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Abstract—Context. Android developers that developed Android
apps using Java 6 for a long time got introduced to Kotlin as
a new programming language in 2017. Kotlin contains many
features that make it a popular alternative to Java in Android
development, and together with the full support of Google and
its creator, Jetbrains, it is becoming an essential part of Android
development. Goal. This study aims to empirically assess the
impact of the migration from Java to Kotlin on the run-time
efficiency of Android apps. Methodology. To achieve this goal, we
mine 7,972 GitHub repositories of Android apps and identified
451 apps containing Kotlin code. Then, by applying a cross-
language clone detection technique, we detect 62 commits that
represent a full migration to Kotlin, while keeping the app
functionally equivalent. We sample 10 apps that fully migrated
to Kotlin and conducted a measurement-based experiment to
compare their Java and Kotlin versions with respect to seven run-
time efficiency metrics. Results. Our study shows that migrating
to Kotlin has a statistically significant impact on CPU usage,
memory usage, and render duration of frames (though with a
negligible effect size), whereas it does not impact significantly
the number of calls to the garbage collector, the number of
delayed frames, app size, and energy consumption. Conclusions.
This study provides evidence that developers can migrate their
Android apps to Kotlin and expect comparable efficiency at
runtime. As a side product, this study also confirms that most
open-source Android apps either fully migrated to Kotlin (>90%
Kotlin code) or contain low portions of Kotlin code (<10%).

Index Terms—Empirical study; Android; Kotlin; Performance;
Energy consumption

I. INTRODUCTION

The Android operating system is the current leader in the
mobile operating systems market (74% market share at the
end of 2019 [1]), while also supporting a variety of different
platforms such as television systems, smartwatches, multime-
dia car systems, and IoT devices [2]. Originally restricted to
Java 6, since 2017 developers can adopt Kotlin, a modern
statically-typed programming language [3], to program their
applications. Kotlin introduces several features not available in
Java 6 (e.g., null safety, lambda expressions) and is currently
considered by Google as the main language for Android
application development [4].

Given the above, developers might be interested in perform-
ing a migration to Kotlin, i.e., rewrite parts or the entirety of
their Java app in Kotlin, in order to take advantage of the
new features. However, while the level of Kotlin adoption [5],
[6] and perceived benefits [7], [8] have been investigated by

researchers, to date, there is no evidence on the impact that a
Kotlin migration has on the application run-time efficiency.

We fill this research gap by conducting an empirical study
on the impact of the migration from Java to Kotlin
on the run-time efficiency of Android apps. In order to
achieve this goal, we mine 7,972 GitHub repositories of open-
source Android apps and identified among them 451 apps
containing Kotlin code. Then, by applying a cross-language
clone detection technique, we detect 62 commits that are
responsible for a full migration to Kotlin, while keeping the
app functionally equivalent. We conducted a measurement-
based experiment on a sample of ten apps that fully migrated to
Kotlin, to compare their Java and Kotlin versions with respect
to seven run-time efficiency metrics. In addition, we provide
up-to-date statistics on the level of adoption of Kotlin in
open-source Android applications distributed in the Google
Play store.

The results of our experiment highlight that migrating to
Kotlin has a statistically significant impact on CPU usage,
memory usage, and render duration of frames (albeit with a
negligible effect size), whereas it does not impact significantly
the number of calls to the garbage collector, the number of
delayed frames, app size, and energy consumption.

The main contributions of this paper are:
• A quantitative analysis of the level of adoption of Kotlin

over the lifetime of open-source Android projects.
• An empirical assessment of the Java and Kotlin versions

of 10 real-world Android apps according to seven metrics
related to performance, app size, and energy efficiency.

• A replication package with all raw data and scripts to
replicate the experiments1.

The study aims to support Android developers, maintainers
of the Android platform and its Kotlin runtime, and re-
searchers. The former are provided with evidence on the level
of Kotlin adoption in Android development and on the run-
time impact of Kotlin, which forms an objective basis for de-
ciding about the adoption of the Kotlin language. Maintainers
are given evidence on the potential run-time efficiency impact
occurring after migrating to Kotlin, which can be used as a
basis to further investigate root causes, to improve the Android
platform and the Kotlin language itself. We inform fellow

1https://zenodo.org/record/5166703



researchers on the state of Kotlin usage, Kotlin migration
activities, and the run-time efficiency impact of a Kotlin
migration; these results can be used for further research into
migration activities and run-time efficiency impact.

To allow independent verification and replication of the
performed study, we make publicly available a full replication
package1, containing: (i) the Python scripts to perform all
mining and data extraction steps; (ii) intermediate results; (iii)
data visualizations; (iv) the Python scripts for performing the
statistical analysis.

II. BACKGROUND

This section provides context and discusses preliminary
concepts required in subsequent sections. We provide a brief
description of the Kotlin language, its usage in Android
development, and we define the meaning of performing a
“migration to Kotlin”.

A. Kotlin in Android development

Kotlin is a cross-platform, statically typed, general-purpose
programming language with type inference. Kotlin is designed
to interoperate fully with Java and introduces several features
missing in the latter such as, e.g., null safety, data classes,
extension functions, lambda expressions [3]. Kotlin was orig-
inally introduced by JetBrains that, together with Google,
created the Kotlin foundation to promote and advance the
development of the Kotlin programming language [9]. On the
7th May 2019, Google announced that the Kotlin programming
language is now its preferred language for Android app
developers [4], and new projects should be developed with
it. After the introduction of Kotlin as a first-class citizen by
Google, Kotlin became a fully supported alternative to the
previous standard language Java 6. By introducing Kotlin,
Google follows the footsteps of Apple that introduced Swift in
2014 [10] as an alternative programming language for devel-
oping iOS apps. Both languages share that they replaced their
more verbose predecessor, Java 6 for Android and Objective-C
for iOS, with a more modern and less verbose language that
is interoperable with the old language.

For developing Android applications in Kotlin, Jetbrains,
and Google offer various tools. Since the release of Android
Studio 3.0, Kotlin gained full IDE support, introducing fea-
tures already available for Java such as, e.g., code completion,
code inspection, debugging, refactoring. Additionally, a feature
to convert complete Java classes to Kotlin is also made avail-
able to support developers with migrating their applications to
Kotlin.

B. Kotlin Migration

A migration towards Kotlin can take many shapes and forms
thanks to the many interoperability features Kotlin contains
(e.g., Java types mapped to Kotlin types or annotations that
help the compiler translate a concept found solely to the
other). Because of these features, developers do not have to
rewrite their entire codebase and can migrate using various
approaches. In order to still recognize migrations across these

many variations, we define a Kotlin migration as Java code
being replaced with Kotlin code that is logically equivalent.
This definition applies to extensive replacements such as
multiple files, and as well for small replacements such as
single methods.

III. STUDY DESIGN

This section describes all the methods used in this study.
It starts with a detailed description of our research questions
and continues with our dataset creation process. Finally, we
describe the design of our experiment and the methods used
for analyzing and interpreting the results for each research
question sequentially.

A. Goal and research questions

Our main goal is to assess the impact of migration from
Java to Kotlin on the performance and energy efficiency of
Android apps. As a preliminary step, in order to understand
the context of the migration act itself, we also investigate how
much Kotlin is currently used in Android applications. To the
best of our knowledge, no empirical studies exist that evaluate
the performance or energy efficiency impact of migrations to
Kotlin in real-world open-source Android applications. For
structuring our research, we split our goal up into two separate
research questions which are independent of each other:

RQ1: What is the level of usage of Kotlin in open-source
Android apps?

RQ2: How does a migration to Kotlin impact the run-time
efficiency of Android apps?

By answering RQ1, we study how largely adopted Kotlin
is within Android open-source apps and inform both Android
developers and fellow researchers on the adoption level of
Kotlin in Android development. Results will serve as an
essential gauge for Android developers to use for deciding
on the adoption of Kotlin (e.g., low usage levels might make
it harder to find Android developers skilled in Kotlin). To
answer this question, we will replicate part of the research
done by Mateus [5] using the AndroidTimeMachine open-
source Android apps dataset created by Geiger et al. [11].
Our replication will verify the results of Mateus et al. using a
different dataset containing solely real-world applications and
will serve as a foundation for answering our second research
questions.

Answering RQ2 leads to results on whether a statistically
significant difference exists in the run-time efficiency of apps
that migrated to Kotlin. Results from this research question
will be useful for Android developers that are debating on
migrating to Kotlin. RQ2 is answered by designing and con-
ducting an empirical assessment of the run-time efficiency of
a set of Android apps that have been fully migrated to Kotlin.
Specifically, we consider fully migrated apps from our dataset
and for each app we consider its Java and Kotlin versions.

B. Data collection and extraction

To answer our research questions, a dataset that meets
the two following criteria is necessary: (i) it must have a



1) Android

Projects

Collection

2) Snapshot

creation

3) Corruption

Check

GitLab Instance With

Non Corrupt 

Android Repositories

(7,972)

AndroidTimeMachine

Neo4j DB 

GitHub Android

 Project  Metadata

(8,216)

GitLab Instance With 

Android Repositories

(8,216)

Corrupt Projects

(244)

Step producer consumer

Artifact

Data

Container

Fig. 1: Dataset collection process

clear distinction between regular Android applications and
applications containing Kotlin; (ii) source code and project
history must be fully accessible for all entries. Hence, to build
a valid dataset, we adopt the process summarized below and
shown in Figure 1.
Applications collection - As a starting point for the collection
of our dataset, we use AndroidTimeMachine, an independently-
built dataset of open-source Android applications [11]. We
choose this dataset as our starting point as (i) it provides a
large number of open-source applications, thus increasing the
likelihood of having a representative sample of applications
even after subsequent filtering steps, and (ii) it includes
pointers to the GitHub repository of each entry, thus meeting
the requirement of having full access to the source code
and project history. Although AndroidTimeMachine is made
available in ready-to-use components, it is not usable in an
out-of-the-box fashion for the purpose of this study as project
histories included in it have been collected in 2018, thus using
them would have meant excluding more than a year’s worth of
application versions. Therefore, we create an updated snapshot
of source code and project histories for applications included
in AndroidTimeMachine.

Listing 1: Kotlin projects identification procedure
1 function filterRepositoriesOnKotlin(repos: List){
2 kotlinRepos = set();
3
4 for repository in repos {
5 for commit in repository.commits {
6 for file in commit {
7 if filePath.endswith(".kt"){
8 kotlinRepos.add(repository);
9 }

10 }
11 }
12 }
13 return kotlinRepos;
14 }

The snapshot creation starts by extracting from Android-
TimeMachine the list of all entries with an attached GitHub
repository. This query results in 8,216 GitHub repositories. We
continue by importing these repositories into a GitLab Docker
image2 instance. For 244 repositories, insertion resulted in a
corrupt repository containing zero commits. After inspection,
we found that the GitHub repository no longer exists for 243
of these projects while for the sole project that was leftover

2https://docs.gitlab.com/omnibus/docker/

we found that the repository was empty. These corruptions
were most likely introduced in the time between our study and
the AndroidTimeMachine study. Thus, our dataset of Android
applications consists of a snapshot of 7,972 git repositories,
hosted in a local GitLab instance for easy access.
Identifying Kotlin Applications - For finalizing the dataset,
identification of projects that contain Kotlin code is required.
This process is achieved by following the algorithm described
in Listing 1. First, we clone each repository in our local GitLab
instance (line 5 in Listing 1). Cloning the repository will
automatically check out the main branch from the original
GitHub repository. The process is then continued by listing all
commits in the main branch by using the git log command
(line 5). All commits are then iterated on, and files changed
in each are checked for the presence of a Kotlin file extension
(lines 6-7). If a Kotlin file extension is found, we tag the
Android repository as a Kotlin application (line 8). The full
process results in a filtered dataset of 451 applications that
ever contained any Kotlin code, and thus classified as Kotlin
applications. Our filtering process, does not check for the
presence of Kotlin code in applications’ dependencies, due to
the increased complexity it introduces and due to the fact that
choice of libraries is not always fully controllable by Android
developers themselves.

Listing 2: Kotlin projects identification procedure
1function countSlocForRepositories(repos: List){
2results = map();
3
4for repository in repos {
5repository = repository.cloneRepository();
6for commit in repository.commits {
7commit = commit.checkout();
8sloc = Cloc.countSloc(commit);
9results.put(repository, sloc.java, sloc.kotlin)

;
10}
11}
12return results;
13}

Measuring Java and Kotlin SLOC - Having access to the
entire git history for each application in our dataset enables
us to measure the lines of code for each language directly on
the source code. We do so by using the tool CLOC3. CLOC
is a tool that counts the source lines of code of an application,
grouped for each of the multiple programming languages it
recognizes. It is able to detect blank lines and comments so,
in our study, we only measure lines of actual code. The process
of counting the SLOC is described in Listing 2. It starts with
cloning the repository (line 5 in Listing 2) and iterating on
every commit (lines 6). For each, CLOC is run on the checked-
out source code (lines 7-9). It results in the count of Kotlin
and Java SLOC for each version of the application for all 451
Kotlin applications in our dataset.

C. Data analysis
In the following, we describe the steps undertaken to

analyze the collected data towards answering our research
questions.

3https://github.com/AlDanial/cloc



Measuring the degree of Kotlin adoption - For answering
RQ1, we categorize the 7,972 Android applications in our
dataset using the three categories defined by Mateus et al. [5]:
(i) Entirely written in Java, (ii) Entirely written in Kotlin,
(iii) Written in both Java and Kotlin. Every application that
is part of our Android applications dataset but not part of
the Kotlin applications are assigned to the first category.
Kotlin applications that never contained any lines of Java code
are assigned to the second category. All remaining Kotlin
applications are assigned to the third category. We present
these results visually in the bar chart of Figure 3.

Measuring the proportion of Kotlin code - Furthermore, to
provide a more in-depth answer for RQ1, we take the counts of
SLOC for the most recent version of every Kotlin application
and calculate the proportion of Kotlin code compared to Java
code, disregarding any other programming language present in
the codebase. We plot these in the histogram visualization of
Figure 4, which shows the Kotlin proportion distribution for
Kotlin applications in our dataset.

Measuring the run-time efficiency impact of a Kotlin
migration – We answer RQ2 quantitatively. In the follow-
ing, we describe the experiment design by first covering the
selection of the subjects and then defining the independent and
dependent variables, together with how the latter are measured.
We continue with a formulation of hypotheses that ultimately
answer RQ2 and the design of our experimental setup. Finally,
we describe the statistical methods for analyzing the data and
accepting or rejecting the hypotheses.

Subjects selection – As subjects for the experiment, we need
a sample of applications for which both a version entirely
written Java and a version entirely written in Kotlin exists.
An important aspect to consider in the selection of these
applications is that the transition from Java to Kotlin must be
a pure migration. A migration from Java to Kotlin is pure
if it does not introduce any new functionality in the app.
By considering pure migrations, we are reasonably confident
about the functional equivalence of the Java and Kotlin ver-
sions of an app. We start our sampling by identifying in our
dataset those projects for which the Kotlin code replaces all
Java code between two consecutive commits in the project
history. To do so, first, we identify all logically equivalent
code chunks in Kotlin and Java for all projects in our dataset,
by applying the cross-language clone (CLC) detection method
proposed by Cheng et al. [12]. Employing this methodology,
all commits in revision histories are analyzed to identify
Kotlin migration commits. Whenever a Java deletion and a
Kotlin addition resulting in a CLC is detected, the commit is
classified as a Kotlin migration, since it meets the definition
of containing deleted Java code that is replaced by logically
equivalent Kotlin code. This led to the identification of 3,674
Kotlin migration commits. Among these, we found 62 projects
for which Kotlin code replaces all Java code between two
consecutive versions.

Adopting these projects as the base for our subject selection
increases the likelihood that the migration is a pure migration,

TABLE I: Experiment subjects

Id Name Category Java SLOC Kotlin SLOC

a1 Fortune-Android Entertainment 580 542
a2 whitakers-words-android Books & Reference 433 414
a3 slounik Books & Reference 1,443 1,380
a4 Glyph Trivia 1,891 2,012
a5 TaskGame Adventure 7,348 6,053
a6 SimpleHTMLTesterAndroid Productivity 393 372
a7 drag-select-recyclerview Libraries & Demo 624 505
a8 DFReminder Tools 542 421
a9 R.tools Tools 793 728
a10 home-button Tools 203 168

as it was completely performed in a single commit. From the
initial 62 projects, we pick a sample of 10 applications using
stratified random sampling [13]. We use two characteristics for
the stratified random sampling: (i) the application’s category
as listed in the Google Play store, (ii) the total Kotlin and Java
SLOC being either lower than a threshold t or greater or equal
to it. We stratify by app category in order to have a balanced
set of apps with respect to their provided functionalities. We
chose t = 5000 SLOC since we observed that apps with lower
SLOCs tend to be either single-purpose or extremely basic.
This sampling procedure increases the likelihood that a varied
set of categories, as well as both small and large projects,
are well represented in our sample. To be certain that the
sample consists of only pure migrations, we manually inspect
the sampled migration commit via three heuristics: (i) verify
that the paths of the deleted Java files and added Kotlin files are
matching; (ii) verify that the deleted Java code and the added
Kotlin code are functionally similar; (iii) we install both the
Java and Kotlin versions of the app and manually check that
they provide exactly the same functionalities, i.e., all buttons
and screens are functionally equal in the two versions. If the
migration passes all of these manual checks, we consider it
pure. Our initial sample of 10 migrations successfully passed
all three heuristics, and therefore, we did not have to introduce
measures to deal with impure migrations. The 10 applications
are presented in Table I.

Independent and dependent variables – As an independent
variable, we use the programming language used in the appli-
cation. It has two treatments: a 100% usage of Java before
migration to Kotlin and a 100% usage of Kotlin after the
migration to Kotlin.

The dependent variables of this experiment consist of well-
known metrics for both performance and energy efficiency of
Android apps:

• CPU usage (cpu): optimizing CPU usage provides a faster
and smoother experience to the user while also preserving
battery life [14]. We define CPU usage as the percentage
of the device’s total CPU capacity used by an application
at given points in time during its lifetime. It is measured
using the Android Debugging Bridge (ADB) dumpsys

cpuinfo command throughout the entire duration of the
experiment at a sampling frequency of one second.

• Memory usage (mem): physical memory is constrained
on mobile devices due to clear limitations in space, and
therefore, memory is a valuable resource in Android.



Excessive memory consumption can degrade app perfor-
mance and can cause application crashes [15]. We define
memory usage as the amount of RAM in KB used by an
application at given points in time during its lifetime. It is
measured using the dumpsys meminfo ADB command
throughout the entire duration of the experiment at a
sampling frequency of one second.

• Number of calls to the garbage collector (gc): The sys-
tem’s memory is freed up automatically by the garbage
collector. Poor memory management, such as the intro-
duction of memory leaks, not only causes more garbage
collector calls but also intensifies the work done by each
call, thus degrading performances [16]. The number of
calls is counted by reading device logs through the ADB
logcat utility. Additionally, we checked the source code
of every application on potential explicit invocations of
the garbage collector. None of the 10 apps were making
explicit calls to the garbage collector.

• Frame times (ns) and the number of delayed frames
(df): When Android renders a frame, it takes a certain
amount of time to do so. This frame time is, therefore,
an essential factor in perceived performances when using
an Android application. The ideal frame rate is 60 frames
per second (FPS). To achieve this rate, frames must be
rendered in under 16ms; otherwise, the system is forced
to skip frames. As the human eye is very keen on noticing
drops in FPS, the user will perceive such events as
stuttering in the app [15]. Therefore, the amount of such
delayed frames directly affects the user’s experienced per-
formance as well. We measure these metrics by running
the dumpsys gfxinfo framestats ADB command
throughout the entire duration of the experiment. We
count frames that took more than 16ms to be rendered as
delayed frames.

• App size (as): App size is defined as the size of the
application when packaged into an APK. App size can
influence how users perceive an app since devices have
limited storage available, and in some circumstances,
costs may be involved when downloading large files from
the Internet. It is measured by taking the size of the APK
binary file of each app in bytes.

• Energy consumption (en): energy consumption stands
for the number of Joules consumed by the device in
a period of time. Low power consumption is a critical
non-functional requirement when building an Android
app, as mobile devices have limited battery and, when
neglected, it seriously impacts the users’ perceived app
quality [17]. In our experimentation, energy consump-
tion is represented in Joules and it is measured by
means of a software-based technique based on the ADB
batterystats tool. In the literature, the accuracy of
software based approaches has been reported to be rea-
sonably close to hardware-based ones [6], [18].

Hypotheses – To answer RQ2, we formulate a null hypothesis
for each dependent variable, specifically:

• cpu: being µcpu the mean CPU usage per run for a given
application version, we define the null and alternative
hypotheses as:

Hcpu
0 : µcpu

java = µcpu
kotlin Hcpu

1 : µcpu
java 6= µcpu

kotlin

• mem: being µmem the mean of memory usage per run
for a given application version, we define the null and
alternative hypotheses as:

Hmem
0 : µmem

java = µmem
kotlin Hmem

1 : µmem
java 6= µmem

kotlin

• gc: being µgc
v the mean of the number of GC calls per

run for a given application version, we define the null
and alternative hypotheses as:

Hgc
0 : µgc

java = µgc
kotlin Hgc

1 : µgc
java 6= µgc

kotlin

• ft: being µft
v the mean of frame time values per run

for a given application version, we define the null and
alternative hypotheses as:

Hft
0 : µft

java = µft
kotlin Hft

1 : µft
java 6= µft

kotlin

• df : being µdf
v the mean of the number of delayed frames

per run for a given application version, we define the null
and alternative hypotheses as:

Hdf
0 : µdf

java = µdf
kotlin Hdf

1 : µdf
java 6= µdf

kotlin

• as: being µas
v the size of a given application version, we

define the null and alternative hypotheses as:

Has
0 : µas

java = µas
kotlin Has

1 : µas
java 6= µas

kotlin

• en: being µec
v the mean energy consumption per run

for a given application version, we define the null and
alternative hypotheses as:

Hen
0 : µec

java = µec
kotlin Hen

1 : µec
java 6= µec

kotlin

Experiment design and execution – We automate the execu-
tion of the tests for each subject employing an ad-hoc script
that automatically clicks through the application and covers
all of its features with the necessary waiting operations in-
between steps. The scripts are available in the online repli-
cation package1. Each script is designed to execute one user
scenario for each of the features that the app contains (e.g.,
editing settings, visiting screens, scrolling through content,
and creating entries). We create these scenarios based on a
manual exploration of the experiment subjects, during which
we explored the running app, its Google Play Store page,
and its source code. While running the scripts, all metrics
are measured in parallel. Before and after the experiment, a
thorough setup and reset phase is included. The scripts and the
code for the measurements are implemented using Android
Runner, an open-source Python framework for automating
experiments on Android devices [6].

We perform our experiment on two different devices. The
two devices consist of an older generation device (Google
Nexus 5) and a more recent device (Google Pixel 3a). We



consider the type of Android device as a blocking factor since
the two devices have different hardware specifications.

Before running the experiment, we manually prepare our
factory reset device by fully charging the battery, removing the
SIM and SD card, setting brightness and sound to a minimum,
enabling the stay awake developer option, and finally, disabling
network data, WiFi, Bluetooth, and notifications of other apps.
Continuing, before starting a single test run, we implemented
a setup step that clears the device log files, and performs a
fresh install of the app. Finally, after every single test run, we
include a timeout step that waits 2 minutes in order to prevent
tail energy consumption from influencing our measures.

Figure 2 gives an overview of the experiment execution
process. Android Runner hosts the plugins that measure
our defined metrics as well as the scripts that execute the
experiment. Our created test scripts that interact with the
subject application are ran using MonkeyRunner4, a utility for
automated testing of Android apps. In parallel, all plugins are
running and collecting the necessary data for each metric. For
each device, the experiment is run 20 times per subject in
randomized order.
Analysis of experimental data – We start our data analysis
by verifying our assumption that the data gathered for each
hypothesis is not normally distributed. It consists of visual
analysis of each metric’s Q-Q plots [19] and the application
of the Shapiro-Wilk test [20]. We make use of the Shapiro-
Wilks test because it is proven to be one of the most powerful
tests for testing normal distribution [21]. The result of this
verification indicates which statistical test we can use for
testing our hypotheses.

For testing our hypotheses, we need to prove that a dif-
ference between the Java and Kotlin versions of the same
app exists. In order to find out whether the two independent
distributions measured for each hypothesis are different, we
perform statistical tests. Since we obtained evidence that
verifies our assumption on the non-normal distribution of our
data (further elaborated upon in the results Section IV), we
make use of the non-parametric Mann-Whitney U test [22]. It
assesses whether the Kotlin and Java measurements come from

4https://developer.android.com/studio/test/monkeyrunner

Fig. 2: Experiment execution overview

a different distribution and thus rejects the null hypothesis.
For interpreting the resulting p-values, we use the Benjamini
Hochberg [23] p−value correction procedure. It reduces the
chance of Type-I errors that may occur due to the application
of multiple statistical tests.

For assessing the magnitude of potential differences found
for each of our hypotheses, we calculate the Cliff’s δ effect
size. Cliff’s δ effect size is a non-parametric test that requires
no assumptions on the data’s distribution. It quantifies whether
the results of the treatments are either larger or smaller than the
other. We interpret the effect sizes as follows: large δ ≥ 0.474,
medium δ ≥ 0.33 and small δ ≥ 0.147 [24].

IV. RESULTS

A. What is the level of usage of Kotlin in open-source Android
apps? (RQ1)

Figure 3 summarizes our results on the frequency of Java
and Kotlin code in the 7,972 apps in our dataset, using the
three categories defined in Section III-C. It can be observed
that in our dataset a total of 7,521 apps are entirely written in
Java, while 432 apps are written in both Java and Kotlin, and
only 19 applications are entirely written in Kotlin.

Fig. 3: Frequency of Kotlin and Java for the analyzed apps

Fig. 4: Proportion of Kotlin code in analyzed apps

Results on the observed proportion of Kotlin code are
plotted in Figure 4. It shows the amount of Kotlin applications
per proportion bin (i.e., ranges of the percentage of Kotlin
code). As seen, 200 applications have a proportion of Kotlin
code that is higher than 90% and they represent 44.34% of
our datasets Kotlin applications. On the other side, we see 90



applications that have a proportion of Kotlin code that is lower
than 10%. The remaining 148 applications have a variable
proportion of Kotlin code, ranging from less than 20% to up
to 80%. Combined, 64.30% of the Kotlin applications have
either less than 10% Kotlin code or more than 90% Kotlin
code in their latest version.

B. How does a migration to Kotlin impact the run-time
efficiency of Android apps? (RQ2)

In this section, we present the results of the experiments
we conducted to answer RQ2. We explore the data, verify our
data distribution assumption, continue with hypotheses testing,
and finally assess the effect sizes.

Median values for all collected metrics are displayed in
Table II. For reasons of space only median values for the
Nexus 5 device are included in the table, although values for
the Pixel 3a are available in the online replication package. In
Figure 5, the results for all metrics per device are visualized
via boxplots. We can observe that the results per device
differ in actual values. This is expected due to the entirely
different hardware specifications of the two devices, We will
not investigate the impact of differences between devices any
further since we treat the device used as a blocking factor.
However, the Java and Kotlin results per device are very
similar. We can observe that for both devices, the median
of all metrics, except for app size, is roughly the same.
Collected metrics on the Nexus 5 show more similarities in the
distribution of values for the Pixel 3a. The app size is clearly
showing an increase, even though the same APK was installed
on both devices.

To exemplify our non-normal distribution assumption, we
present the Q-Q plots for the collected measures in Figure 6;
From inspecting the Q-Q plots, we are already reasonably
confident that our assumption of non-normality will hold.
Nonetheless, we present the Shapiro-Wilks test results in

TABLE II: Median values of collected metrics on the Nexus
5 device for each experiment subject

Id Version cpu (%) mem (kb) gc (#) ft (#) df (#) as (kb) en (J)

a1
Java 15 66,048 517 6,665,167 44.5 9,344,435 67.38
Kotlin 16 66,326 522.5 6,665,900 45.5 9,350,166 68.86

a2
Java 11 59,255 314.5 14,791,386 52.5 6,219,999 44.14
Kotlin 11 59,866 317 15,124,297 52.5 6,966,677 45.30

a3
Java 11 60,198 372.5 6,298,024 27.5 1,535,875 51.93
Kotlin 13 61,335.5 372 6,287,044 29 2,330,123 53.49

a4
Java 21 61,264 1,097 10,708,849 413 3,298,964 164.48
Kotlin 20 63,542 1,092 10,680,827 435 5,221,501 169.09

a5
Java 19 81,854 852 7,009,759 95.5 5,675,809 117.91
Kotlin 19 82,929 847 7,072,927.5 97.5 6,669,816 121.49

a6
Java 17 93,277 409.5 7,641,309 124 1,472,271 81.92
Kotlin 18 95,769.5 405 7,520,508 113 2,876,077 83.55

a7
Java 17 59,552 1,014 5,890,543 75.5 1,700,408 113.5
Kotlin 18 60,173.5 1,014 5,856,785 77 2,222,051 115.28

a8
Java 13 64,157 372 7,422,840 43 1,257,911 53.80
Kotlin 12 65,487 377 7,491,825 43 2,207,478 56.75

a9
Java 14 60,948 412 6,919,922 68.5 2,105,176 54.89
Kotlin 12 61,307 412.5 6,811,116.5 68.5 2,846,987 56.69

a10
Java 16 93,163 472 7,083,347 50 3,671,644 68.66
Kotlin 16 94,890.5 467.5 7,230,705 33 3,649,437 68.27

Table III for making the final conclusion on whether the
assumption holds. From it, we can see that only the energy
consumption metric barely accepts the normal distribution
hypothesis through the Shapiro-Wilks test. However, since it
barely does so and the Q-Q plot instead do exhibit a non-
normal distribution of values, we proceed with the previously
defined non-parametric statistical tests.

Continuing with our hypotheses testing, we present the
Mann-Whitney U test p-value results for all of our metrics
(previously introduced in Section III-C) in Table IV. Since
we utilize a p-value correction procedure, interpretation of
whether a p-value allows us to reject the null hypothesis is
not straightforward. Hence, in Table IV we mark in bold
the test for which we are able to reject the null hypothesis
after we applied the Benjamini-Hochberg p-value correction
procedure. It can be observed that Hcpu, Hmem, and Hft

are rejected while the remaining hypotheses are not rejected.

(A) Nexus 5

(B) Pixel 3a

Fig. 5: Boxplot visualisations for the Nexus 5 and Pixel 3a results



(A) Nexus 5

(B) Pixel 3a

Fig. 6: Q-Q plots of the measures collected from the Nexus 5 and Pixel 3a

TABLE III: Shapiro-Wilks test p-values (bold if p ≥ 0.05)

Nexus 5 Pixel 3a

Java Kotlin Java Kotlin

cpu 0 0 0 0
mem 0 0 0 0
gc 1.92e−23 5.57e−22 1.68e−9 1.41e−8

ft 0 0 0 0
df 4.64e−15 7.63e−15 5.40e−15 4.87e−14

as 1.52e−13 9.62e−14 3.31e−15 4.48e−15

en 0.52 1.02 0.52 1.02

In other words, the distribution of values differs significantly
between the Java and Kotlin treatments of the apps only for
CPU usage, memory usage, and frame times.

TABLE IV: Mann-Whitney U test p-value results (bold if p ≤
0.05 after the Benjamini-Hochberg correction procedure) and
Cliff’s δ effect size results (N = Negligible, S = Small, M =
Medium, and L = Large)

Nexus 5 Pixel 3a δ (Nexus 5) δ (Pixel 3a)

cpu 7.2e−32 5.96e−23 -0.062 (N) -0.086 (N)
mem 1.83e−57 4.37e−233 -0.085 (N) -0.142 (N)
gc 0.836 0.842 - -
ft 4.29e−9 1.61e−29 0.011 (N) -0.024 (N)
df 0.486 0.41 - -
as 0.241 0.241 - -
en 0.233 0.978 - -

We assess the magnitude of the difference in results between
the Java and Kotlin treatment using Cliff’s δ effect size
measure. The last two columns of Table IV present the effect

size for all metrics for which we are able to reject the Mann-
Whitney U test null hypothesis together with an interpretation
according to [24]. These results show that the difference
between the two treatments is negligible for all metrics.

V. DISCUSSIONS

In this section we discuss the obtained results and contex-
tualize them with respect to the current state of the art.

Our methods for answering RQ1 partially replicate the
methods used by Mateus et al. [5]. Therefore, it is interesting
to compare the results and find out whether there are differ-
ences and the reasons behind them. Starting with the results
on the adoption of Kotlin, we found that 451 (5.66%) appli-
cations in our dataset contain Kotlin, while 7,521 (94.34%)
do not contain any Kotlin code. Similarly, Mateus et al.
found that 244 (11.26%) applications contain Kotlin, and 1,923
(88.74%) do not contain any Kotlin code. The collected data
show similar trends and the observed percentages only differ
slightly, thus hinting that Kotlin adoption in Android apps
is still an ongoing process. For researchers and Android tool
vendors, this means that Java-based methods and techniques
likely remain still valid and applicable for the majority of
apps. This result is particularly important since as of today a
whole ecosystem of Java-based methods and techniques exists,
ranging from static analyzers [25], mostly based on Soot [26]
like Flowdroid [27] and PAPRIKA [28], to input generators
like IntelliDroid [29], dynamic analysis tools like DroidTrace
[30], etc. Nevertheless, Kotlin can be considered as the default
language when developing new Android apps and Google is
promoting Kotlin as the main language for Android application
development [4]. We mirror the invitation of Baresi et al.



saying that the research community should get out of the
(Java+Android) comfort zone and strive towards studying
new technologies [31]. In this context, the new technology is
the Kotlin programming language and its related ecosystem of
tools and libraries [32].

Comparing the proportion of Kotlin code in the mined apps
(see Figure 4), we observe that our findings are in line with
the results of Mateus et al [5]. Specifically, we can observe
that most applications tend to have a proportion of Kotlin code
either in the 0-10% range or in the 90-100% one. This result
is interesting for researchers and tool vendors since they can
reasonably assume that an Android app to be analyzed is
either fully Java- or Kotlin-based, with very few cases
where the Java-Kotlin proportion is balanced. Moreover,
Mateus et al. found that 82 out of 244 (33.61%) applications
do not contain any Java code and are solely written in Kotlin,
while we found 19 out of 451 (4.40%) applications that are
solely written in Kotlin and did not ever contain any Java
code. Both results provide evidence that apps fully written in
Kotlin are still a minority in the ecosystem of open-source
Android apps published in the Google Play store. As future
work, it would be interesting to investigate on the spread of
Kotlin among closed-source/commercial apps in the Google
Play store and assess if they exhibit different characteristics
with respect to the ones analyzed in this study and in the one
by Mateus et al.

For what concerns our results on RQ2, they complement
other researches on the impact of a Kotlin migration on
open-source applications. We found a negligible difference
between the Java version and the Kotlin version of our
analysed apps for all metrics. Although the distribution of
values is significantly different for cpu, mem, and ft, the
actual difference is negligible (as shown by the calculated
Cliff’s δ presented in Table IV). Therefore, we conclude that
although the community found some overhead introduced by
the Kotlin language in some cases, as mentioned in Section II,
we did not find evidence that the overall impact of migrating to
Kotlin is significant when considering the run-time efficiency
of an Android app. In summary, we can inform app developers
and the maintainers of the Android platform (and its Kotlin
runtime) that, according to our experiment, the impact of
migrating to Kotlin on the run-time efficiency of Android
apps tends to be negligible. Therefore, within the scope of
our experiment, we found no major reasons for an Android
developer to not migrate their existing Java Android app
to Kotlin or start a new Android app using Kotlin as main
programming language.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of
our study, in accordance with the categorization defined by
Cook and Campbell et al. [33], and describe how each of
them applies to our study.

Internal validity. It refers to the causality relationship
between treatment and outcome [13]. Most metrics in our
study are measured using various existing tools. Therefore,

we rely on these tools’ correctness, and thus, potential issues
of these tools could affect our study results. An essential
tool we use in our study is CLOC, and therefore we rely
on the correctness of its SLOC counting implementation. We
also rely on the tools found on the Android devices and
accessible via ADB for run-time efficiency-related metrics. We
did encounter a single issue with the frame times reported
by ADB, and it resulted in a few corrupted frame times
(negative or extremely high values of multiple days of time).
We mitigated this issue by manually removing the corrupt
frame times from our dataset. We also rely on a software-based
power profiler (i.e., BatteryStats) instead of a hardware-based
one. While a software-based approach is not as accurate as
a hardware-based approach, there is evidence that accuracy
is comparable [18]. Future replication of our study using
a hardware-based power profiler can further mitigate this
potential threat to validity.

In our run-time efficiency experiment, maturation might
play a role when our test scenarios are run multiple times. We
mitigate this potential threat by our extensive setup and reset
phase, by performing a two-minute waiting operation between
runs, and by executing different treatments in random order.
Another possible threat to validity is represented by the various
potential interference that can occur on a real device and
potentially affect the resulting outcomes. We mitigate these by
taking all of the steps listed in Section III-C. These ensure that
such inferences are limited as much as possible. The random
execution of the different treatments also reduces the chance
that such an interference affects only a single treatment and
thus biases results.

Construct validity. It deals with the relation between theory
and observation [13]. We mitigated potential construct validity
threats by defining all details related to the design of our study
(e.g., the goal, research questions, tools, variables, statistical
analysis procedures) before starting their execution.

External validity. It deals with the generalizability of
obtained results [13]. Our research relies on the availability
of the full source code and history of an application, so we
limited the selection of our subjects to open-source applica-
tions. Hence, there is the risk that obtained results might not
generalize to all Android applications, including non-open-
source ones. In particular, our results might not generalize
to more sizeable applications and to applications that perform
a more heavy CPU usage. We mitigated this risk by selecting
applications from AndroidTimeMachine [11], a dataset that
only includes open-source apps published in the Google Play
store and hence more likely to adhere to a minimum standard
of quality and to be reasonably complex applications.

Due to time constraints, we restricted our run-time effi-
ciency experiment to two devices and ten apps due to the
manual work necessary for implementing the test scenarios
executed to exercise each application. This potentially impacts
the generalization of our found results on run-time efficiency
to other devices and apps. We mitigated this potential bias
by selecting both a new and an older generation device,
that vary significantly in specifications, and selecting apps



using stratified random sampling. Moreover, a fresh install
of the applications was performed prior to each experiment
run. Hence, our results do not take into account potential
improvements in application’s performance stemming from
Android runtime (ART) has profiler guided optimization [34].

Conclusion validity. It deals with issues that affect the
ability to draw the correct conclusions from the outcome of
an experiment [13]. We utilize various statistical tests to prove
our assumptions and test our hypotheses and therefore limit
the room for error when interpreting the experiment results.
Additionally, we perform the Benjamini-Hochberg p-value
correction procedure to account for potential type one errors.
For our results that do not incorporate any statistical tests,
we paid close attention to not draw conclusions too quickly
and compare our results with the ones found in other studies.
Finally, we provide a publicly available replication package1

that makes it possible to verify our findings independently.

VII. RELATED WORK

This section covers related work on Kotlin in Android
development and Android run-time efficiency. It provides a
brief overview and explains the differences and potential
overlap between the related work and our study.

A. Kotlin in Android Development

As previously mentioned, Mateus et al. [5] investigated the
adoption and evolution of Kotlin code in Android applications
and its impact on code quality. Part of our study replicates their
own, investigating of usage of Kotlin in open-source Android
apps. The same authors, in another study et al. [35] researched
the adoption of various Kotlin features in Android applications
and how their usage varies over the application evolution. They
found that type inference, lambdas, and safe calls are the most
used features and are found in nearly all applications.

Martinez et al. [36] investigate how and why developers
migrate from Java to Kotlin and present statistics on mi-
grations in Android applications. The authors aim to answer
the “why” through interviewing developers and the “how”
question by analyzing the progress of migration from start to
finish (0% to 100% Kotlin SLOC). Oliveira et al. [7] studied
how developers are dealing with the adoption of Kotlin in
Android applications, their perception about its advantages
and disadvantages, and the common problems they face. They
do so by analyzing 9,405 Kotlin related questions on the
Android Stack Overflow and by interviewing seven Android
developers that regularly use Kotlin. They found that Android
developers find Kotlin easy to understand and believe that it
improves code quality, readability, and productivity. Coppola
and colleagues [8] analyzed a set of open-source Android apps
in order to research the impact a Kotlin migration has on the
success of the application. They do so by statistically analyzing
the correlation between the relevance of Kotlin code and the
popularity of app releases. They found that projects featuring
Kotlin have a higher popularity average and that a statistically
significant correlation exists between the presence of Kotlin
and the number of stars on the GitHub repository. Therefore,

they conclude that migration to Kotlin comes without a cost
on popularity among users and fellow developers. Differently
from all the mentioned studies, in our work, we complemented
the investigation on the level of Kotlin adoption in open-source
Android applications with experimentation to investigate the
impact of migration to Kotlin on the run-time efficiency of
Android apps.

B. Run-time efficiency in Android Development

Hecht et al. [37] investigated the presence of code smells in
Android applications and study whether fixing these improves
a variety of user experience related performance metrics. They
do so through an experiment with two open-source applica-
tions treated with the existing code smells fixed. Willocx et
al. [38] investigated the run-time efficiency of various mobile
cross-platform tools. To do so they conducted an experiment
during which ten different versions of the same application,
each developed with a different cross-platform framework,
are exercised and run-time metrics collected. Malavolta and
colleagues [39] assessed the impact of service workers on
the energy efficiency of progressive web apps, by running
a total of 7 progressive web apps on two devices, while
measuring the energy consumption of the devices. Their
results highlight that service workers do not have a significant
impact on the energy consumption of progressive web apps.
Carette et al. [40] developed a tool, called HOT-PEPPER, to
automatically correct code smells and evaluate their impact on
the energy consumption of Android applications. Using their
tool, they derived multiple versions of five open-source apps
by correcting each detected smell independently. Experimental
validation shows a reduction in energy consumption of up to
4,83% when the code smells are corrected. Our study goals
differ from the ones mentioned above, but we share some
similarities in collected metrics and experimental design.

VIII. CONCLUSIONS AND FUTURE WORK

In this study, we performed an in-depth study on the
run-time efficiency of the migration to Kotlin for Android
applications. To do so, we collected a dataset of open-source
Android applications and investigated the current level of
Kotlin adoption in Android applications.

From the collected results, we can conclude that Kotlin
usage is still limited but rising, and most applications are either
almost fully migrated to Kotlin (>90%) or contain very little
Kotlin (<10%). With regards to run-time efficiency, we found
that migration to Kotlin has a negligible impact on all of our
run-time efficiency metrics.

For future work, our run-time efficiency research can be
extended to other applications of the Kotlin language (e.g.,
server-side Kotlin or Kotlin native applications). Our research
on the types of migration activities can also be extended
to other languages and frameworks (e.g., migration to Swift
in iOS development) in order to find results on language
migration in general. Finally, we plan to replicate the research
on the level of Kotlin adoption in the context of closed-
source/commercial Android apps.
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[25] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau,
J. Klein, and L. Traon, “Static analysis of android apps: A systematic
literature review,” Information and Software Technology, vol. 88, pp.
67–95, 2017.

[26] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers, 2010, pp. 214–224.

[27] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[28] G. Hecht, N. Moha, and R. Rouvoy, “An empirical study of the
performance impacts of android code smells,” in Proceedings of the
international conference on mobile software engineering and systems,
2016, pp. 59–69.

[29] M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator for
the dynamic analysis of android malware.” in NDSS, vol. 16, 2016, pp.
21–24.

[30] M. Zheng, M. Sun, and J. C. Lui, “Droidtrace: A ptrace based android
dynamic analysis system with forward execution capability,” in 2014
international wireless communications and mobile computing conference
(IWCMC). IEEE, 2014, pp. 128–133.

[31] L. Baresi, W. G. Griswold, G. A. Lewis, M. Autili, I. Malavolta, and
C. Julien, “Trends and challenges for software engineering in the mobile
domain,” IEEE Software, vol. 38, no. 1, pp. 88–96, 2020.

[32] Makery, “Kotlin resources.” [Online]. Available: https://www.
kotlinresources.com

[33] T. D. Cook, D. T. Campbell, and A. Day, Quasi-experimentation: Design
& analysis issues for field settings. Houghton Mifflin Boston, 1979,
vol. 351.

[34] “Improving app performance with art.” [On-
line]. Available: https://android-developers.googleblog.com/2019/04/
improving-app-performance-with-art

[35] B. G. Mateus and M. Martinez, “On the adoption, usage and evolution
of kotlin features in android development,” in Proceedings of the 14th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2020, pp. 1–12.

[36] M. Martinez and B. G. Mateus, “How and why did developers migrate
android applications from java to kotlin? a study based on code analysis
and interviews with developers,” arXiv preprint arXiv:2003.12730, 2020.

[37] G. Hecht, N. Moha, and R. Rouvoy, “An empirical study of the
performance impacts of android code smells,” in Proceedings of the
international conference on mobile software engineering and systems,
2016, pp. 59–69.

[38] M. Willocx, J. Vossaert, and V. Naessens, “Comparing performance
parameters of mobile app development strategies,” in Proceedings of the
International Conference on Mobile Software Engineering and Systems,
2016, pp. 38–47.

[39] I. Malavolta, G. Procaccianti, P. Noorland, and P. Vukmirovic, “Assess-
ing the impact of service workers on the energy efficiency of progressive
web apps,” in 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft). IEEE, 2017, pp.
35–45.

[40] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy,
“Investigating the energy impact of android smells,” in 2017 IEEE
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2017, pp. 115–126.


