Horn's problem and projection of orbital measures

for unitary and pseudounitary groups

Jacques Faraut

Conference on Representation Theory, Probability and Symmetric Functions
on the occasion of the 70th anniversary of Grigori Olshanski
MIT, August 22, 2019

Reims, 2017

1. Horn's problem, and Horn's conjecture

A and B are $n \times n$ Hermitian matrices, and $C=A+B$.
Assume that the eigenvalues $\alpha_{1} \geq \cdots \geq \alpha_{n}$ of A, and the eigenvalues $\beta_{1} \geq \cdots \geq \beta_{n}$ of B are known.
Horn's problem : What can be said about the eigenvalues $\gamma_{1} \geq \cdots \geq \gamma_{n}$ of $C=A+B$?

Weyl's inequalities (1912)

$$
\begin{aligned}
& \gamma_{i+j-1} \leq \alpha_{i}+\beta_{j} \text { for } i+j \leq n+1 \\
& \gamma_{i+j-n} \geq \alpha_{i}+\beta_{j} \text { for } i+j \geq n+1
\end{aligned}
$$

Lemma $\mathcal{U}, \mathcal{V}, \mathcal{W}$ subspaces of \mathbb{R}^{n}. If

$$
\operatorname{dim} \mathcal{U}+\operatorname{dim} \mathcal{V}+\operatorname{dim} \mathcal{W} \geq 2 n+1
$$

then $\mathcal{U} \cap \mathcal{V} \cap \mathcal{W} \neq\{0\}$.

Proof of Weyl's inequalities

Eigenvectors u_{1}, \ldots, u_{n} of A, v_{1}, \ldots, v_{n} of B, w_{1}, \ldots, w_{n} of C.
For $i+j \leq n+1$, define

$$
\begin{array}{clrl}
\mathcal{U} & =\operatorname{Vect}\left(u_{i}, \ldots, u_{n}\right), & & \operatorname{dim} \mathcal{U}=n-i+1, \\
\mathcal{V} & =\operatorname{Vect}\left(v_{j}, \ldots, v_{n}\right), & & \operatorname{dim} \mathcal{V}=n-j+1, \\
\mathcal{W}=\operatorname{Vect}\left(w_{1}, \ldots, w_{i+j-1}\right), & & \operatorname{dim} \mathcal{W}=i+j-1 .
\end{array}
$$

Then $\operatorname{dim} \mathcal{U}+\operatorname{dim} \mathcal{V}+\operatorname{dim} \mathcal{W}=2 n+1$. By the lemma $\mathcal{U} \cap \mathcal{V} \cap \mathcal{W} \neq\{0\}$. Take $x \in \mathcal{U} \cap \mathcal{V} \cap \mathcal{W},\|x\|=1$. Then

$$
(A x \mid x) \leq \alpha_{i},(B x \mid x) \leq \beta_{j},(C x \mid x) \geq \gamma_{i+j-1}
$$

Hence

$$
\gamma_{i+j-1} \leq(C x \mid x)=(A x \mid x)+(B x \mid x) \leq \alpha_{i}+\beta_{j}
$$

Horn's conjecture (1962)

The set of possible eigenvalues $\gamma_{1} \geq \cdots \geq \gamma_{n}$ for $C=A+B$ is determined by a family of inequalities of the form

$$
\sum_{k \in K} \gamma_{k} \leq \sum_{i \in I} \alpha_{i}+\sum_{j \in J} \beta_{j},
$$

for certain admissible triples (I, J, K) of subsets of $\{1, \ldots, n\}$. Klyachko has proven Horn's conjecture, and described these admissible triples (1998). We will call this set Horn's set $\operatorname{Horn}(\alpha, \beta)$.

$$
n=3, \alpha=(3.5,1.4,-4.9), \beta=(2,-0.86,-1.14)
$$

Weyl'inequalities gives

$$
\begin{aligned}
& a_{1} \leq \gamma_{1} \leq b_{1} \\
& a_{2} \leq \gamma_{2} \leq b_{2} \\
& a_{3} \leq \gamma_{3} \leq b_{3}
\end{aligned}
$$

In the plane

$$
x_{1}+x_{2}+x_{3}=0
$$

these inequalities determine a hexagon.

We consider Horn's problem from a probabilistic viewpoint.
The set of Hermitian matrices X with spectrum $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is an orbit \mathcal{O}_{α} for the natural action of the unitary group $U(n)$: $X \mapsto U X U^{*}(U \in U(n))$.
Assume that the random Hermitian matrix X is uniformly distributed on the orbit \mathcal{O}_{α}, and the random Hermitian matrix Y uniformly distributed on \mathcal{O}_{β}.

What is the joint distribution of the eigenvalues of the sum $Z=X+Y$?
This distribution is a probability measure on \mathbb{R}^{n} that we will determine explicitly.

Orbits for the action of $U(n)$ on $\mathcal{H}_{n}(\mathbb{C})$

Spectral theorem : The eigenvalues of a matrix $A \in \mathcal{H}_{n}(\mathbb{C})$ are real and the eigenspaces are orthogonal.
The unitary group $U(n)$ acts on $\mathcal{H}_{n}(\mathbb{C})$ by the transformations

$$
X \mapsto U X U^{*}
$$

For $A=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, consider the orbit

$$
\mathcal{O}_{\alpha}=\left\{U A U^{*} \mid U \in U(n)\right\}, \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n} .
$$

By the spectral theorem

$$
\mathcal{O}_{\alpha}=\left\{X \in \mathcal{H}_{n}(\mathbb{C}) \mid \operatorname{spectrum}(X)=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right\}
$$

Orbital measures, and radial part of an invariant measure

The orbit \mathcal{O}_{α} carries a natural probability measure: the orbital measure μ_{α}, image of the normalized Haar measure ω of the compact group $U(n)$ by the map $U \mapsto U A U^{*}$. For a function f on \mathcal{O}_{α},

$$
\int_{\mathcal{O}_{\alpha}} f(X) \mu_{\alpha}(d X)=\int_{U(n)} f\left(U A U^{*}\right) \omega(d U) .
$$

A $U(n)$-invariant measure μ on $\mathcal{H}_{n}(\mathbb{C})$ can be seen as an integral of orbital measures:
it can be written

$$
\int_{\mathbb{H}_{n}(\mathbb{C})} f(X) \mu(d X)=\int_{\mathbb{R}^{n}}\left(\int_{U(n)} f\left(U \operatorname{diag}\left(t_{1}, \ldots, d t_{n}\right) U^{*}\right) \omega(d U)\right) \nu(d t),
$$

where ν is a \mathfrak{S}_{n}-invariant measure on \mathbb{R}^{n}, called the radial part of μ.

If μ is a $U(n)$-invariant probability measure on $\mathcal{H}_{n}(\mathbb{C})$, and X a random Hermitian matrix with law μ, then the joint distribution of the eigenvalues of X
is the radial part ν of μ.
Assume that the random Hermitian matrix X is uniformly distributed on the orbit \mathcal{O}_{α}, i.e. with law μ_{α}, and Y uniformly distributed on \mathcal{O}_{β}, i.e. with law μ_{β}, then the law of the sum $Z=X+Y$ is the convolution product $\mu_{\alpha} * \mu_{\beta}$, and the joint distribution of the eigenvalues of Z is the radial part $\nu_{\alpha, \beta}$ of the measure $\mu=\mu_{\alpha} * \mu_{\beta}$.

Hence the problem is to determine this radial part $\nu_{\alpha, \beta}$. Then Horn's set is given by

$$
\operatorname{Horn}(\alpha, \beta)=\operatorname{support}\left(\nu_{\alpha, \beta}\right) \cap C_{n},
$$

where

$$
C_{n}=\left\{x \in \mathbb{R}^{n} \mid x_{1} \geq \cdots \geq x_{n}\right\} .
$$

Fourier-Laplace transform

For a bounded measure μ on $\mathcal{H}_{n}(\mathbb{C})$,

$$
\mathcal{F} \mu(Z)=\int_{\mathcal{H}_{n}(\mathbb{C})} e^{\operatorname{tr}(Z X)} \mu(d X) .
$$

If μ is $U(n)$-invariant, then $\mathcal{F} \mu$ is $U(n)$-invariant as well, and hence determined by its restriction to the subspace D_{n} of diagonal matrices.

For $Z=\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right), T=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)$, define

$$
\mathcal{E}(z, t):=\int_{U(n)} e^{\operatorname{tr}\left(Z U T U^{*}\right)} \omega(d U)
$$

Then $\mathcal{F} \mu_{\alpha}(Z)=\mathcal{E}(z, \alpha)$.

If μ is $U(n)$-invariant,

$$
\mathcal{F} \mu(Z)=\int_{\mathbb{R}^{n}} \mathcal{E}(z, t) \nu(d t),
$$

where ν is the radial part of μ.
Taking $\mu=\mu_{\alpha} * \mu_{\beta}$,

$$
\mathcal{E}(z, \alpha) \mathcal{E}(z, \beta)=\int_{\mathbb{R}^{n}} \mathcal{E}(z, t) \nu_{\alpha, \beta}(d t) .
$$

Harish-Chandra-Itzykson-Zuber formula

A is a Hermitian matrix with eigenvalues $\alpha_{1}, \ldots, \alpha_{n}$, and B with eigenvalues $\beta_{1}, \ldots, \beta_{n}$.

$$
\int_{U(n)} e^{\operatorname{tr}\left(A U B U^{*}\right)} \omega(d U)=\delta_{n}!\frac{1}{V_{n}(\alpha) V_{n}(\beta)} \operatorname{det}\left(e^{\alpha_{i} \beta_{j}}\right)_{1 \leq i, j \leq n}
$$

V_{n} is the Vandermonde polynomial: for $x=\left(x_{1}, \ldots, x_{n}\right)$,

$$
V_{n}(x)=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

and

$$
\delta_{n}=(n-1, n-2, \ldots, 2,1,0), \quad \delta_{n}!=(n-1)!(n-2)!\ldots 2!
$$

Heckman's measure

Consider the projection Proj : $\mathcal{H}_{n}(\mathbb{C}) \rightarrow D_{n}$ onto the subspace D_{n} of real diagonal matrices.
Horn's theorem The projection $\operatorname{Proj}\left(\mathcal{O}_{\alpha}\right)$ of the orbit \mathcal{O}_{α} is the convex hull of the points $\sigma(\alpha)$

$$
\operatorname{Proj}\left(\mathcal{O}_{\alpha}\right):=\operatorname{Conv}\left(\left\{\sigma(\alpha) \mid \sigma \in \mathfrak{S}_{n}\right\}\right)
$$

$\left(\sigma(\alpha)=\left(\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(n)}\right)\right)$
Heckman's measure is the projection $M_{\alpha}=\operatorname{Proj}\left(\mu_{\alpha}\right)$ of the orbital measure μ_{α}.
It is a probability measure on \mathbb{R}^{n}, symmetric, i.e. \mathfrak{S}_{n}-invariant, with compact support: $\operatorname{support}\left(M_{\alpha}\right)=\operatorname{Conv}\left(\mathfrak{S}_{n} \alpha\right)$.

Fourier-Laplace transform of a bounded measure M on \mathbb{R}^{n} :

$$
\widehat{M}(z)=\int_{\mathbb{R}^{n}} e^{(z \mid x)} M(d x)
$$

The Fourier-Laplace transform of Heckman's measure M_{α} is the restriction to D_{n} of the Fourier-Laplace transform of the orbital measure μ_{α} : for $Z=\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)$,

$$
\widehat{M_{\alpha}}(z)=\mathcal{F} \mu_{\alpha}(Z)
$$

Therefore $\widehat{M_{\alpha}}(z)=\mathcal{E}(z, \alpha)$, and by the Harish-Chandra-Itzykson-Zuber formula,

$$
\widehat{M_{\alpha}}(z)=\delta_{n}!\frac{1}{V_{n}(z) V_{n}(\alpha)} \operatorname{det}\left(e^{z_{i} \alpha_{j}}\right)_{1 \leq i, j \leq n}
$$

Define the skew-symmetric measure

$$
\eta_{\alpha}=\frac{\delta_{n}!}{V_{n}(\alpha)} \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \delta_{\sigma(\alpha)}
$$

$(\varepsilon(\sigma)$ is the signature of the permutation $\sigma)$.
Fourier-Laplace of η_{α} :

$$
\widehat{\eta_{\alpha}}(z)=\frac{\delta_{n}!}{V_{n}(\alpha)} \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) e^{(z \mid \sigma(\alpha))}=\frac{\delta_{n}!}{V_{n}(\alpha)} \operatorname{det}\left(e^{z_{i} \alpha_{j}}\right)_{1 \leq i, j \leq n}
$$

By the Harish-Chandra-Itzykson-Zuber formula

$$
\widehat{\eta_{\alpha}}(z)=V_{n}(z) \widehat{M_{\alpha}}(z) .
$$

Proposition

$$
V_{n}\left(-\frac{\partial}{\partial x}\right) M_{\alpha}=\eta_{\alpha}
$$

Elementary solution of $V_{n}\left(\frac{\partial}{\partial x}\right)$

Proposition Define the distribution E_{n} on \mathbb{R}^{n}

$$
\left\langle E_{n}, \varphi\right\rangle=\int_{\mathbb{R}_{+}^{\frac{n(n-1)}{2}}} \varphi\left(\sum_{i<j} t_{i j} \varepsilon_{i j}\right) d t_{i j}
$$

$\left(\varepsilon_{i j}=e_{i}-e_{j}\right)$ Then

$$
V_{n}\left(\frac{\partial}{\partial x}\right) E_{n}=\delta_{0} .
$$

Proof: An elementary solution of the first order differential operator $\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}$ is the Heaviside distribution

$$
\left\langle Y_{i j}, \varphi\right\rangle=\int_{0}^{\infty} \varphi\left(t \varepsilon_{i j}\right) d t
$$

Hence

$$
E_{n}=\prod_{i<j}^{*} Y_{i j}
$$

is an elementary solution of $V_{n}\left(\frac{\partial}{\partial x}\right)$.

Theorem

$$
M_{\alpha}=\check{E}_{n} * \eta_{\alpha}
$$

$\left(\check{\varphi}(x)=\varphi(-x),\left\langle\check{E}_{n}, \varphi\right\rangle=\left\langle E_{n}, \check{\varphi}\right)\right.$
Heckman's measure M_{α} is supported by the hyperplane $x_{1}+\cdots+x_{n}=\alpha_{1}+\cdots+\alpha_{n}$.

Next figure is for $n=3$, drawn in the plane $x_{1}+x_{2}+x_{3}=\alpha_{1}+\alpha_{2}+\alpha_{3}$.

The radial part $\nu_{\alpha, \beta}$

Recall
X is a random Hermitian matrix on \mathcal{O}_{α} with law μ_{α}, and Y on \mathcal{O}_{β} with law μ_{β}.
The joint distribution of the eigenvalues of $Z=X+Y$ is the radial part $\nu_{\alpha, \beta}$ of $\mu_{\alpha} * \mu_{\beta}$.
Theorem(J.F.,2019)

$$
\begin{aligned}
\nu_{\alpha, \beta} & =\frac{1}{n!} \frac{1}{\delta_{n}!} V_{n}(x) \eta_{\alpha} * M_{\beta} \\
& =\frac{1}{n!} \frac{1}{\delta_{n}!} \frac{V_{n}(x)}{V_{n}(\alpha)} \sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \delta_{\sigma(\alpha)} * M_{\beta}
\end{aligned}
$$

The sum has positive and negative terms.
However $\nu_{\alpha ; \beta}$ is a probability measure on \mathbb{R}^{n}.
The measure $\nu_{\alpha, \beta}$ is symmetric (invariant by \mathfrak{S}_{n}).

The set of possible systems of eigenvalues for the sum $Z=X+Y$ is

$$
\operatorname{support}\left(\nu_{\alpha, \beta}\right)
$$

The proof amounts to check that the measure

$$
\nu=\frac{1}{n!} \frac{1}{\delta_{n}!} V_{n}(x) \eta_{\alpha} * M_{\beta}
$$

satisfies the relation

$$
\int_{\mathbb{R}^{n}} \mathcal{E}(z, t) \nu(d t)=\mathcal{E}(z, \alpha) \mathcal{E}(z, \beta)
$$

Next figure is for $n=3, \alpha=(3,0,-3), \beta=(1,0,-1)$

Next figure is for $n=3, \alpha=(3,0,-3), \beta=(2,0,-2)$

In the first case the condition

$$
\sup \left|\beta_{i}-\beta_{j}\right|<\inf _{i \neq j}\left|\alpha_{i}-\alpha_{j}\right|
$$

is satisfied, and, under that condition,

$$
\operatorname{Horn}(\alpha, \beta)=\alpha+\operatorname{Conv}\left(\mathfrak{S}_{n} \beta\right)
$$

In the second case the condition is not satisfied. There are cancellations and the situation is more complicated. We can only say

$$
\operatorname{Horn}(\alpha, \beta) \subset \alpha+\operatorname{Conv}\left(\mathfrak{S}_{n} \beta\right)
$$

2. Horn's problem for pseudo-Hermitian matrices

We fix $p, q, p+q=n . \mathcal{H}_{p, q}(\mathbb{C})$ space of pseudo-Hermitian matrices: X is a complex $n \times n$ matrix, $X^{*}=I_{p, q} X I_{p, q}$, with

$$
I_{p, q}=\left(\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right) .
$$

Note that $\operatorname{Lie} U(p, q)=i \mathcal{H}_{p, q}(\mathbb{C})$.
Hermitian form: for $u, v \in \mathbb{C}^{n}$

$$
[u, v]=u_{1} \overline{\bar{v}_{1}}+\cdots+u_{p} \overline{\bar{v}_{p}}-u_{p+1} \overline{v_{p+1}}-\cdots-u_{p+q} \overline{\bar{v}_{p+q}} .
$$

Convex cone Ω in $\mathcal{H}_{p, q}(\mathbb{C}), U(p, q)$-invariant:

$$
\Omega=\left\{X \in \mathcal{H}_{p, q}(\mathbb{C}) \mid[X u, u]>0, \forall u \text { s.t. }[u, u]=0\right\} .
$$

Spectral Theorem

For $X \in \Omega$, the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of X are real, and X is diagonalizable in the following sense:

$$
X=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) U^{*}, \text { with } U \in U(p, q) .
$$

Furthermore $\lambda_{i}>\lambda_{j},(1 \leq i \leq p, p+1 \leq j \leq p+q)$.
Horn's problem
For two pseudo-Hermitian matrices $A, B \in \Omega$, what can be said about the eigenvalues of the sum $C=A+B$?
In this case Horn's set is unbounded.

For a diagonal matrix $A=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ in Ω, the orbit \mathcal{O}_{α} is contained in Ω. One says that the orbit \mathcal{O}_{α} is of convex type.
Let Proj be the orthogonal projection of $\mathcal{H}_{p, q}(\mathbb{C})$ on the space D_{n} of diagonal matrices.
$\mathcal{W}_{0}=\mathfrak{S}_{p} \times \mathfrak{S}_{q}$ acting on D_{n}.
\mathcal{C} is the cone in $D_{n} \simeq \mathbb{R}^{n}$ generated by the vectors $e_{i}-e_{j}$
$(1 \leq i \leq p, p+1 \leq j \leq p+q)$).
Non compact convexity theorem (Paneitz, 1982)

$$
\operatorname{Proj}\left(\mathcal{O}_{\alpha}\right)=\operatorname{Conv}\left(\mathcal{W}_{0} \alpha\right)+\mathcal{C} .
$$

This is the analogue of Horn's convexity theorem. Note that

$$
\operatorname{Conv}\left(\mathcal{W}_{0} \alpha\right)=\operatorname{Conv}\left(\mathfrak{S}_{p} \alpha^{\prime}\right) \times \operatorname{Conv}\left(\mathfrak{S}_{q} \alpha^{\prime \prime}\right)
$$

with $\alpha^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{p}\right), \alpha^{\prime \prime}=\left(\alpha_{p+1}, \ldots, \alpha_{p+q}\right)$.

We fix a Haar measure ω on $U(p, q)$, and define the orbital measure μ_{α} by

$$
\int_{\mathcal{O}_{\alpha}} f(X) \mu_{\alpha}(d X)=\int_{U(p, q)} f\left(U A u^{*}\right) \omega(d U)
$$

The measure μ_{α} is well defined since the isotropy subgroup of A is compact. The measure μ_{α} is unbounded. Therefore we cannot consider the probabilistic point of view.

Projection of the orbital measure

Let G be the measure on \mathbb{R}^{n} defined by

$$
\int_{\mathbb{R}^{n}} \varphi(x) G(d x)=\int_{\mathbb{R}^{p} q} \varphi\left(\sum_{i=1}^{p} \sum_{j=p+1}^{p+q} t_{i j}\left(e_{i}-e_{j}\right)\right) \prod_{i=1}^{p} \prod_{j=p+1}^{p+q} d t_{i j}
$$

The support of G is equal to the cone \mathcal{C}, and G has a density with respect to the hyperplane with equation $x_{1}+\cdots+x_{n}=0$, which is piecewise polynomial.
Theorem

$$
\mathfrak{M}_{\alpha}:=\operatorname{Proj}\left(\mu_{\alpha}\right)=C G *\left(M_{\alpha^{\prime}} \times M_{\alpha^{\prime \prime}}\right) .
$$

($M_{\alpha^{\prime}}$ and $M_{\alpha^{\prime \prime}}$ are Heckman's measures.)

For the proof one uses a formula established by Ben Saïd and Ørsted (2005) for the Laplace transform of the orbital measure μ_{α} : for $\operatorname{Re} Z \in \Omega$,

$$
\mathcal{L} \mu_{\alpha}(Z)=\int_{\mathcal{O}_{\alpha}} e^{-\operatorname{tr}(Z X)} \mu_{\alpha}(d X)
$$

Theorem For $Z=\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)$,

$$
\mathcal{L} \mu_{\alpha}(Z)=\frac{C}{V_{n}(\alpha) V_{n}(z)} \operatorname{det}\left(e^{-\alpha_{i} z_{j}}\right)_{1 \leq i, j \leq p} \operatorname{det}\left(e^{-\alpha_{i} z_{j}}\right)_{p+1 \leq i, j \leq p+q} .
$$

This is an analogue of the Harish-Chandra-Itzykson-Zuber formula. The Laplace transform, w. r. to D_{n} of the projection \mathfrak{M}_{α} is equal to the restriction to D_{n} of the Laplace transform of $\mu_{\alpha} w$. r. to $\mathcal{H}_{p, q}$. One checks that, when restricted to D_{n},

$$
\mathcal{L} \mu_{\alpha}(Z)=\widehat{G}(z) \widehat{M_{\alpha^{\prime}}}\left(z_{1}, \ldots, z_{p}\right) \widehat{M_{\alpha^{\prime \prime}}}\left(z_{p+1}, \ldots, z_{p+q}\right) .
$$

Similarly one proves

Theorem

$$
\nu_{\alpha, \beta}=C V_{n}(t) \eta_{\alpha} * \mathfrak{M}_{\beta}
$$

where

$$
\eta_{\alpha}=\sum_{w \in \mathcal{W}_{0}} \varepsilon(w) \delta_{w \alpha}
$$

It follows that
$\operatorname{Horn}(\alpha, \beta) \subset \alpha+\left(\operatorname{conv}\left(\mathcal{W}_{0} \beta\right)+\mathcal{C}\right)$.

In the case of the space of real symmetric matrices $\operatorname{Sym}(n, \mathbb{R})$, with the action of the orthogonal group $O(n)$, for $n \geq 3$, in general we don't know any explicit formula for Heckman's measure, and for the measures $\nu_{\alpha, \beta}$.
This setting is natural, however the problem is more difficult than in the case of the space of Hermitian matrices, and one should not expect any explicit formula.
The supports should be the same as in the case of $\mathcal{H}_{n}(\mathbb{C})$ with the action of the unitary group $U(n)$, according to Fulton (1998). However we know the measure $\nu_{\alpha, \beta}$ in the special case of B being of rank one.

3. Horn's problem for real symmetric or Hermitian matrices,

 the case of B of rank one$$
\mathcal{H}_{n}(\mathbb{F})= \begin{cases}\operatorname{Sym}(n, \mathbb{R}) & \text { if } \mathbb{F}=\mathbb{R}, \\ \operatorname{Herm}(n, \mathbb{C}) & \text { if } \mathbb{F}=\mathbb{C}\end{cases}
$$

The group $U_{n}(\mathbb{F})$ acts on the space $\mathcal{H}_{n}(\mathbb{F}): X \mapsto U X U^{*}$.

$$
\begin{gathered}
U_{n}(\mathbb{F})= \begin{cases}O(n) & \text { if } \mathbb{F}=\mathbb{R}, \\
U(n) & \text { if } \mathbb{F}=\mathbb{C} .\end{cases} \\
A=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{1} \geq \cdots \geq \alpha_{n}, \\
B=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right), \beta_{1} \geq \cdots \geq \beta_{n} .
\end{gathered}
$$

The eigenvalues of $Z=U_{1} A U_{1}^{*}+U_{2} B U_{2}^{*}\left(U_{1}, U_{2} \in U_{n}(\mathbb{F})\right.$ are the zeros of

$$
\operatorname{det}\left(z I-U_{1} A U_{1}^{*}-U_{2} B U_{2}^{*}\right)=\operatorname{det}\left(z I-A-U B U^{*}\right)=0,
$$

where $U=U_{1}^{-1} U_{2}$. With $Y=U B U^{*} \in \mathcal{O}_{\beta}$,

$$
\operatorname{det}(z I-A-Y)=\operatorname{det}(z I-A) \operatorname{det}\left(I-(z I-A)^{-1} Y\right) .
$$

Consider the rational function

$$
f(z)=\frac{\operatorname{det}(z I-A-Y)}{\operatorname{det}(z I-A)}=\operatorname{det}\left(I-(z I-A)^{-1} Y\right) .
$$

The eigenvalues λ_{i} of Z are the zeros of f, and the poles of f are the eigenvalues α_{i} of A.

We assume now that B is of rank one:

$$
B=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right), \beta_{1}>0, \beta_{2}=\cdots=\beta_{n}=0 .
$$

Recall that, if the rank of the matrix T is equal to one, then

$$
\operatorname{det}(I+T)=1+\operatorname{tr}(T) .
$$

The matrix $Y=U B U^{*}$ is of rank one, and the matrix $(z I-A)^{-1} Y$ as well. Therefore

$$
f(z)=1-\operatorname{tr}\left((z I-A)^{-1} Y\right)=1-\sum_{i=1}^{n} \frac{Y_{i i}}{z-\alpha_{i}},
$$

with $Y_{i i}=b\left|U_{i 1}\right|^{2} \geq 0$.

Interlacing property

Theorem (Fromkin-Goldberger, 2006) The set $\operatorname{Horn}(\alpha, \beta)$ of possible eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$ of the sum $Z=X+Y$, with $X \in \mathcal{O}_{\alpha}$, $Y \in \mathcal{O}_{\beta}$, is determined by

$$
\begin{aligned}
& \lambda_{1} \geq \alpha_{1} \geq \lambda_{2} \geq \alpha_{2} \geq \cdots \geq \lambda_{n} \geq \alpha_{n}, \\
& \lambda_{1}+\cdots+\lambda_{n}=\alpha_{1}+\cdots+\alpha_{n}+b .
\end{aligned}
$$

This last equality means simply $\operatorname{tr}(Z)=\operatorname{tr}(X)+\operatorname{tr}(Y)$.

Heckman's measure

For simplicity we assume $b=1: \beta=(1,0, \ldots, 0)$. The orbit \mathcal{O}_{β} is the set of the matrices

$$
x=\left(u_{i} \bar{u}_{j}\right) \quad\left(u \in S\left(\mathbb{F}^{n}\right), \mathbb{F}=\mathbb{R} \text { or } \mathbb{C}\right) .
$$

The image of \mathcal{O}_{β} under the projection q of $\mathcal{H}_{n}(\mathbb{F})$ on D_{n} given by

$$
x=\left(u_{i} \bar{u}_{j}\right) \mapsto\left(\left|u_{1}\right|^{2}, \ldots,\left|u_{n}\right|^{2}\right)
$$

is the simplex

$$
\Sigma=\left\{w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n} \mid w_{i} \geq 0, w_{1}+\cdots+w_{n}=1\right\}
$$

Recall that Heckman's measure is the image under the projection Proj of the orbital measure \mathcal{O}_{β}. In the present case it is a Dirichlet distribution

$$
\int_{\Sigma} f(w) D_{\theta}(d w)=\frac{1}{C_{n}(\theta)} \int_{\Sigma} f(w)\left(w_{1} w_{2} \ldots w_{n}\right)^{\theta-1} d w_{1} \wedge \cdots \wedge d w_{n-1}
$$

where

$$
\theta=\frac{1}{2} \operatorname{dim}_{\mathbb{R}} \mathbb{F}=\frac{1}{2} \text { or } 1, C_{n}(\theta)=\frac{\Gamma(\theta)^{n}}{\Gamma(n \theta)} .
$$

We saw that the eigenvalues are the roots of the equation

$$
f(z):=1-\sum_{i=1}^{n} \frac{w_{i}}{z-\alpha_{i}}=0 .
$$

We know the joint distribution of the random variables w_{1}, \ldots, w_{n} : this is the Dirichlet distribution D_{θ}. The equation above defines implicitely a map

$$
\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mapsto\left(w_{1}, \ldots, w_{n}\right) .
$$

It is possible to compute the Jacobian of this map by using the following Cauchy identity

$$
\operatorname{det}\left(\frac{1}{\lambda_{j}-\alpha_{i}}\right)=V_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right) V_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \prod_{i, j=1}^{n} \frac{1}{\lambda_{j}-\alpha_{i}} .
$$

Theorem (Forrester-Zhang,2019) The joint distribution $\nu_{\alpha, \beta}^{+}$of the eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$ of the sum $Z=X+Y$ is given by

$$
\begin{aligned}
\int f(\lambda) \nu_{\alpha, \beta}^{+}(d \lambda) \quad & =\frac{1}{C_{n}(\theta)} \frac{1}{V_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{2 \theta-1}} \\
& \int_{\operatorname{Horn}(\alpha, \beta)} \prod_{i, j=1}^{n}\left|\lambda_{j}-\alpha_{i}\right|^{\theta-1} V_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right) d \lambda_{1} \wedge \cdots \wedge d \lambda_{n-}
\end{aligned}
$$

Recall that $\operatorname{Horn}(\alpha, \beta)$ is equal to the part of the hyperplane

$$
\lambda_{1}+\cdots+\lambda_{n}=\alpha_{1}+\cdots+\alpha_{n}+1
$$

defined by the interlacing property

$$
\lambda_{1} \geq \alpha_{1} \geq \lambda_{2} \geq \alpha_{2} \geq \cdots \geq \lambda_{n} \geq \alpha_{n}
$$

More generally one could consider Horn's problem for the adjoint action of a compact Lie group on its Lie algebra. The Fourier transform of an orbital measure is explicitely given by the Harish-Chandra integral formula [1957]. Heckman's paper [1982] is written in this framework. One can expect that there is an analogue of our result in this setting.
In particular one can consider the action of the orthogonal group on the space of real skew-symmetric matrices, as Zuber did (2017).

4. Relation to representation theory

π_{λ} irreducible representation of $U(n)$ with highest weight λ, $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n}\right)\left(\lambda_{i} \in \mathbb{Z}\right)$.

Littlewood-Richardson coefficients $c_{\alpha, \beta}^{\gamma}$:

$$
\pi_{\alpha} \otimes \pi_{\beta}=\sum_{\gamma} c_{\alpha, \beta}^{\gamma} \pi_{\gamma}
$$

Theorem $c_{\alpha, \beta}^{\gamma} \neq 0$ if and only if $\gamma \in \operatorname{Horn}(\alpha, \beta)$;
i.e. there exist $n \times n$ Hermitian matrices A, B, C with $C=A+B$, the α_{i} are the eigenvalues of A, the β_{i} of B, the γ_{i} of C.
(Klyachko, 1998; Knutson, Tao, 1999)

A recent result by Coquereaux, McSwiggen, and Zuber.

 (arXiv, 2019)Following Berenstein and Zelevinsky (1992), for a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^{3 n}$ they consider a polytope $H_{\alpha, \beta}^{\gamma}$ in \mathbb{R}^{N}. By a result of Berenstein-Zelevinsky, for a triple (λ, μ, ν),

$$
c_{\lambda, \mu}^{\nu}=\#\left\{\text { integer points in } H_{\lambda, \mu}^{\nu}\right\} .
$$

Coquereaux, McSwiggen and Zuber prove that the probability density function for the Horn's problem is given by

$$
p(\alpha, \beta ; \gamma)=C \frac{V_{n}(\gamma)}{V_{n}(\alpha) V_{n}(\beta)} \operatorname{vol}\left(H_{\alpha, \beta}^{\gamma}\right) .
$$

Bhatia, R. (2001). Algebra to quantum cohomology: the story of Alfred Horn's inequalities, Amer. Math. Monthly, 108, 289-318.

Ben Said, S. \& B. Orsted (2005). Bessel functions for root systems via the trigonometric setting, Int. Math. Res. Not., , 551-585.
Lidskir, V. S. (1950). The proper values of the sum and product of symmetric matrices, Doklady Akademi Nauk SSSR, 75, 769-772.
Berezin, F. A. \& I. M. Gelfand (1962). Some remarks on spherical functions on symmetric Riemannian manifolds, Amer. Math. Soc. Transl., Series 2, 21, 193-238.
Horn, A. (1962). Eigenvalues of sums of Hermitian matrices, Pacific J. Math., 12, 225-241.

Klyachko, A. A. (1998). Stable vector bundles and Hermitian operators, Selecta Math. (N.S.), 4, 419-445.
Fulton, W. (1998). Eigenvalues of sums of Hermitian matrices(after Klyachko), Séminaire Bourbaki, exposé 845, June 1998, Astérisque, 252, 255-269.
Knutson, A. \& T. Tao (1999). The honeycomb model of $G L_{n}($ mathbbC $)$ tensor products, J. Amer. Math. Soc., 12, 1055-1090.

Frumkin, A., \& A. Goldberger (2006). On the distribution of the spectrum of the sum of two hermitian or real symmetric matrices, Advances in Applied Mathematicis, 37, 268-286.
Zuber, J.-B. (2017). Horn's problem and Harish-Chandra's integrals. preprint.
Faraut, J. (2019). Horn's problem, and Fourier analysis, Tunisian J. of Math., 1, 585-606.
Forrester, P. J. \& J. Zhang (2019). Corank 1 projections and the randomised Horn problem. arXiv.

Harish-Chandra (1957). Differential operators on a semisimple Lie algebra, Amer. J. Math., 79, 87-120.
Itzykson, C., J.-B. Zuber (1980). The planar approximation II, J. Math. Physics, 21, 411-421.
Heckman, G. (1982). Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. math., 67, 333-356.

Fотн, P. (2010). Eigenvalues of sums of pseudo-Hermitian matrices, Electronic Journal of Linear Algebra (ELA), 20, 115-125.
Coquereaux, R., C. McSwiggen \& J.-B. Zuber (2019). On Horn's problem and its volume function. arXiv.
Berenstein, A. D. \& A. V. Zelevinsky (1992). Triple multiplicities for $s l(r+1)$ and the spectrum of the exterior algebra of the adjoint representation, J. of algebraic combinatorics, 1, 7-22.

