [4]. However, if this assay can be standardized, then the subjective nature
of the assay will not pose a significant problem. The detection of ERa
in patients can be carried out in different ways with assays that have proble-
matic disadvantages but still serve important roles in the treatment of these
patients.

S.A.W. Fuqua (X))

Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030,
USA

e-mail: sfuqua@bcm.tme.edu

S.A.W. Fuqua (ed.), Hormone Receptors in Breast Cancer, 1
Cancer Treatment and Research 312, DOI 10.1007/978-0-387-09463-2_1,
© Springer Science+Business Media, LLC 2009
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ERa has utility as both a prognostic and a predictive factor. The former
indicates the inherent biologic aggressiveness of the disease if left untreated,
whereas the latter indicates the likelihood of a response to treatment. In terms
of prognostic factors, positive ERa expression correlates with a better outcome
[5]. However, prognostic evaluations can change at the time of first relapse, and
this is partly based on ER« status at the time of diagnosis as well as the time
interval between primary treatment and relapse [6]. ER«a expression also corre-
lates with other factors indicative of better prognosis such as greater differen-
tiation, diploidy, lower number of dividing cells, and lower mutation rates of
breast cancer-associated genes.

As a predictive factor, ERa expression generally reflects that the patient is
likely to respond to hormonal therapy, including second-line therapies [7]. On
the other hand, lack of ER« expression predicts that the patient may not
respond to hormone-based therapies [8]. The intensity of ER« expression also
directly correlates with the degree of responsiveness to hormonal manipulation.
While the ER« status of metastases may not always be consistent with that of
the primary tumor, the ER« status of metastases is more predictive of response
to hormonal therapy [9]. Thus, the ER« status of a patient is useful in determin-
ing the most appropriate method of treatment.

ERa Activation Domains

Transcription of estrogen-responsive genes is stimulated predominantly via two
transactivation domains, activation function 1 (AF-1) at the amino terminus
and activation function 2 (AF-2) at the carboxyl terminus of ER«a (Fig. 1).
These two domains span large areas of the receptor, and both are necessary for
maximal ER« transcriptional activity. AF-1 and AF-2 bind various receptor
co-regulatory proteins leading to different transcriptional outcomes (for a

1 180 263 305 595
| AF-1 | pBD | AF-2 | ERa
I T T~ T
S104 S167 S236 K266 S305 u? Y537
S106 K268
S118 K299

K302
K303

Fig. 1 ERa is divided into four important functional domains: the amino-terminal
transactivation domain containing the AF-1 motif spanning amino acids 1-180, the DNA-
binding domain spanning amino acids 181-263, the hinge domain spanning amino acids
264-305, and the ligand-binding domain containing the AF-2 motif spanning amino acids
306-595. AF-2a is located between amino acids 282 and 351 (not shown). The post-
translational modified residues are depicted in the figure: phosphorylated residues are
marked with a vertical line, ** indicates the region containing the known acetylation and/
or sumoylation sites. Ubiquitination is depicted as a black U? because the exact residue within
the ligand-binding domain is not known
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complete review, see Hall and McDonnell [10]). Transcription can also be
stimulated to a lesser extent by a less-described transactivation domain referred
to as AF-2a [11], and the significance of this domain is less understood.

AF-1 and AF-2 each function in distinct ways, and depending on the nature
of the cell and the promoter type, one or both can affect signaling. AF-1
functions in a ligand-independent manner to exert transcriptional activity
[12]. AF-1 can be differentially phosphorylated by a number of important
signaling molecules, such as AKT2 (also known as protein kinase B or PKB)
and Erk1/2 (extracellular regulated kinase 1/2), resulting in diverse responses to
SERMs. For example, phosphorylation of serine 167 by AKT?2 leads to insen-
sitivity to tamoxifen, whereas phosphorylation of serine 118 by Erk1/2 leads to
sensitivity to tamoxifen [12]. AF-2, on the other hand, stimulates transcription
in a ligand-dependent manner [13]. Thus, transcription of ER«-regulated genes
depends on these two main transactivation domains which function in a highly
regulated manner.

Crystal Structure of ERo

To date, the three-dimensional structure of full-length ER« has not yet been
solved. However, due to ER«’s similarity with other nuclear hormone receptors
and molecular modeling, we can infer a broad model of ER« structure. Crystal-
lization efforts have focused on the DNA-binding and the ligand-binding
domains, which have revealed the mechanism of action for several ERa ago-
nists as well as antagonists. Estradiol binds ER« within a carboxy-terminal
hydrophobic pocket, and upon ligand binding, helix 12 repositions itself over
this pocket [14]. This new confirmation stabilizes helix 12 in the receptor,
allowing it to recruit transcriptional receptor coactivators [15]. The large side
chains of the antagonists tamoxifen, faslodex, or raloxifene prevent helix 12
from adopting an agonist-bound confirmation, thus antagonizing coactivator
binding to the receptor. In contrast, compounds without large side chains, such
as genistein or 5,11-cis-diethyl-5,6,11,12-tetrahydrochrysene-2,8-diol (THC),
inhibit ER activation by stabilizing nonproductive conformations of the
ligand-binding pocket [16, 17]. Recently, a number of groups have utilized the
crystal structure and molecular modeling in an attempt to identify better, more
specific drugs for disrupting estrogen receptor signaling [18, 19], an effort which
is currently underway.

Formation of the Transcriptome

Stimulation of transcription by ER« occurs via a number of distinct molecular
events in the nucleus. ERa homo- or heterodimerizes with other nuclear recep-
tors such as estrogen receptor B (ER) or androgen receptor (AR) and binds,
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via the DNA-binding domain (DBD), to estrogen response elements (EREs)
located on the promoters of estrogen-responsive genes [20]. This allows inter-
action with other components of the transcription factor complex, including
receptor co-regulatory proteins which will be discussed in the following sections
of this chapter and the basal transcription machinery (for a complete review, see
Klein and Hitpass [21]). ER« also has the ability to dimerize with proteins such
as stimulating protein 1 (Spl) and activating protein 1 (AP1) and affects
transcription through the binding of these proteins to non-ERE-containing
sites [22, 23]. Thus, the regulation of ER« transcriptional activity is complex
and involves a myriad of proteins from those specific to nuclear hormone
receptors to components of the basal transcription machinery.

Estrogen Receptor Cofactors

It was well known that ER’s function is tissue specific and ligand dependent,
indicating that ER« alone could not account for its diversified functions, thus
requiring additional signaling factors [24]. This concept led to the discovery of
the first ER cofactors in 1995 [25]. Using techniques such as yeast two-hybrid
and protein library screening, a growing body of proteins and RNAs affecting
ERa transcriptional activity, either directly and/or indirectly, have been iden-
tified [26]. To date, the Nuclear Receptor Signaling Atlas (NURSA) website
(www.nursa.org) lists over 170 known nuclear cofactors. These factors are
generally categorized as coactivators (enhance ER transcriptional activity) or
corepressors (reduce ER transcriptional activity). In general, these cofactors do
not bind to DNA directly but rather through association with sequence-specific
DNA-binding proteins, including but not limited to nuclear receptors. Upon
recruitment to the promoter complex, these factors may affect transcription
directly or via recruiting additional cofactors. In this section, we will focus on
the fundamentals of ER cofactors and some of the latest findings in this field.

Coactivators

The first subcloned steroid receptor coactivator, SRC-1 or NcoAl, enhanced the
transcriptional activity of ERa when cells were treated with estrogen [25]. Addi-
tionally, SRC-1 also has been shown to be involved in ligand-independent
activation of ERa. The second member of this coactivator family, SRC-2, also
known as GRIPI in mice or TIF2 in human tissues, can only activate ER«
transcriptional activity in the presence of estrogen [27, 28]. Like SRC-1, SRC-3
(also called RAC3, p/CIP, AIB1, or ACTR) activated both ligand-dependent and
ligand-independent ER« transcriptional activity [29, 30]. Sequence analysis of
these family members elucidated an LxxLL nuclear receptor-binding motif (the
so-called NR box, L = leucine, isoleucine, or other large hydrophobic amino
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acid residues) that is conserved among other coactivators such as CBP/p300 and
TRAP220 [31]. While the coactivators mentioned above act in a ligand-depen-
dent manner, additional coactivators directly interact with the ligand-indepen-
dent AF1 domain (e. g., p68 RNA helicase) [32], hinge domain (e.g., PGC-1«)
[33], or the DBD (e.g., Cizl) [34]. In addition to the coactivators that directly
interact with ERa, additional cofactors such as protein arginine methyl transfer-
ase, CARMI, and PRMT2 [35] affect ER transcriptional activity through
indirect association with ERa mediated by the SRC family of coactivators.
Coactivator regulation of ER« is a complex process that leads to enhanced
transcriptional activity in both a ligand-dependent and -independent manner.

Corepressors

Compared with coactivators, there are far fewer corepressors identified so far.
Corepressors inhibit transcription of ER« target genes through directly or
indirectly interacting with steroid receptors. Sequence analysis between nuclear
corepressors, including NcoR1 and SMRT, identified an LxxxI/HIxxxI/L con-
served nuclear corepressor-binding motif (the so-called CoNR box), which has
been demonstrated to mediate either ligand-independent or anti-estrogen-sti-
mulated association with the AF2 domain of ER« [36]. Similar to coactivators,
corepressors have been shown to interact with other domains of ER ¢, including
the AF1 (HDAC4) [37] and hinge domains (SAFB and MTA2) [38, 39]. It has
been reported that overexpression of the nuclear corepressors NCoR and
SMRT enhances tamoxifen antagonist activity without interfering with estro-
gen-stimulated gene expression [40]. This is consistent with a later discovery
that reduced levels of NCoR correlate with hormone resistance in breast cancer
cells [41]. Furthermore, we have recently shown that overexpression of the
MTAZ2 corepressor resulted in hormone-independent and anti-estrogen-resis-
tant cell growth [39]. These findings, in combination with many additional
corepressor studies, suggest that corepressors may be involved in the processes
of anti-estrogen function and the development of resistance as well.

Transcriptional Cofactor or Transcriptional Factor?

Some ERa cofactors also contain specific DNA-binding domains (e.g., NcoR,
MTA1/2, or Cizl), raising the possibility that they may affect gene transcription
directly. One study demonstrated that MTA1, an ERa corepressor, could
activate breast cancer amplified sequence 3 (BCAS3) promoter activity, prob-
ably through direct interaction and recruitment of the p300 coactivator [42]. To
date, the majority of studies have analyzed the ability of these proteins to alter
transcriptional activity as cofactors, however, it is clear that some may directly
effect the transcriptional activity of their target genes.
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Chromatin Remodeling and the Cyclical Occupancy of ERo
Cofactors

Acetylation and/or methylation of histones promote decondensation of chro-
matin structure, thereby favoring gene transcription. In contrast, deacetylation
and/or demethylation lead to chromatin condensation, thus abrogating tran-
scription. A large number of steroid receptor cofactors are implicated in these
chromatin remodeling processes by either directly modifying histones (e.g.,
CBP/p300, P/CAF, SRC-1, CARM1, and HDACI) or indirectly deacetylating
histones through interaction with histone deacetylases (e.g., MTAT1 and 2 or
SIN3; for a review, see [26]). The importance of these co-regulatory proteins in
controlling gene activity is further emphasized by the findings that these cofac-
tors or cofactor complexes are recruited to estrogen-responsive promoters in an
ordered, cyclical manner. There is some evidence suggesting that histone pre-
modification is essential to direct the recruitment of individual cofactors. For
example, the recruitment of histone methyl transferase PRMTI1 to the pS2
promoter requires the SET (patient SE translocation) protein [43], which
demethylates histone H4 arginine 3 and provides a target for the histone methyl
transferase activity of PRMTI. In addition, ER« and cofactors are also mod-
ified during transcriptional activation. These modifications may represent a
signal to release these cofactors from the promoter. For example, acetylation of
ERa results from agonist-induced interactions with certain coactivators that
leads to decreased transcriptional activity [44]. SRC-3, an ER« coactivator with
intrinsic histone acetyl transferase activity, loses its coactivator ability upon
acetylation by p300 [45]. In addition, the presence of SRC-3 enhances ER«
recruitment to the promoter, however, SRC-3 also helps to direct agonist-
induced ER« degradation [46]. Collectively, these studies suggest that a com-
mon physiologic network exists controlling both the “ON” and “OFF” signals
for ER« action.

Alternative Exons in the SUTR

One mechanism of regulating ER« protein expression is through differential
usage of upstream untranslated exons. As many as eight exons have been
identified, and this review will use the nomenclature suggested by Flouriot
et al. [47], as modified by Kos et al. [48]. ER« exon 1 contains an acceptor
splice site at +163 permitting the splicing of several different exons encoding
various 5UTRs. At least seven different promoters have been described that
show relative tissue specificity (for a complete review, see Kos et al. [48]).
Promoter A in exon 1 is the most common promoter expressed in tissues and
cell lines. Promoter C was first described in 1991 [49], but a longer version of
promoter C was described in subsequent years [50]. Additional exons A—E have
been described and have also been shown to affect reporter gene expression
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levels [51]. One hypothesis is that the numerous AUG start codons found in the
ERa 5UTRs inhibit scanning ribosomes from reaching the start codon,
thereby reducing ER« protein expression [51]. Promoters within 2 kilobase
pairs of the acceptor splice site (generally A, B, and C) are utilized in cell lines
and tissues that express high levels of ER«. The more distal promoters, E and F,
are found in tissues where ER« expression is less abundant, such as the liver and
human osteoblasts [52]. Additionally, promoters T1 and T2 are expressed
predominately in the testis and epididymis [53]. While these alternative promo-
ters can account for the tissue-specific expression of ER«, they may also play a
role in the regulation of ER« levels. In vitro studies analyzing promoter usage
have demonstrated increased use of promoter A in breast cancer cells when
compared with normal mammary epithelium [54]. Additionally, in breast tumor
cell lines, Weigel et al. have shown activation of promoters not normally
activated in breast epithelium [55].

Epigenetic and Post-translational Regulation of ER«

Epigenetic information on the genome provides directions on when, where, and
how the genetic information should be used. Post-translational regulation of
nuclear steroid receptors is an exciting field of study, which is comprised of
events encompassing methylation, phosphorylation, acetylation, ubiquitina-
tion, and most recently protein sumoylation [56]. Post-translational regulation
of the nuclear receptor family is dynamic, with member proteins being differ-
entially affected by modifications either singly or in combination, thereby
influencing receptor conformation, ligand binding, DNA binding, and coacti-
vator interactions [57]. It has been postulated that post-translational modifica-
tions of ERa play a key role in the regulation of its functions.

Methylation

DNA methylation is one of the most important forms of post-translational
modifications in which a methyl group is covalently bonded to the 5-carbon on
the cytosine base by DNA methyltransferases [58]. Methylation of the estrogen
receptor occurs on cytosine within the CpG islands associated with the promo-
ter [59]. CpG islands are regions close to the promoter of genes that contain
cytosine (C) and guanine (G) residues at a greater than 50% frequency. Hyper-
methylation of the ERa promoter silences the gene by repressing transcription
and in some cases is associated with malignant transformation of cells, whereas
hypomethylation of ERa is associated with gene activation indicating
an inverse relationship between promoter methylation and transcriptional
activity [60].
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Acetylation

ERa is known to be acetylated on lysines, and the conserved acetylated amino
acids in ERa are lysines (K) 266, K268, K299, K302, and K303 (Fig. 1). The
acetylation of K266 and K268 has opposite effects compared to the acetylation
of K302 and K303. K266 and K268 induce DNA-binding and ligand-depen-
dent activation, whereas K302 and K303 inhibit ER« ligand-dependent activa-
tion [61]. Our recent experiments using ER«a deletion constructs suggest that the
phosphorylation status of S305 within the hinge domain of ER«a coordinately
regulates the acetylation of lysines 302 and 303 [44]. Although mass spectro-
metry has previously identified these same two lysines as sites of acetylations
[62], Kim et al. have recently shown that these two lysine residues may not be
acetylated in the full-length protein, although these results need to be validated
[63]. Thus, the hinge domain of the receptor is replete with post-translational
modifications having the potential for important functional consequences.

Phosphorylation

ERa is phosphorylated on multiple residues and a complete list of phosphor-
ylation sites and their respective kinases is found in Table 1. The diversity of
kinases and responses to phosphorylation illustrate the range of effector path-
ways that are utilized in the complex regulation of ER« or amplification of its
signal. For instance, phosphorylation of S305 ER« can be mediated by both the
protein kinase A (PKA) and p21-activated kinase 1 (PAK-1) signaling networks
[44, 64, 65]. PKA-mediated phosphorylation of ERa does not alter its DNA-
binding abilities but instead enhances ligand-binding affinity [64]. Additionally,

Table 1 ERa phosphorylation sites

Amino

acid Modification Effect References

S104 Phosphorylation by Enhanced transcriptional activity [86]
Cyclin A-CDK

S106 Phosphorylation by Enhanced transcriptional activity [87]
Cyclin A-CDK

S118 Phosphorylation by Enhanced transcriptional activity [88]
MAPK

S167 Phosphorylation by Enhanced transcriptional activity [89]
Akt2

S236 Phosphorylation by Enhanced ER dimerization and DNA  [64, 90]
PKA binding

S305 Phosphorylation by Enhanced ligand-binding affinity, [64, 65]
PKA or PAK1 tamoxifen resistance

Y537 Phosphorylation by Src Enhanced transcriptional activity [74, 90, 91]

kinase
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the PKA-mediated phosphorylation of S305 allows tamoxifen to act as an
agonist of ERa, and PKA is known to be frequently overexpressed in breast
tumors [44, 64, 66]. Clearly, ERa phosphorylation has a variety of effects in the
physiologic actions of ER«a and is an emerging area of study.

Ubiquitination

The tight regulation of ER« function is partially due to the ubiquitin—protea-
some pathway regulating the levels of protein and the receptor’s response to
ligand [67]. Ubiquitination is the reversible covalent bonding of the highly
conserved 76 amino acid ubiquitin to lysine residues on target proteins. Upon
ligand binding to ER«, ubiquitin binds the receptor on lysine residues within
the AD core region of the ligand-binding domain inducing the protein to
undergo ubiquitin-mediated proteasomal degradation. This has been shown
to be an important step in the transactivation of ER«, and transactivation can
be inhibited by proteasome inhibitors [67—69]. While ubiquitination and pro-
teasomal degradation are important mechanisms of regulating ER« protein
levels, the ubiquitination of ERa may play an important role in the transactiva-
tion of ERa.

Sumoylation

SUMO-1, a small ubiquitin-like modifier, covalently and reversibly bonds to
target proteins with the assistance of conjugating enzymes. Recent experiments
by Sentis et al. reveal that ligand-dependent sumoylation occurs on lysine
residues within the hinge domain of ERa and that sumoylation regulates
transcriptional activity of this nuclear receptor [70]. The same lysine residues
that are acetylated can also be sumoylated including K266, K268, K302, and
K303 (Fig. 1), suggesting a tight regulatory pathway governing the occupation
of these residues and subsequent downstream effects.

ERa Mutations

A number of mutations and polymorphisms have been identified in ER« from
numerous diseases including psychiatric diseases, precocious puberty, and
many cancers (for a complete review, see Herynk and Fuqua [2]). While over
20 different mutations have been identified, rarely has any independent muta-
tion been found in more than one sample, in contrast are the A86V, K303R, and
Y537S/N ERa mutations. The A86V mutation was found in 12% of the breast
cancer specimens analyzed and has been associated with lower levels of ERa
protein and spontancous abortions [71, 72]. The tyrosine at 537 is the only site
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that has been found to be mutated to two different residues, serine and aspar-
agine [73, 74]. This residue lies at the amino-cap of H12, therefore it is not
surprising that mutations at this site would significantly affect the activity of
ERa [74-76].

We originally identified the K303R ERa mutation in 34% of premalignant
breast hyperplasias [77]. More recently, utilizing a sensitive primer extension
sequencing technique, we have demonstrated that this mutation was present in
invasive breast cancer specimens and the presence of the K303R ER« mutation
correlated with older age, larger tumor size, and lymph node-positive dis-
ease [78]. In comparison, Conway et al. have identified this mutation in only
5.7% of breast cancers utilizing a different gel electrophoresis detection method
[79]. Therefore, we propose that while the absolute frequency of this mutation
remains to be validated, it is clearly present in a significant number of breast
cancer samples.

Analysis of the K303R ER«a mutation has shown that this mutated receptor
exhibits hypersensitive growth to low concentrations of estrogen [77]. Addi-
tionally, the mutated ER« has increased binding to the coactivator TIF2, and
the corepressor MTA2 was unable to repress the activity of the mutant receptor
[39]. The presence of an arginine at the 303 position removes a key acetylation
site and allows ER« to be more highly phosphorylated by PKA signaling [44].
Collectively, these data indicate that this residue plays a key role in ERa«
signaling, and whether or not this mutation will affect other epigenetic regula-
tory mechanisms of ERa remains to be determined. While identification of
mutations has been rare, the role of mutations in breast cancer may be under-
appreciated, and is an underexplored field, which might effect future breast
cancer therapeutic decisions with hormone-based therapies. The use of alter-
native sequencing strategies, employing accurate primer extension sequencing
to replace standard dye terminator approaches, may be warranted in this
regard.

Mouse Modeling of ER«o

Mice lacking ER« expression are viable and demonstrate a wide range of
phenotypes altering normal functions including effects on sexual organs and
function, bone, brain, and cardiovascular, to name a few (for a complete review,
see Couse and Korach [80]). Additionally, mice deficient in ER« exhibit normal
early development of mammary glands, however, these glands never develop
beyond the newborn stage [81]. In contrast, ERB knockout (KO) mice develop
normal ductal structures with reduced side branching [82], thereby demonstrat-
ing that ER« has a central role and is the predominant receptor involved in
mammary gland development.

While ER« has a vital role in normal mammary gland development, aber-
rant ER« signaling has been shown to function in the development of preneo-
plastic mammary lesions and breast cancer development and progression.
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Ninety-five percent of mice conditionally overexpressing wild-type ER« dis-
played abnormal ductal structures at 4 months of age [83]. While 52 and 36% of
4-month-old virgin mice had lobular and ductal hyperplasias, respectively, 21%
of 4-month-old virgin mice displayed DCIS [84]. Earlier, the same group
reported 37% of mice overexpressing T antigen — ER« had developed adeno-
carcinomas by 11 months of age [83]. While exogenous estrogen stimulation did
not alter the incidence of hyperplasias or DCIS in the wild-type receptor system
[84], aromatase overexpression was sufficient to cause preneoplastic changes
within the mammary gland [85]. These data demonstrate that increased ER«
can lead to preneoplastic changes contributing to mammary tumorigenesis.

Conclusions

The role of ER« in the human breast has been extensively studied over the past
several decades. The development of transgenic mice overexpressing or lacking
ERa expression has greatly aided in defining the roles of ER« in both normal
mammary gland development and breast cancer development and progression.
Laboratory studies have clearly shown that ER« is a highly regulated molecule
demonstrating complex, multilayered regulation including organ-specific alter-
nate promoters, epigenetics, cofactor levels and interactions, and a highly
regulated degradation. Additionally, disruption of this complex regulation
can drastically effect the physiologic regulation and homeostasis of the body
leading to a variety of disease states. The presence of ER« in human breast
cancer has proven to be clinically useful, both as a prognostic indicator to
suggest the inherent biologic aggressiveness of the disecase and as a predictive
factor to guide therapies for the treatment of this widespread disease. Clearly,
ERa has proven to be an important molecule in breast cancer and will further
demonstrate its important roles in the future.
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Role of ERS in Clinical Breast Cancer

Valerie Speirs and Abeer M. Shaaban

Introduction

A second estrogen receptor (ER), ERf3, was cloned from rat in 1996 by
Jan-Ake Gustafsson [1] and soon afterward human and murine isoforms
were identified [2, 3]. Although unexpected, the discovery of ER3 was not
totally surprising as other members of the steroid receptor superfamily, to
which ER belongs, had multiple family members, and up to this point ER was
an exception in this regard. As shown in Fig. 1, ER( is structurally and
genetically distinct from its sib ERa: mature full-length ER« is 595 amino
acids and located on chromosome 6q while ERS comprises 530 amino acids
and resides on chromosome 14q22-25 [4, 5]. Because of the recognized impor-
tance of ER« in the breast, it follows that ER/3 may also fulfill an important
role. In this chapter we review the current understanding of ER( in clinical
breast cancer and discuss the potential role it may play in the future manage-
ment of this disease.

ERS Isoforms and Their Function

ERp exists as five distinct isoforms, termed ER/1-5, each distinguished by a
unique exon 8 sequence. Moreover, in breast cancer, these variants are usually
found in greater abundance than wtERG (ER(1) at least in terms of RNA
expression [6-8]. Ethnic differences in expression of ER isoforms have been
reported with ER/1 and in particular, ER35 expressed at significantly higher
levels in African Americans compared to Caucasians [9]. Tumors from African
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Fig. 1 Schematic illustration of human ER« and ERj

Americans are often ERa negative with poorer survival [10]; so the high
expression of ERf isoforms suggests that these patients may well benefit from
specific ER 3-targeted therapies (discussed later). These isoforms are schemati-
cally illustrated in Fig. 2 and described in detail below.
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Fig. 2 Structure of ERZ1-5. All five isoforms are identical in structure through exons 1-7 but
have a unique exon 8 sequence



