How Computers Represent Data

- · Number systems
 - A manner of counting
 - Several different number systems exist
- Decimal number system
 - Used by humans to count
 - Contains ten distinct digits
 - Digits combine to make larger numbers

How Computers Represent Data

- Binary number system
 - Used by computers to count
 - Two distinct digits, 0 and 1
 - 0 and 1 combine to make numbers
- Think of binary numbers in terms of switches. With two switches you can represent up to four different numbers.
- * 0 0 (OFF OFF) = Decimal 0
- * 0 1 (OFF ON) = Decimal 1
- * 1 0 (ON OFF) = Decimal 2
- * 1 1 (ON ON) = Decimal 3

Decimal	Binary Repr	resentation
0	0	
1	1	
2	10	
3	11	
4	100	
5	101	
6	110	k
7	111	
8	1000	
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	

_			
_			
_			
_			
_			
_			
_			
_			
_			

How Computers Represent Data

- · Bits and bytes
 - Binary numbers are made of bits
 - Bit represents a switch
 - A byte is 8 bits
 - Byte represents one character

How Computers Represent Data

- · Text codes
 - Converts letters into binary
 - Standard codes necessary for data transfer
 - ASCII
 - American English symbols
 - Extended ASCII
 - · Graphics and other symbols
 - Unicode
 - · All languages on the planet

How Computers Process Data

- The CPU
 - Central Processing Unit
 - Brain of the computer
 - Control unit
 - · Controls resources in computer
 - Instruction set
 - Arithmetic logic unit
 - Simple math operations
 - Registers

2

How Computers Process Data

- · Machine cycles
 - Steps by CPU to process data
 - Instruction cycle
 - · CPU gets the instruction
 - Execution cycle
 - CPU performs the instruction
 - Billions of cycles per second
 - Pipelining processes more data
 - Multitasking allows multiple instructions

How Computers Process Data

- Memory
 - Stores open programs and data
 - Small chips on the motherboard
 - More memory makes a computer faster

How Computers Process Data

- · Nonvolatile memory
 - Holds data when power is off
 - Read Only Memory (ROM)
 - Basic Input Output System (BIOS)
 - Power On Self Test (POST)

How Computers Process Data

- · Flash memory
 - Data is stored using physical switches
 - Special form of nonvolatile memory
 - Camera cards, USB key chains

How Computers Process Data

- · Volatile memory
 - Requires power to hold data
 - Random Access Memory (RAM)
 - Data in RAM has an address
 - CPU reads data using the address
 - CPU can read any address

Components affecting Speed

Affecting Processing Speed

- Registers
 - Number of bits processor can handle
 - Word size
 - Larger indicates more powerful computer
 - Increase by purchasing new CPU

Affecting Processing Speed

- Virtual RAM
 - When the Computer is out of actual RAM
 - This is a file that emulates RAM
 - Computer swaps data to virtual RAM
 - · Least recently used data is moved

Affecting Processing Speed

- The computer's internal clock
 - Quartz crystal
 - Every tick causes a cycle
 - Speeds measured in Hertz (Hz)
 - Modern machines use Giga Hertz (GHz)

-		

Affecting Processing Speed • The bus - Electronic pathway between components - Expansion bus connects to peripherals - System bus connects CPU and RAM - Bus width is measured in bits - Speed is tied to the clock **Affecting Processing Speed** · External bus standards - Industry Standard Architecture (ISA) - Local bus - Peripheral control interface - Accelerated graphics port - Universal serial bus - IEEE 1394 (FireWire) - PC Card **Affecting Processing Speed** • Peripheral control interface (PCI)

Connects modems and sound cardsFound in most modern computers

Affecting Processing Speed

- Accelerated Graphics Port (AGP)
 - Connects video card to motherboard
 - Extremely fast bus
 - Found in all modern computers

Affecting Processing Speed

- Universal Serial Bus (USB)
 - Connects external devices
 - Hot swappable
 - Allows up to 127 devices to be connected (through hubs)
 - Cameras, printers, and scanners

Affecting Processing Speed

- PC Card
 - Used on laptops
 - Hot swappable
 - Devices are the size of a credit card

Affecting Processing Speed · Cache memory - Very fast memory - Holds common or recently used data - Speeds up computer processing - Most computers have several caches - L1 holds recently used data - L2 holds upcoming data - L3 holds possible upcoming data Chapter 5B Modern CPUs A Look Inside The Processor • Architecture - Determines · Location of CPU parts • Bit size • Number of registers Pipelines - Main difference between CPUs

Microcomputer Processors

- Intel
 - Leading manufacturer of processors
 - Intel 4004 was worlds first microprocessor
 - IBM PC powered by Intel 8086
 - Current processors
 - Centrino
 - Itanium
 - Pentium IV
 - Xeon

Microcomputer Processors

- Advanced Micro Devices (AMD)
 - Main competitor to Intel
 - Originally produced budget products
 - Current products outperform Intel
 - Current processors
 - Sempron
 - Athlon FX 64
 - Athlon XP

Microcomputer Processors

- Freescale
 - A subsidiary of Motorola
 - Co-developed the Apple G4 PowerPC
 - Currently focuses on the Linux market

Microcomputer Processors

- IBM
 - Historically manufactured mainframes
 - Partnered with Apple to develop G5
 - First consumer 64 bit chip

The Apple Intel Chip

- The Intel Core microarchitecture allows for high performance, speed and energy efficiency
- Two processors engineered on a single chip
- The Chip allows the Windows OS to run natively in addition to OSX
- So two systems for the price of one!
- Intel information on the Core Duo http://www.intel.com/products/processor/coreduo/

Comparing Processors

- · Speed of processor
- · Size of cache
- Number of registers
- Bit size
- · Speed of Front side bus

1	0

Advanced Processor Topics · RISC processors - Reduced Instruction Set Computing - Smaller instruction sets - May process data faster - PowerPC and G5 **Advanced Processor Topics** · Parallel Processing - Multiple processors in a system - Symmetric Multiple Processing • Number of processors is a power of 2 - Massively Parallel Processing • Thousands of processors • Mainframes and super computers **Extending The Processors Power** Standard computer ports - Keyboard and mouse ports

USB portsParallelNetworkModemAudioSerialVideo

Standard PC Computer Ports

Mac Computer Ports

Extending The Processors Power

- Serial and parallel ports
 - Connect to printers or modems
 - Parallel ports move bits simultaneously
 - Made of 8 32 wires
 - Internal busses are parallel
 - Serial ports move one bit
 - · Lower data flow than parallel
 - · Requires control wires
 - UART converts from serial to parallel

Extending The Processors Power

- SCSI
 - Small Computer System Interface
 - Supports dozens of devices
 - External devices daisy chain
 - Fast hard drives and CD-ROMs

Extending The Processors Power

- USB
 - Universal Serial Bus
 - Most popular external bus
 - Supports up to 127 devices
 - Hot swappable

Extending the Processors Power

- FireWire
 - IEEE 1384
 - Cameras and video equipment
 - Hot swappable
 - Port is very expensive

Extending the Processors Power

- Expansion slots and boards
 - Allows users to configure the machine
 - Slots allow the addition of new devices
 - Devices are stored on cards
 - Computer must be off before inserting

1	1
	4

Extending the Processors Power

- PC Cards
 - Expansion bus for laptops
 - PCMCIA
 - Hot swappable
 - Small card size
 - Three types, I, II and III
 - Type II is most common

Extending the Processors Power

- Plug and play
 - New hardware detected automatically
 - Prompts to install drivers
 - Non-technical users can install devices