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1. Newton's Law of Cooling

Newton’s  Law of Cooling  states that the rate  of change  of temperature of an object is proportional  to
the  temperature  difference  between  it  and  the  surrounding  medium;  using  Tambient  for  the  ambient
temperature,  the  law  is  „T ê„ t = -KHT - Tambient L,  where  T  is  temperature,  t  is  time,  and  K  is  a
constant  related  to  efficiency  of  heat  transfer.  Most  mathematicians,  when  asked  for  the  rule  that
governs the cooling of hot  water to room temperature,  will say that Newton’s  Law applies  and so the
decline  is  a  simple  exponential  decay.  Like  many  teachers  of  calculus  and  differential  equations,  the
first author has gathered some data and tried to model it by this law. But it cannot be done: the data do
not  follow  the  simple  exponential  form  that  the  law  suggests.  The  correct  model  is  quite  a  bit  more
complicated,  and  we  do  not  give  a  definitive  solution  here,  but  show  how  one  might  try  to  model
evaporation  with  the  help  of  Mathematica's  ability  to  fit  parameters  to  the  numerical  solution  of
differential equations.

2. The Best-Fit Exponential

Here is some data obtained by hand after pouring boiling water into an aluminum pot. The first coordi-
nates are the times in seconds; the second are degrees Fahrenheit.

In[1]:= data = 880, 210<, 825, 204<, 834, 200<, 842, 198<, 854, 196<,863, 194<, 880, 192<, 889, 190<, 8103, 188<, 8115, 186<, 8131, 184<,8145, 182<, 8158, 180<, 8175, 178<, 8195, 176<, 8213, 174<,8225, 172<, 8250, 170<, 8274, 168<, 8298, 166<, 8315, 164<,8335, 162<, 8353, 160<, 8387, 158<, 8411, 156<, 8440, 154<,8475, 152<, 8492, 150<, 8520, 150<, 8530, 148<, 8550, 148<,8560, 147<, 8570, 146<, 8585, 145<, 8600, 144<, 8610, 144<,8620, 144<, 8630, 143<, 8640, 143<, 8647, 142<, 8660, 142<,8670, 141<, 8680, 141<, 8690, 140<, 8700, 140<, 8710, 139.5<,8720, 139<, 8730, 139<, 8740, 138<, 8750, 138<, 8760, 137<,8770, 137<, 8778, 136<, 8790, 136<, 8800, 136<, 8810, 135<,8820, 135<, 8830, 134<, 8840, 134<, 8850, 133<, 8860, 133<,8870, 133<, 8880, 132.5<, 8890, 132<, 8900, 132<, 8910, 131<,8920, 131<, 8930, 131<, 8940, 130<, 8950, 130<, 8960, 129.5<,8970, 129<, 8980, 129<, 8990, 128.5<, 81000, 128<, 81010, 128<,81020, 128<, 81030, 127.5<, 81040, 127<, 81050, 127<, 81060, 126<,81070, 126<, 81080, 126<, 81090, 125.5<, 81100, 125<, 81110, 125<,81120, 124.5<, 81130, 124<, 81140, 124<, 81150, 123.5<, 81160, 123<,
, , , , ,
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In[1]:=

81170, 123<, 81180, 122.5<, 81190, 122<, 81200, 122<, 81210, 122<,81220, 121.5<, 81230, 121<, 81240, 121<, 81250, 121<, 81260, 120.5<,81270, 120.5<, 81280, 120<, 81300, 120<, 81340, 119<, 81356, 118<,81380, 117<, 81418, 116<, 81725, 111<, 81740, 110.5<, 81825, 109<,81890, 108<, 81955, 107<, 82022, 106<, 82077, 105<, 82160, 104<,82244, 103<, 82320, 102<, 82408, 101<, 82473, 100<, 82613, 99<<;
We define  the  times  and  temperature,  as  well  as  the  last  time,  the  first  temperature,  and  the  ambient
temperature, which was 79°.

In[2]:= 8time, temp< = Transpose@N@dataDD;
tmax = Last@timeD; temp0 = tempP1T; ambient = 79;

In[4]:= ListPlot@dataD;
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Though it is easily done by hand, we use DSolve to solve the simple differential equation in Newton's
Law.

In[5]:= NewtonModel@K_D@t_D := Evaluate@Simplify@T@tD ê. DSolve@8
T£@tD ã -K HT@tD - ambientL, T@0D ã temp0<, T@tD, tDP1TDD;

NewtonModel@KD@tD
Out[6]= 79. + 131. ‰-K t

We now set up the residual corresponding to a value of the parameter K , which is a coefficient of heat
conductance.

In[7]:= residual@K_D := temp - NewtonModel@KD@timeD;
A quick plot shows that the sum of squares attains a clear minimum.

In[8]:= Plot@residual@KD . residual@KD, 8K, 0, 0.01<D;
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Now we wish to find the value of K  so that the model is the best  sum-of-squares estimate to the data.
Note  that  K  is  not  the  true  air-water  conduction  coefficient,  whose  use  would  require  knowing  the
shape  of  the  pan  and  the  amount  of  the  water,  but  is  simply  the  value  appropriate  for  this  particular
experiment.  We can use FindMinimum,  which  requires a  starting value and then finds  a local mini-
mum. FindMinimum  should recognize  the objective as being a sum of squares and use the LevenÖ
bergMarquardt  method,  which  is  especially  robust  for  such  problems.  But  it  does  not  hurt  to ask
for  that  method  explicitly.  A  seed  of  0  works  in  this  case,  but  in  other  modeling  situations  one  may
want a positive seed somewhere in the vicinity of the answer.

In[9]:= FindMinimum@residual@KD.residual@KD,8K, 0<, Method Ø "LevenbergMarquardt"D êê Timing

Out[9]= 80.12 Second, 84775.83, 8K Ø 0.00101362<<<
An alternative, somewhat faster, approach is to use FindFit, new in Mathematica version 5. It works
better when we give a seed for the parameter k.

In[10]:= Hfit = FindFit@data, NewtonModel@KD@tD, 88K, 0<<, tDL êê Timing

Out[10]= 80.01 Second, 8K Ø 0.00101362<<
We define the best-fitting model.

In[11]:= NewtonModelBest = NewtonModel @KD@tD ê. fit;

And we compare the model to the data. This “best fit” is horrible.

In[12]:= Plot@NewtonModelBest, 8t, 0, tmax<,
PlotStyle Ø 8Thickness@0.015D, GrayLevel@0.7D<,
Epilog Ø 8PointSize@0.01D, Point êü data<,
FrameLabel Ø 8"Time HsecsL", "° F."<,
RotateLabel Ø False, Frame Ø True,
Axes Ø False, GridLines Ø 88<, 88ambient, 8<<<<,
PlotRange Ø 88-100, 2700<, 870, 215<<,
FrameTicks Ø 880, 500, 2000, 2600<,8temp0, 100, 150, ambient<, None, None<D;
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It  is  evident  that  the  temperatures  do  not  follow  a  rule  as  simple  as  Newton’s  Law.  Yet  it  appears
equally evident from the data that there is some sort of pattern in the decreasing temperatures.

Exercise. Use Newton’s Law to fit various subsets of the data, such as the first 50 points, the last 50, or
the middle 50 (making sure to change the initial temperature appropriately). The diagram below shows
the best fit when the last 57 points are used. Such experiments show how difficult interpretation can be.
The fits are generally  good. Does that support  the view that Newton’s  Law is a good model when the
temperature does not vary too much and the difference between the initial and ambient temperatures is
not too great? Or is the fit better only because the smaller data sets are more nearly linear? 
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3. An Oily Solution

It  turns  out  that  the  heat  loss  from  hot  water  due  to  evaporation  is  considerable;  this  effect  is  com-
pletely ignored by Newton’s Law. Before going into the details of evaporation, we show what happens
when a thin sheet of oil is placed over the water. This cuts out almost all of the evaporation. Macalester
College  student  Tak  Iwanaga  used  some  physics  software  (LoggerPro™)  to  obtain  data  in  this  case.
His  ambient  temperature  was 68° and  he tracked  the temperature  every  6  seconds  for  one  hour.  Here
we useevery 10th point only since that is more than enough to get the fit.
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dataOil = 886., 188<, 866., 186.62<, 8126., 185.<,8186., 183.02<, 8246., 181.22<, 8306., 179.06<,8366., 177.08<, 8426., 174.92<, 8486., 172.94<,8546., 170.96<, 8606., 168.98<, 8666., 167.<,8726., 165.20<, 8786., 163.22<, 8846., 161.24<,8906., 159.44<, 8966., 157.64<, 81026., 155.84<,81086., 154.22<, 81146., 152.42<, 81206., 150.8<,81266., 149.36<, 81326., 147.74<, 81386., 146.3<,81446., 144.68<, 81506., 143.24<, 81566., 141.8<,81626., 140.54<, 81686., 139.10<, 81746., 137.84<,81806., 136.58<, 81866., 135.32<, 81926., 134.06`<,81986., 132.8<, 82046., 131.54<, 82106., 130.46<,82166., 129.2`<, 82226., 128.12<, 82286., 127.22<,82346., 126.14<, 82406., 125.06<, 82466., 123.98<,82526., 123.08<, 82586., 122.<, 82646., 121.10<,82706., 120.2<, 82766., 119.30<, 82826., 118.4<,82886., 117.5<, 82946., 116.78<, 83006., 115.88<,83066., 114.98<, 83126., 114.26<, 83186., 113.54<,83246., 112.82<, 83306., 112.10<, 83366., 111.38<,83426., 110.66<, 83486., 109.94<, 83546., 109.22<<;
In[14]:= 8timeOil, tempOil< = Transpose@dataOilD;

tempOil0 = 188.6; toilmax = 3546;
ambientOil = 68;
NewtonModelOil@K_D@t_D :=
Evaluate@Simplify@T@tD ê. DSolve@8

T£@tD ã -K HT@tD - ambientOilL,
T@0D ã tempOil0<, T@tD, tDP1TDD

NewtonModelOil@KD@tD
Out[16]= 68. + 120.6 ‰-K t

In[17]:= residualOil@K_D := tempOil - NewtonModelOil@KD@timeOilD;
fitOil = FindFit@dataOil, NewtonModelOil@KD@tD, 88K, 0<<, tD

Out[18]= 8K Ø 0.000308649<
In[19]:= Plot@NewtonModelOil @KD@tD ê. fitOil, 8t, 0, toilmax<,

PlotStyle Ø 8Thickness@0.03D, GrayLevel@0.7D<,
Epilog Ø8PointSize@0.01D, Point êü dataOil, Line ü data<,
FrameLabel Ø 8"Time HsecsL", "° F"<,
RotateLabel Ø False, Frame Ø True,
Axes Ø False, GridLines Ø 88<, 88ambientOil, 8<<<<,
PlotRange Ø 88-100, 3700<, 860, 215<<,
FrameTicks Ø 880, 500, 1000, 2500, 3600<,8temp0, 100, 150, ambientOil<, None, None<D;
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The fit is excellent,  showing that Newton’s Law works very well when evaporation is eliminated. The
lower curve in the figure is the data from §2; it is clear that the cooling is much more rapid when there
is evaporation.

4. Modeling Evaporation
To set up a differential  equation  that models  evaporation,  we need some elementary  thermodynamics.
Evaporative  heat  loss  will  remove  approximately  2260  Joules  of  heat  for  every  gram  of  water  that
evaporates; this is called the latent heat of evaporation  (per gram; we will work per molecule below).
As a first attempt  at a model,  we assume that the rate of evaporation (gram/second) is proportional  to
the difference between the vapor pressure at the water surface and that in the air. We will see that this
assumption is in fact problematic. The vapor pressure at the water surface is governed by the Clausius–
Clapeyron equation „ p ê„T = L ê HTDV L, where p is the vapor pressure of water at the surface, T  is the
temperature (in Kelvin), L the latent heat (per molecule), and DV  the change in volume (per molecule).
Our  treatment  here  is  necessarily  abbreviated,  for  more  details  see  [1].  We  can use  the  ideal  gas  law
(pV = N kT ,  where  N  is  the  number  of  molecules  and  k  the  Boltzmann  constant,  so  DV = kT ê p)  to
solve this for pHT L if we assume that DV  is entirely from the gas (a good assumption for water) and that
L  is  independent  of  T  (reasonable  over  small  temperature  ranges);  separation  of  variables  yields
pHT L = C‰-LêHkTL . Here is how this is done using DSolve.

In[20]:= p@TD ê. FirstADSolveAp£@TD ã
L
ÅÅÅÅ
T

 
p@TD
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
k T

, p@TD, TEE
Out[20]= ‰- LÅÅÅÅÅÅÅk T C@1D

Next  we  need  the  vapor  pressure  of  water  vapor  in  the  air,  which  can  be  written  in  terms  of  relative
humidity  and  the  expression  for  pHT L  just  found  as  RHC‰-LêHkTambient L ,  where  RH  is  relative  humidity.
Summing up, and absorbing C into the proportionality constant, we get:

Rate of evaporative heat loss HTL = K2 H‰-LêHkT L - RH‰-LêHkTambient L L
In  reality  the  latent  heat  is  not  exactly  constant  (it  varies  by  about  10%  between  the  freezing  and
boiling points),  but since the evaporative  heat  loss is largest  near the boiling  point (exponentially  so),
we use the value for that temperature. We now calculate the constant (L ê k) in the exponential. We use
Mathematica  to do this,  keeping track of units  as  a check (noting that  molecules are not considered  a
unit, and so they disappear).  Reminder:  One mole of water weighs 18 grams (16 from oxygen, 1 from
each  of  the  two  hydrogen  atoms).  A  mole  of  anything  consists  of  an  Avogadro  constant  number  of
molecules of the substance.
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In[21]:= Needs êü 8"Miscellaneous`PhysicalConstants`",
"Miscellaneous`Units`"<;

L = 2260 Joule ê Gram;
c =

L H18 Gram ê MoleL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
AvogadroConstant BoltzmannConstant

Out[23]= 4892.67 Kelvin

In[24]:= c = cP1T;
Now we turn to Mathematica to set up and solve the evaporative model, redoing the preceding computa-
tion using constants in the PhysicalConstants  package.  First  we convert the temperatures to the
Kelvin scale.

In[25]:= 8tempK, tempK0, ambientK< = ConvertTemperature@8temp, temp0, ambient<, Fahrenheit, KelvinD;
Now we set up the equation.

In[26]:= evaporationEqn =HT£@tD ã -K1 HT@tD - ambientKL - K2 H ‰-cêT@tD - RH ‰-cêambientK LL
Out[26]= T£@tD ã -I‰- 4892.67ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅT@tD - 7.93672 µ 10-8 RHM K2 - K1 J- 53867

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ180 + T@tDN
We did not record RH , but the data were taken on a humid September day in St. Paul. We will estimate
RH = 0.75.

In[27]:= RH = 0.75;

Because  of  the  exponential  term,  this  equation  cannot  be  solved  algebraically,  but  NDSolve  has  no
difficulty, and we set up the model to call on that.

In[28]:= EvaporationModel@K1_?NumericQ, K2_?NumericQD@t_D :=
T@tD ê. First@NDSolve@8evaporationEqn ê. 8K1 Ø K1, K2 Ø K2<,

T@0D ã tempK0<, T@tD, 8t, 0, tmax<DD;
evaporationResidual@K1_?NumericQ, K2_?NumericQD :=HEvaporationModel@K1, K2D@tD ê. t Ø timeL - tempK

Here it is easiest to use FindMinimum  to minimize the sum of squares, since the model is given not
by a formula, but by a numerically solved differential equation.
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In[30]:= Hfit = FindMinimum@evaporationResidual@K1, K2D.
evaporationResidual@K1, K2D, 8K1, 0.001<,8K2, 10000<, Method Ø "LevenbergMarquardt"DL êê Timing

Out[30]= 80.91 Second, 813.1827, 8K1 Ø -0.0000688032, K2 Ø 78172.4<<<
Ouch! The negative value of K1  is a physical  impossibility, even though the fit is excellent. But let us
press  on.  For  convenience,  we  do  the  plotting  in  degrees  Fahrenheit.  Now  the  fitting  curve  is  an
interpolating function.

In[31]:= bestEvaporationModel =
N@Expand@ConvertTemperature@T@tD, Kelvin, FahrenheitDDD ê.
First@NDSolve@8evaporationEqn ê. fitP2T, T@0D ã tempK0<,
T@tD, 8t, 0, tmax<DD

Out[31]= -459.67 + 1.8 InterpolatingFunction@880., 2613.<<, <>D@tD
And now we plot the model and the data. The fit is remarkably good.

In[32]:= Plot@bestEvaporationModel, 8t, 0, tmax<,
Frame Ø True, PlotRange Ø 88-100, 3000<, 870, 220<<,
Axes Ø None, GridLines Ø 88<, 88ambient, 8<<<<,
FrameLabel Ø 8"Time HsecsL", "˚F"<, RotateLabel Ø False,
FrameTicks Ø 880, 500, 2000, 2600<, 879, 100, 150, 210<,
None, None<,

PlotStyle Ø 8Thickness@0.015D, GrayLevel@0.7D<,
Epilog Ø8PointSize@0.0125D, Point êü Transpose@8time, temp<D <D;
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But what can we make of K1 , whose negativity violates the laws of thermodynamics by suggesting that
the  water  gets  hotter  by  virtue  of  its  presence  in  the  cool  air?  The  most  likely  problem  is  that  our
simple model  (the proportionality  assumption)  is not  adequate near  the boiling  point.  There  are many
complicated  factors  that  affect  heat  transportation,  such  as  air  movement,  boundary  layer  dissipation,
and diffusion,  and our  use of a single linear relationship  appears to be inadequate.  In the next section
we suggest  some further  experiments,  but we also  hope that  our  experiments  might  inspire  readers to
come up with a better mathematical model.

There  is  one  interesting  aspect  of  the  evaporation  model  worth  noting,  regardless  of  the  differential
equation one comes up with as a model: the equilibrium temperature (obtained by setting the right side
of the differential  equation to 0) should be less, but only a little less, than the ambient temperature.  In
fact,  under  typical  relative  humidity,  one  can  easily  observe  this  by comparing  air  temperature  to  the
temperature of a pot of water that has had several hours to equilibrate. We found that the water tempera-
ture  was  about  1°  F  less  than  the  air,  but  that  the  difference  disappeared  when  the  water  was  coated
with oil.
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5. Further Experiments

There is clearly much room for further experimentation, and we encourage readers who are so inclined
to carry some out. Those with access to a physics lab will know that the measuring of the temperature
can be fully automated, which eases the task quite a bit.

1.  Model  the temperature  as  a  cold object  warms up  to room temperature.  Such  an experiment  might
help resolve the question whether Newton's Law works better when the temperature range is small. To
get a large temperature range, try starting with a liquid (e.g., alcohol) that has a high boiling point and
does  not  freeze  at,  say,  0°  F;  watch  it  warm  to,  say  80°  F and  see  if  Newton  applies  throughout  the
range.

2. A more complicated but potentially very useful experiment would be to measure the weight of water
in the pan throughout  the cooling process. For then one could use the standard latent heat of evapora-
tion  (1  gram  of  water  requires  2260  Joules  to  evaporate)  along  with  the  heat  capacity  of  water  (4.2
Joules  per  gram)  to  directly  model  the  temperature  change  due  only  to  evaporation.  See  if  Newton’s
Law models what’s left over.

3. Perform water  and water-with-oil  experiments  using identical  amounts  of water and  identical pans.
Then the oil experiment should lead to an estimate of the conductive coefficient that ought to be quite
close to the conduction coefficient that arises from a successful evaporation model.

4. Does radiation play a role? One can try to model radiation by adding a term proportional to T4  to the
rate equation (the Stefan–Boltzman law).

4. A nice puzzle to investigate is the following: If some cold milk is to be added to hot coffee with the
goal  of  getting  the  coffee  down  to  a  certain  temperature,  when  should  the  milk  be  added  so  that  the
desired temperature is reached as soon as possible?
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