

How easier to built Basic Verification Testbench using UVM compared to

SystemVerilog

Nimesh Prajapati

Department of Electronics & Communication, L.D.College of Engg.

Gujarat Technological University, Ahmedabad

Abstract

ASIC verification is done to get the maximum

confidence in the correctness of DUT. Overall, more

than 70% of the time is spent on verification. So there

is a need for constructing a reusable and robust

verification environment. Universal Verification

Methodology was introduced to fulfil that goal. This

article describes that how easier to built the basic

verification testbench using UVM compared to

SystemVerilog.

Keywords

UVM (Universal Verification Methodology), SV

(SystemVerilog), DUT (Design Under Test)

1. Introduction
The purpose of a Testbench is to determine the actual

correctness of the DUT and the goal is to ensure full

conformance with specification. The testbench creates

constrained random stimulus, and gathers functional

coverage. The testbench includes the following steps

 Generate stimulus

 Apply stimulus to the DUT

 Capture the response

 Check for correctness

 Measure progress against the overall verification

goals

.

Figure 1. Basic verification testbench

Figure 1 shows basic verification testbench

environment of DUT. A testbench that allows you to

provide a documented, repeatable set of stimuli that is

portable across different simulators. A test bench can

be as simple as a file with clock and input data or a

more complicated file that includes error checking, file

input and output, and conditional testing. Testbench

mimic the environment in which the design will reside.

It checks whether the RTL Implementation meets the

design spec or not. This Environment creates invalid

and unexpected as well as valid and expected

conditions to test the design.

2. Basic Testbench Using SV
SystemVerilog has become a primary language for the

design and verification of digital hardware designs.

SystemVerilog was first introduced in 2002 as an

Accellera standard that specified a large number of

extensions to the Verilog-2001 Hardware Description

Language.

SystemVerilog provides a very powerful mechanism to

generate random stimulus. It is based on class-object

randomization, which means random variables of a

class-object are automatically randomized by a call to

the predefined randomize method associated with the

object. Constraints further argument the randomization

feature. Constraints are properties that define the

boundaries within which the randomization feature

works. Figure 2 shows verification testbench

environment using SystemVerilog.

Figure 2. Verification testbench using SV

2514

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110828

2.1 Generator
In generator class packet elements are declared i.e.

preamble, start frame, address, data, end frame etc.

Constraints are also written in the same class. Figure 3

shows an example of generator class.

Figure 3. Generator class in SV

2.2 Transaction
In transaction class the elements are randomized, then

make a packet and forward it to Driver class with the

help of Mailbox. Figure 4 shows an example of

transaction class.

Figure 4. Transaction class in SV

2.3 Driver
The driver class translates the operations produced by

the generator into the actual inputs for the DUT. Driver

and DUT are connected through interface. Driver also

send same packet to Scoreboard for comparison

process. This is done with the help for Mailbox. Figure

5 shows an example of driver class.

Figure 5. Driver class in SV

2.4 Receiver (Monitor)
Receiver reports the protocol violation and identifies all

the transactions. There are two types of receivers, (i)

Passive and (ii) Active. Passive Receivers do not drive

any signals. Active Receivers can drive the DUT

signals. Sometimes this is also referred as Monitor.

Receiver and DUT are connected through interface.

Receiver receives all transactions form the DUT and

combines them to form the packet. Then it sends it to

Scoreboard to compare it with actual packet. Figure 6

shows an example of receiver.

Figure 6. Receiver class in SV

2.5 Scoreboard
Scoreboard receives packet form Driver and Receiver

and then compares them. Scoreboard has two

mailboxes. One is used to for getting the packets from

the driver and other from the receiver. Then the packets

are compared and if they don't match, then error is

asserted. Figure 7 shows an example of scoreboard.

Figure 7. Scoreboard class in SV

3. Basic Testbench Using UVM
UVM represents the latest advancements in verification

technology and is designed to enable creation of robust,

reusable, interoperable verification IP and testbench

components. It uses system Verilog as its language.

UVM Class Library provides the building blocks

needed to quickly develop well-constructed and

reusable verification components and test

environments.

Figure 8. Verification testbench using UVM

In UVM, the class is used as a container to represent

components, transactions, sequences, tests, and

2515

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110828

configurations. Because it is a class, a UVM

component can be extended after-the-fact in arbitrary

ways. An extension can add new features or can modify

existing features.

In particular, we require this extension capability so

that a test can extend a transaction or a sequence in

order to add constraints, and then use the factory

mechanism to override the generation of those

transactions or sequences. Figure 8 shows verification

testbench environment using UVM.

3.1 Transaction
Transactions are the basic data objects that are passed

between components. Data item are basically the input

to the DUT. All the transfer done between different

verification components in UVM is done through

transaction object.

Networking packets, instructions for processor are

some examples of transactions. From the top level test

many data items are generated and applied to the DUT

so by intelligently randomizing the data items object

we can check corner cases and maximize the coverage

on the device under test. Pack, unpack, print and

compare methods are overwrite in this class. Figure 9

shows an example of transaction class.

.Figure 9. Transaction class in UVM

3.2 Sequence
Sequences are assembled from transactions and are

used to build realistic sets of stimuli. A sequence could

generate a specific pre-determined set of transactions, a

set of randomized transactions, or anything in between.

Figure 10 shows an example of sequence class.

Figure 10. Sequence class in UVM

It is similar to a transaction in outline, but the base

class uvm_sequence is parameterized with the type of

the transaction of which the sequence is composed.

Also every sequence contains a body task, which when

it executes generates those transactions or runs other

sequences. Transactions and sequences together

represent the domain of dynamic data within the

verification environment.

3.3 Sequencer
Sequencer is the component on which the sequences

will run. The DUT needs to be applied a sequence of

transaction to test its behavior. So sequence of

transaction is generated and it is applied to driver

whenever it demands by the sequencer. Figure 11

shows an example of sequencer class.

Figure 11. Sequencer class in UVM

3.4 Driver
A driver is an active entity that emulates logic that

drives the DUT. The driver pulls transactions from its

sequencer and controls the signal-level interface to the

DUT.

A typical driver repeatedly receives a data item and

drives it to the DUT by sampling and driving the DUT

signals. For example it can generate read or write

signal, write address and data to be transferred. It is the

active part of the verification logic.Figure 12 shows an

example of driver class.

Figure 12. Driver class in UVM

3.5 Monitor
A monitor is the passive element of the verification

environment. It just samples the DUT signal from the

interface but does not drive them.

It collects the pin information, package it in form of a

packet and then transfer it to scoreboard or other

components for coverage information.

 Figure 13 shows an example of monitor class.

2516

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110828

Figure 13. Monitor class in UVM

3.6 Agent
Sequencers, drivers, and monitors can be reused

independently, but this requires the environment

integrator to learn the names, roles, configuration, and

hookup of each of these entities. To reduce the amount

of work and knowledge required by the test writer,

UVM recommends that environment developers create

a more abstract container called an agent. An

environment may contain one or more agent. Figure 14

shows an example of agent class.

Figure 14. Agent class in UVM

3.7 Scoreboard
A critical component of self checking test-benches is

the scoreboard that is responsible for checking data

integrity from input to output. A scoreboard checks

that the DUT is behaving correctly. It keeps track of

how many times the response matched with the

expected response and how many time it failed.

Figure 15. Scoreboard class in UVM

Figure 15 shows an example of scoreboard class.

3.8 Environment
Environment is at the top of the test bench architecture,

it will contain one or more agents depend on design. If

more than one agent is there then it will be connected in

this component. Agents are also connected to other

components like scoreboard in this component. Figure

16 shows an example of environment class

Figure 16. Environment class in UVM

3.9 Test
The test class enables configuration of the testbench

and verification components, as well as utilities for

command-line test selection. Tests in UVM are classes

that are derived from an uvm_test class. Figure 17

shows an example of test class.

Figure 17. Test class in UVM

4. Comparison of SV and UVM

 In UVM, there are predefined functions are already

available for copy, compare, pack, unpack, print etc.

If we want to use them, then directly call them from

library. While in SV it is not available. We have to

write our own logic code for copy, compare pack,

unpack, print etc.

 In UVM, the communication between the modules

is done through Ports and Exports. While in SV, It

is done through Mailboxes.

2517

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110828

 Predefined macros are available in UVM i.e.

`uvm_info, `uvm_error etc. These types of macros

are not available in SV.

 Making the testbench using UVM takes less time

compared to making the testbench using SV.

Conclusion

It can be concluded that using UVM, it is easier to built

verification testbench compared to SV. Moreover it

takes less time compared to SV. Using UVM, we can

develop testbench more reusable and perfect compared

to SV.

References

1. Universal Verification Methodology 1.1, Accellera,

May, 2011

2. SystemVerilog 3.1a Language Reference Manual

Accellera’s Extensions to Verilog

3. http://www.testbench.co.in

4. http://www.doulos.com/knowhow/sysverilog/uvm/

5. Mark Glasser, “UVM: The Next Generation in

Verification Methodology”, Verification Horizons,

Feb-2011

6. John Aynsley, “Easier UVM for Functional

Verification by Mainstream Users”, DVcon, Mar-

2011

7. Martin Keaveney, Anthony McMahon, Niall

O’Keeffe,Kevin Keane, James O’Reilly, “THE

DEVELOPMENT OF ADVANCED

VERIFICATION ENVIRONMENTS USING

SYSTEM VERILOG”, ISSC(International System

Safety Conference),June-2008

8. Rudra Mukherjee, Sachin Kakkar, “Towards an

Object-Oriented Design Methodology Using

SystemVerilog”, Mentor Graphics

2518

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110828

