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Abstract: This study proposes an improved approach for monitoring the spatial concentrations of
hourly particulate matter less than 2.5 µm in diameter (PM2.5) via a deep neural network (DNN)
using geostationary ocean color imager (GOCI) images and unified model (UM) reanalysis data over
the Korean Peninsula. The DNN performance was optimized to determine the appropriate training
model structures, incorporating hyperparameter tuning, regularization, early stopping, and input
and output variable normalization to prevent training dataset overfitting. Near-surface atmospheric
information from the UM was also used as an input variable to spatially generalize the DNN model.
The retrieved PM2.5 from the DNN was compared with estimates from random forest, multiple
linear regression, and the Community Multiscale Air Quality model. The DNN demonstrated the
highest accuracy compared to that of the conventional methods for the hold-out validation (root
mean square error (RMSE) = 7.042 µg/m3, mean bias error (MBE) = −0.340 µg/m3, and coefficient of
determination (R2) = 0.698) and the cross-validation (RMSE = 9.166 µg/m3, MBE = 0.293 µg/m3, and
R2 = 0.49). Although the R2 was low due to underestimated high PM2.5 concentration patterns, the
RMSE and MBE demonstrated reliable accuracy values (<10 µg/m3 and 1 µg/m3, respectively) for
the hold-out validation and cross-validation.

Keywords: deep neural network; particulate matter; hourly PM2.5 concentration; reanalysis data;
GOCI satellite; Korean Peninsula

1. Introduction

Airborne particulate matter (PM) consists of solid particles, liquid droplets, or a mixture
of both suspended in the air. PM with aerodynamic diameters of less than 2.5 µm (PM2.5) and
10 µm (PM10) are two of the most widespread health threats, causing respiratory disease due
to their penetration into the skin, lungs, and bronchi [1–3]. In addition to its effect on health,
PM diminishes visibility and affects the climate both directly and indirectly by influencing the
global radiation budget [4,5]. Therefore, monitoring PM10 and PM2.5 exposure is necessary to
accurately diagnose air quality, address public health risks, and understand the climate effects
of ground-level aerosols. One challenge for the aforementioned studies is a lack of accurate
spatial and temporal distributions of ground-level PM2.5 [6,7].

To support the assessment of PM exposure, ground stationary observations have been
conducted to monitor ground-level air quality. Although the ground-based monitoring
has provided reliable and accurate measurements with high temporal resolutions, there is
a major limitation in capturing spatially continuous variations in PM, even though there
are dense distributions of observation sites. It is difficult to ensure the homogeneity of the
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observed location, and even instruments of the same model may have various mechanical
errors, making them unsuitable to obtain spatially continuous data. Recently, satellites
have become a promising tool for studying the dynamics of aerosol optical properties
due to their broad coverage and multispectral bands [8]. In particular, satellite-based
aerosol optical depth (AOD) has been widely used to estimate the spatial and temporal
distributions of PM2.5 at ground level, and it has demonstrated effective performance in
regions where ground measurements are limited [9,10].

From the spatial retrieval methodology perspective, most traditional studies are
roughly divided into four categories, namely multiple linear regression (MLR [11]), mixed-
effect model (MEM [12]), geographically weighted regression (GWR [13]), and chemical-
transport model (CTM), to estimate or predict ground-level PM2.5 using satellite-based
AOD, according to Chu et al. [14]. The MLR, MEM, and GWR statistical models are not only
dependent on the distribution of ground stations but also have difficulty in applying many
related increasing factors (e.g., meteorological conditions, land-use type, population, and
road networks) to input parameter dimensions [14,15]. This implies that statistical models
are likely to oversimplify the complicated relationships between PM2.5 and the input
predictors. The CTM exhibits an inaccuracy issue due to natural sources and anthropogenic
emission inventories, has substantial computational costs, and requires additional expertise
to understand complex physical and chemical processes [16,17].

As an alternative way to solve these issues, nonlinear and nonparametric machine
learning methods such as the artificial neural network, support vector regression, and
random forest (RF) have been used to estimate ground-level concentrations of PM with
satellite data, demonstrating more reliable accuracy than that of conventional numerical
models and statistical approaches [18–20] due to their nonlinear computation [15,21].
Additionally, deep learning, which is considered the second generation of machine learning,
has been suggested [22], and it has great potential to solve issues in geophysical research
for analyzing complicated natural phenomena [15,21–24].

However, new approaches using deep learning have seldom been applied to estimate
the spatial distribution of ground-level PM2.5. Only a few attempts have been made to
estimate PM2.5 ground levels. Ong et al. [25] used a deep recurrent neural network to
predict PM2.5, resulting in environmental monitoring with improved accuracy compared
with that of numerical models; however, their method only performed well over ground
monitoring sites. Li et al. [15] estimated ground-level PM2.5 by fusing satellite and station
observations with deep learning, but they also used meteorological data from ground sites
as the deep-learning input parameters when modeling daily PM2.5 using a polar orbit
moderate resolution imaging spectroradiometer (MODIS/Terra) sensor. Sun et al. [26]
adopted deeper and wider network model structures than those of Li et al. [15] to learn the
complex spatiotemporal relationships of PM2.5 from large-scale observation data. The cross-
validation values based on each ground site were statistically accurate in their research.
However, they were limited in interpolated areas because they still used interpolated
meteorological variables based on ground stations with inverse distance weighting methods
as the input parameters for deep learning. Therefore, further applicability studies of deep
learning are required to determine the optimal approach for more reliable and accurate
PM2.5 ground-level spatial concentration data.

Consequently, the objective of our study was to spatially estimate ground-level PM2.5,
primarily using high-spatiotemporal-resolution geostationary ocean color imager (GOCI)
images and reanalysis data via the deep neural network (DNN) approach. Compared with
previous studies that have used deep-learning methods [15,25,26], major differences and
improvements were made in this study as follows.

Firstly, to estimate high-temporal-resolution (hourly) ground-level PM2.5 data, this
study used GOCI satellite data, which can be used to monitor the diurnal variation in
PM2.5 [27] and long-range transported air pollutants over Northeast Asia.

Secondly, this study directly used multispectral images of GOCI top of atmosphere
(TOA) reflectance instead of GOCI-retrieved AOD products as the input parameters of the
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DNN model. Most previous studies have used satellite-based AOD to estimate ground-
level PM2.5 [15], demonstrating reasonable results [14,19]. Although most research studies
have sufficiently estimated the spatiotemporal distribution of AOD from the multispectral
TOA reflectance of optical satellites, they still exhibit AOD product retrieval errors [28].
This means that the accumulative error of AOD retrieval from the satellite is propagated in
the PM retrieval process, if AOD was used as an input parameter. In addition, because AOD
estimation can be challenging due to the bright and nonlinear scattering characteristics
of land surfaces [29,30], AOD-based estimation of PM2.5 has limitations over bright land-
surface areas, similar to those of AOD retrieval [28].

Lastly, to enhance the application of DNN model performance from the spatial infor-
mation perspective, near-surface atmospheric information from the unified model (UM)
was used to improve the spatial accuracy of the PM concentration [31]. This means that the
meteorological parameters of the ground stations were not used as input variables when
simulating ground-level PM2.5, unlike in previous studies.

2. Study Area and Material
2.1. Area of Interest and Ground Measurements

This study focused on the Korean Peninsula, as illustrated in Figure 1, to estimate
hourly ground-level P.M2.5, which was primarily due to the computational limitations of
the DNN model caused by the high-spatiotemporal-resolution dimensions of the satellite
and reanalysis data. The Korean Peninsula is located at mid-latitude and in the westerly
wind zone, and it exhibits a monsoon climate that gives way to a cold continental climate
in winter and a marine climate in summer [32]. This means that the retrieval accuracy of
ground-level PM2.5 is lowered due to the high cloudiness of the rainy summer season.

Figure 1. Map of study area denoting elevations and locations of in situ measurements, which were
categorized into five groups for cross-validation.

The Korea Environment Corporation, a quasi-governmental organization under the
Ministry of Environment, has installed over 300 ground observation stations across the
Korean Peninsula to observe air quality. PM2.5 has been observed at 206 locations (Figure 1)
since 2015 (accessed on 27 May 2021 from https://www.airkorea.go.kr). In this study,
ground-truth data from 2015 and 2016 were used to optimize data-driven deep-learning
models of PM2.5 and validate the accuracy of each model.

https://www.airkorea.go.kr
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To evaluate the performance of the newly applied deep-learning network, PM2.5 data
simulated with the Community Multiscale Air Quality (CMAQ) model version 5.1 [33]
driven by meteorological inputs using the Weather Research and Forecasting (WRF) model
version 3.8.1 [34] were also compared with ground measurements of PM2.5. Initial and
boundary conditions for the WRF model were set by applying National Centers for Environ-
mental Prediction (NCEP) Final (FNL) Operational Global Analysis data on 1◦ × 1◦ grids.
The horizontal and vertical resolutions of the WRF and CMAQ models were 15 km × 15 km
and 27 vertical sigma levels from the surface to 50 hPa, respectively. More details, such
as about the chemical and physical configurations of the WRF and CMAQ models, are
presented in a previous study [35].

2.2. Specifications of GOCI Satellite Data

In this study, we used TOA reflectance observed by GOCI onboard the Communica-
tion, Ocean, and Meteorological Satellite (COMS) to estimate hourly ground-level PM2.5.
The reflectance data contain eight bands consisting of six visible and two near-infrared
bands with a spatial resolution of 500 m. Although the sensor specifications of the GOCI
satellites are predominately designed for ocean observation [36], GOCI is useful for es-
timating aerosol optical properties, especially those of land areas, because the nonlinear
contribution of the bright surface reflectance decreases in the shortwave visible spectral
region [29]. This means that an increase or decrease in the PM concentration can be ob-
served by the GOCI satellite, primarily due to the lower error contribution of land-surface
reflectance in shortwave blue channels. Detailed information on GOCI is provided in
previous studies [27].

Additionally, a cloud mask of the GOCI image was applied to select clear sky areas
for the retrieval of PM2.5 [27,37,38].

2.3. Meteorological Variables from UM Regional Data Assimilation and Prediction System
(RDAPS) and Ancillary Data

In this study, we also used meteorological variables from the UM RDAPS [39] not
only to improve the spatiotemporal performance of the DNN model but also to support
the oversimplified relationship between the GOCI TOA reflectance and ground-level
PM2.5. The following meteorological variables from the UM RDAPS model of the Korea
Meteorological Administration (KMA) were used as additional input dimensions: wind
direction and speed, surface pressure, planetary boundary layer height (PBLH), 2 m air
temperature, dew point temperature, visibility, and relative humidity (accessed on 27 May
2021 from https://data.kma.go.kr/).

In addition to these variables, we used solar and satellite geometric conditions, including
normalized difference vegetation index (NDVI), global 30 arc second digital elevation model
(DEM), and land cover (LC) as input variables (accessed on 27 May 2021 from https://lpdaac.
usgs.gov/tools/data-pool/). The NDVI and LC of MODIS were applied to consider the vitality
of the vegetation and the state of the land surface.

3. Methodology
3.1. Pre-Processing of Input Parameters for Training DNN

GOCI TOA, UM RDAPS reanalysis data, and other ancillary data (DEM, NDVI,
and LC) have different spatial projections. Therefore, we converted all input data into
orthographic map projections similar to those of the GOCI projection with a 4 km spatial
resolution. Ancillary data were converted using the nearest-neighbor interpolation method.
UM RDAPS estimates each meteorological variable based on a 12 km spatial resolution and
6 h intervals (00:00, 06:00, 12:00, and 18:00 coordinated universal time (UTC)). Differences
in the spatiotemporal resolution between the reanalysis and GOCI satellite data were
corrected by performing spatial interpolation with the Kriging method and temporal
interpolation with a spline function. The Kriging method has been used in the assimilation
process of weather data in many studies and has demonstrated reliable spatial interpolation

https://data.kma.go.kr/
https://lpdaac.usgs.gov/tools/data-pool/
https://lpdaac.usgs.gov/tools/data-pool/
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performance [30,40,41]. For temporal interpolation with the spline function, most of the
weather variables in previous studies showed curved cycles [42,43], and interpolation was
performed with time-unit data through the spline function.

We validated the accuracy of the interpolated UM RDAPS variables (excluding PBLH)
by calculating the correlation coefficient (R), root mean square error (RMSE), and mean
bias error (MBE) with automatic synoptic observation station (ASOS) in situ meteorological
variables provided by the KMA (Figure 2). In Figure 2, it can be seen that the interpolated
UM RDAPS variables demonstrated statistically high matched patterns with the ASOS in
situ measurements; however, the surface pressure showed a systematic deviation at each
point. This is because the low spatial resolution of the UM RDAPS does not reflect the
actual altitude characteristics of each in situ observation site. The wind speed exhibited a
linear variation over time, but the wind direction uncertainty was high because observation
data are provided in 20◦ direction intervals and are excluded from the input data. PBLH
(Figure 2f) shows the monthly (January, March, May, July, September, and November) time
average of the data before interpolation (diamond-shaped symbols) and after interpolation
(solid lines) because actual measurement data could not be obtained. A similar temporal
trend was observed to that of previous studies [42,44]. Finally, the interpolated spatiotem-
poral meteorological variables from UM RDAPS were used as additional input data for the
DNN model.

3.2. DNN Approach

In this study, we adopted the Python deep-learning library of Keras to estimate
ground-level PM2.5. A DNN is a supervised training method with a feed-forward network
structure that utilizes error backpropagation to determine the weight and bias of each
hidden node. Thus, it requires true values, such as in situ measurements [17]. The DNN is
composed of one input layer, multiple hidden layers, and one output layer. The number
of hidden layers is typically greater than three, and the DNN consists of n time-hidden
input nodes [17,45]. The structure of the DNN influences the performance of the estimation
model; thus, we examined several training model structures with various parameter
combinations, as presented in Table 1. In this study, Keras Tuner was used to determine
the optimal hyperparameters for the deep-learning model, which was determined to be
four hidden layers, including 512, 512, 1024, and 1024 hidden nodes for each layer, with L1
regularization of 0.001, batch normalization, and the rectified linear unit (ReLu) activation
function. In addition, Adam optimization with a learning rate of 0.05 and a dropout rate of
0.3 were determined as the optimal hyperparameters.

Table 1. Hyperparameter range used to select the optimal deep-learning model structure for estimat-
ing ground-level PM2.5.

Parameter Configuration

Number of hidden nodes 64 128 256 512 1024

Number of hidden layers 3–4 4–6 4–6 6–8 6–8

L1 regularization False, 0.01, 0.001, and 0.0001

L2 regularization False, 0.01, 0.001, and 0.0001

Activation function ReLu, Leaky ReLu, and exponential linear unit (ELU)

Optimization Adam and root mean square propagation (RMSProp)

Learning rate 0.05, 0.001, and 0.005

Dropout rate 0.1, 0.2, and 0.3

For reference, the random forest (RF) approach was also applied to compare the perfor-
mance of the newly applied DNN ground-level PM2.5 estimation, because it demonstrates high
predictive performance by calculating the results of several decision trees using the ensemble
technique [19,20,46,47]. In this study, 72 model structures were tested based on independent
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variables such as the number of decision trees, maximum tree depth, and the percentage of
data per column used for training to predict the concentration of PM2.5. The results of the
analysis illustrated that the final RF used 70% of the data per column for 40 decision trees,
12 input nodes per decision tree, and 80% of the total data for each decision tree.

Figure 2. Comparison of in situ meteorological variables and interpolated UM RDAPS: (a) dew point temperature;
(b) surface pressure; (c) wind speed; (d) 2 m height air temperature; (e) relative humidity; and (f) PBLH.
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In this study, two validation approaches were applied to evaluate the temporal and
spatial performances of the deep-learning model: hold-out validation and k-fold cross-
validation. For the hold-out validation, we separated the total matchup datasets into three
parts in chronological order: training data (60%), validation data (20%), and test data (20%).
Fivefold cross-validation was performed by dividing the PM ground observation stations
into five groups, as illustrated in Figure 1. Each cross-validation dataset was randomly
composed of 114 points (approximately 55% of training data) at 206 observation points;
54 points (approximately 26% of validation) of data were utilized during the training
process, and the remaining 38 points (approximately 18% of test data) were used as the
final model accuracy test data. For both the hold-out validation and the cross-validation
approaches, the training data were used to optimize the deep-learning model, and the
validation data were used to reduce overfitting problems based on the early stop approach
applied in the training process. The remaining test data were used to evaluate how well the
deep-learning model reflected the spatiotemporal characteristics of PM2.5. As a reference,
all matchup datasets were normalized from their physical values to 0–1 float values using
minimum and maximum values over 2 years.

4. Results

Figure 3 displays scatterplots depicting the correlation between the ground-truth PM2.5
measurements and estimated PM2.5 values calculated by each model based on the hold-out
validation. Overall, the DNN demonstrates the highest accuracy (RMSE = 7.042 µg/m3,
MBE = −0.34 µg/m3, and coefficient of determination (R2) = 0.698) when comparing the
ground measurements of PM2.5. RF is less accurate than the DNN, with RMSE = 7.904 µg/m3,
MBE = 0.225 µg/m3, and R2 = 0.619. Both RF and the DNN tend to underestimate above
a certain threshold (over 25 µg/m3), but RF has a greater underestimation, which means
that its uncertainty is greater for high concentrations. Regarding MLR, it is well clustered,
but the calculation range is concentrated in a narrower range compared to that of the actual
values, and the maximum output value is not reflected in high concentration cases within
40 µg/m3. The predicted values from the CMAQ simulations were distributed over a wide
range regardless of the actual measurement, and the RMSE and MBE were higher than those
of the other methods. However, unlike the satellite-based method, prediction is possible for
24 h a day, and the CMAQ model contains more data for the same period since there are
no missing areas due to cloud cover. In Figure 3d, the time range (08~23 UTC) that is not
observed by GOCI is excluded.

To evaluate the spatial generalization, fivefold cross-validation was performed for
the DNN, RF, and MLR by dividing the dataset into five station groups, as illustrated
in Figure 1. In the case of CMAQ based on the physical model, we did not perform
cross-validation since the performance of generalization for CMAQ is better than the
data-driven models of the DNN, RF, and MLR, which were trained using the ground mea-
surements [21,35]. The results are presented in Table 2, and the total cross-validation results
of the RMSE, MBE, and R2 for the DNN are 9.17 µg/m3, 0.293 µg/m3, and 0.49 µg/m3,
respectively, and the results of the fivefold cross-validations are less accurate than those
of the hold-out validation of the deep-learning model. This means that the spatial varia-
tion exhibits a complicated spatial pattern and requires additional parameters to reflect
the characteristics of spatial PM2.5. Although the R2 is low because of the underesti-
mated pattern of high PM2.5, the RMSE and MBE displayed reliable and accurate val-
ues of less than 10 µg/m3 and 1 µg/m3, respectively, when compared with previous
results [15,19,20,25,26,48]. When considering the RF model as a comparative analysis, the
statistical values may vary according to the data type, pre-processing approach, adopted
model, and validation method. The proposed DNN model appears to produce reliable
estimates of spatiotemporal PM2.5 when compared to those of the RF model.
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Figure 3. Scatterplots describing correlations between ground-truth PM2.5 measurements and estimated PM2.5 values
calculated by each model: (a) DNN; (b) RF; (c) MLR; and (d) CMAQ.

Table 2. Summary of the DNN, RF, and MLR cross-validation results.

Method RMSE MBE R2

DNN 9.166 0.293 0.49
RF 9.342 0.337 0.474

MLR 11.133 −0.0428 0.251

RMSE and MBE are in µg/m−3.

5. Discussion

Finally, we confirmed the spatial calculation ability of the DNN model for the case
of high concentrations in 2017. Figure 4 displays the results of the hourly spatial maps of
ground-level PM2.5 on 19 January 2017 (from 01:00 (10:00) to 06:00 (15:00) UTC (KST)) for
cases of high PM2.5 concentrations. Except for areas that are not observable due to clouds,
high concentration areas estimated using the DNN model were well matched with the
ground-truth PM2.5. Similar to the accuracy analysis results, the spatial variation in the
DNN is consistent; however, it tends to underestimate concentrations, especially for high
PM2.5 areas. Nevertheless, it was determined that the utility of the DNN approach using
satellite and reanalysis data is high because it can observe diurnal and spatial changes of
PM2.5 with reliable accuracy.
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Figure 4. Spatial distributions of ground-level PM2.5 concentrations on 19th January 2017 (from 01:00 to 06:00 UTC).
The top row figures are hourly spatial maps of PM2.5 from the DNN, and the bottom row figures are the corresponding
spatiotemporal measurements of PM2.5 from selected ground stations.

As this study is based on the GOCI sensor, there are several limitations. First, the
GOCI is a sensor whose main purpose is ocean color observation, and it is impossible to
observe at night due to only being equipped with a visible channel. Second, there is an
error possibility for high concentration cases via residual cloud effects due to the absence
of an IR channel. The above problems can be solved by fusion with meteorological data
from satellites that observe a wide range of wavelengths, such as the Geo-KOMPSAT-
2A/Advanced Meteorological Imager (GK-2A/AMI).

6. Conclusions

In this study, we estimated ground-level PM2.5 via a deep-learning approach using
TOA reflectance observed with GOCI satellite and meteorological variables of reanalysis
data, demonstrating that the proposed DNN model can effectively reflect the spatial char-
acteristics of PM2.5 over the Korean Peninsula compared with conventional RF, MLR, and
CMAQ methods. Overall, data-driven models, such as the DNN and RF models, showed
more reliable PM2.5 retrieval than that of conventional MLR and CMAQ. In addition, the
DNN method exhibited higher accuracy than the RF method for both the validation ap-
proaches due to its deeper and more complicated network structure. Conventional MLR
tended to converge to a certain value, with a low error rate but also a lower matching rate.

Although the DNN demonstrated that the temporal variations of PM2.5 were suffi-
ciently calculated according to the results of the hold-out validation, the spatial characteris-
tics estimates remain a limit, despite applying the GOCI satellite and reanalysis data, due to
the complexity of ground-level PM2.5, according to the cross-validation results. This implies
that additional spatial variables (population, road networks, etc.) should be considered
to reflect the substantially large spatial variability of PM2.5. Furthermore, compared to
CMAQ, the DNN is limited in estimating PM for cloud areas and daily changes, including
nighttime. Nevertheless, the suggested method enables the observation of the spatial varia-
tion in actual ground PM2.5, unlike previous studies, because the data from meteorological
stations were not used as input data for the DNN model. Compared with other AOD-based
PM2.5 estimations, the model has several advantages: (1) the AOD calculation process is
independent of errors and (2) time and computing resources are saved in this process.
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