
How to build a (3x3) Rubik cube robot solver

with Raspberry pi and PiCamera

Andrea Favero, Groningen (NL)

03/10/2021

Rev.0

Robot (and script) demonstration at YouTube: https://youtu.be/oYRXe4NyJqs

It typically takes from 40 to 60seconds to read and solve a scrambled cube.

This is indeed not a fast robot, yet it uses common a cube (not required to modify the cube

to get mechanical connection to each face, as most of the fast robots use to).

https://youtu.be/oYRXe4NyJqs

Index

1. Project scope

2. Conclusions

3. Commitment

4. High level info

5. Colour’s detection strategy

6. Construction

7. Made parts

8. Bought parts

9. Electrical scheme

10. Modules and connections

11. Proto board for DRV 8825 driver

12. (Raspberry pi) GPIO pinout

13. Assembly steps and attention points

14. Setting up the microSD and Raspberry pi

15. Python script, high level info

16. How to operate the robot

17. Fine tuning

18. Collection of the robot’s pictures

19. Useful links

Project scope:

Despite I’m still a programmer beginner, I wanted to learn Computer Vision and keep on learning Python.

I’ve used Arduino boards before, and wanted to learn about Raspberry Pi

I’m turning 50 this year, and I discovered I like to keep myself busy with coding and controls.

I thought a Rubik cube robot solver to be a good (and challenging) project for above objectives.

Conclusions:

It’s usual to write conclusions at the end of a presentation; I’m writing this document after some months the robot is

up and running…. And I’ve quite clear in mind the positives and negatives

I believe I’ve accomplished all the objectives, especially the one related to my age.

I’m satisfied about the learning journey, and the end results.

Colours interpretation, to determine the right cube status, has been by far the biggest challenge on this project.

Based on the logged data, the robot correctly reads the cube status on 99.5% of the cases, and the mechanical part

solves the cube without issues.

Off course there are also negative results:

• This robot is quite noisy, apart from the typical noise of servos and stepper motor, the cube when falls into the

cube holder make an unpleasant noise (and the underneath box doesn’t help on this).

• The chosen LCD with segments (very cheap), or the chosen Python library, don’t consistently work.

• My coding skills are still very low, and I do recognize I’ve used too many global variables on this project.

Tips and feedback, on all areas, are for sure very welcome

Commitment:

If you read these instructions, there are changes you are interested on making a similar project … or simply to get

some ideas on just a sub part of it; In any case I hope the information provided will help you.

In case you cannot find the solution by yourself (part that makes projects fun), please drop a detailed question at

the instructables site.

I can’t promise I’ll be able to answer your questions, as well as I cannot commit to be fast in replying….

High level info:

1. The robot uses a Raspberry pi 4+, with 2 Gb of RAM, running with Raspberry Pi OS on a 32Gb microSD;

2. The robot has a vision system based on a PiCamera (v1.3), to detect the facelets positions and related colours.

3. The robot is coded in Python, and the exact same script can be used on PC (i.e. Windows laptop) to determine

the cube status via a webcam and to get the solution string.

4. The vision part uses CV2 python library

5. Cube notations are from David Singmaster, limited to the uppercase (one ”external layer rotation” at the time):

https://en.wikipedia.org/wiki/Rubik%27s_Cube#Move_notation

6. Cube’s orientation considers the Western colour scheme: https://ruwix.com/the-rubiks-cube/japanese-western-

color-schemes/

7. Cube solver uses the Hegbert Kociemba, ”two-phase algorithm in its fully developed form with symmetry

reduction and parallel search for different cube orientations”:

• intro: https://www.speedsolving.com/threads/3x3x3-solver-in-python.64887/

• Python script: https://github.com/hkociemba/RubiksCube-TwophaseSolver)

The solver requires as input the cube status, by following the URFDLB order (I called it “Kociemba order” along

the script).

8. When using the python script on a PC, the western colour scheme sequence is suggested on screen for

guidance.

9. When using the robot, the cube can be dropped with any orientation; If the orientation differs from the

Western colour scheme (I called Kociemba order on the script), then the cube status is “converted” right before

calling the solver.

10. Facelets order on the script, are numbered by URFDLB order (sketch

at side); Facelets numbers are largely used as key of the dictionaries

https://en.wikipedia.org/wiki/Rubik%27s_Cube#Move_notation
https://ruwix.com/the-rubiks-cube/japanese-western-color-schemes/
https://ruwix.com/the-rubiks-cube/japanese-western-color-schemes/
https://www.speedsolving.com/threads/3x3x3-solver-in-python.64887/
https://github.com/hkociemba/RubiksCube-TwophaseSolver

Colour’s detection strategy:

1. The vision system is used to detect the cube’s facelets edges (contours), more or less as explained at

https://medium.com/swlh/how-i-made-a-rubiks-cube-color-extractor-in-c-551cceba80f0

2. Average BGR is calculated for the areas defined by the contours, for the 54 facelets, and stored in a dictionary;

Average HSV (of a small area at each contour’s centers) is also calculated and stored on a second dictionary.

Note: On a 3x3 Rubik cube, the 6 center’s facelets have useful properties:

a. These facelets don’t move (fix facelets number)

b. These facelets have (obviously) 6 different colours

c. Opposite faces have known colours couples, white-yellow, red-orange, green-blue (Western colour code).

 This means we can make use of these 6 facelets as colour reference

3. The average HSV, detected on the 6 centers, is used to determine which colour is located on the 6 centers:

a. White facelet is the one having the largest V-S (Value or Brightness, Saturation) difference, and the yellow

one is located at opposite face.

b. Remaining 4 centers are evaluated according to their Hue, and the Hue at opposite face.

c. Orange has very low Hue, and red should be very high (almost 180); Depending on light condition, the

red’s Hue could be lower than the orange, in that case both very low, and orange higher than red.

d. Out of the two remaining centers, blue is the one with highest Hue, and consequently the green is also

known.

4. Based on previous step, the 6 cube colours (at least their centers) have a known average BGR colour.

5. Facelets colour interpretation is made, by using two methods:

a. The first method compares the average RGB colour of each facelet in comparison with the one at the 6

centers, and the colour decision is based on the smallest colour distance.

b. In this second method the Hue value of each coloured (non-white) facelet are compared to the Hue of the 5

reference centers; White facelets are detected by 3 parameters (Hue, Saturation, Value), in comparison to

the white center HSV.

First method is in general better than the second one, yet the second one “wins” when there is lot of light; The

second method is only used (called) when the first one fails.

As result both methods are used, to get reliable cube status detection under different light situations.

Note:

On the robot, the PiCamera is positioned rather close to the cube, imposing the usage of a large sensor area to have

the cube fully visible; This increases the vignetting effect, resulting on darker colours at the corners.

The first method mitigates this effect, by using the central facelets as initial colour reference:

• Facelets are first ordered by their colour distance to the reference.

• Once a facelet's colour choice is made (shortest distance from reference), that facelet's colour is averaged to

the previous reference colour, and stored as the new reference for that specific colour

By averaging the reference to every new selected colour, the reference colour becomes more and more

representative for that specific colour

https://medium.com/swlh/how-i-made-a-rubiks-cube-color-extractor-in-c-551cceba80f0

Construction:

The robot mechanical principles are simplicity, compact design and to solve Rubik cubes without changing it (no need

for special gripping):

Baseline:

• The inclined cube holder is inspired to Hans construction https://www.youtube.com/watch?v=gbLnNIZ-tro

• The upper cover is my own idea; It provides a constrainer for cube layer rotation, it suspends the PiCamera at

sufficient distance when reading and allows a compact robot construction when closed (robot not in use).

• The cube flipper is also my own idea, mainly to keep a small footprint and to have independent movements.

• Underneath the Box there are two flipping feet, to reach a sufficient inclination to flip the cube, and to keep

an overall smaller construction when the robot is closed (not in use).

• The Box cover is hinged to the Box to quickly access/show the inner parts.

1. Upper cover and flipping lever are actuated via two servos, therefore controlled via angle

2. Cube holder is actuated via a step motor.

3. Cube holder has 4 stationary positions, synchronized via a photo sensor: A printed disk with 4 open slots is fixed

to the cube holder, right underneath the Box cover. This ensures a proper cube/cube holder position when the

flipping lifter or the upper cover are operated.

4. Cube holder is hold in position by the motor (motor is energized to get holding torque) when the flipper or the

upper cover are activated.

5. Most of the parts are made in PET-G via 3D printing.

6. Some of the 3D printed parts are split:

• Upper cover and PiCamera holder, to have smaller parts to re-print in case of geometry improvement need.

• Cube holder and connection to the motor, mainly to have a convenient printing.

• Flipper’s servo holder and Hinge for Upper cover and Lifter, mainly for convenient printing

Note: PiCamera holder 3D files has an additional bracket, meant to improve support while 3D printing, and to be

cut afterward

7. The Box is made by plywood, as it is an easy material to work with; The Box could also be 3D printed (stl files are

also provided), and in that case I’d suggest to:

• Integrate a couple of parts:

o Bottom panel with foot hinges

o Top panel with the hinge for upper cover and lifter

• On the stl files for the Box there aren’t the recesses/fixing holes for the Box Top panel hinges.

https://www.youtube.com/watch?v=gbLnNIZ-tro

Parts to make:

Q.ty Part Material Notes

1 Box Plywood
8mm thickness
Note: Large difference on top panel’s thickness might
require changes at parts geometry

2 Foot 3D print

2 Foot hinge 3D print

1 Inner connector holder 3D print

1 Outer connector holder 3D print

1 Raspberry pi front holder 3D print

1 Raspberry pi back holder 3D print

1 Motor support 3D print

1 Synchronization disk 3D print

1 Cube holder upper part 3D print

1 Cube holder bottom part 3D print

1 Lifter servo holder 3D print

1 Lifter 3D print

1 Lifter link 3D print

1 Hinge for Upper cover and Lifter 3D print

1 Upper cover 3D print

1 PiCamera holder 3D print

Stl files for all the above parts are provided at

Box

Motor support

Foot hinge

Foot

Lifter

Lifter link

Outer connector
holder

Inner connector holder

Lifter servo holder

Hinge for upper cover
and Lifter

Upper cover

PiCamera holder

Cube holder bottom
part

Cube holder upper part

Synchronization disk

Raspberry pi back
holder

Raspberry pi front
holder

Bought parts:

This table is a sort of minimum recommended parts; Links to the parts I bought are in the below excel file

Q.ty Part Notes

1 Raspberry Pi 4B 2Gb I did not verify whether if other models could do the job

1 Raspberry Pi 4 metal cover with fans

Not sure the fans are really
needed

2
MicroSD Sandisk Extreme 32Gb
(2nd one as backup, with same image)

16Gb also ok

1
PiCamera v1.3 with extension cable

50cm extension is perfect

1 Filament 1.75mm PETG is very good, yet other material will do the job

2
180 deg Servo motors, with metal
gear and metal lever “25T”

1 Servo(s) driver (PCA 9685) Better to buy 1 spare

1

Step motor

Nema 17 Stepper Motor, 34mm,

28Ncm, 1.3A, 2 phases, 1.8°, shaft

Ø5mm with flat key)

1 Step motor driver, 1.5A (DRV8825) Better to buy 1 spare

2

DC-DC transformer

(1 for Raspberry pi, the 2nd for servos
and remaining loads)

1
Photo switch
(Better to buy 1 spare)

1 Cable USB-C with screw connector

2
LCD displays with segments
(Better to buy 2 spares)

1
Momentary push-button with red led
On / Off logo
(Better to buy 1 spare)

1
Push-button
(Better to buy 1 spare)

1 Prototype boards and connectors
In alternative search for “DRV8825/A4988 42 Stepper Driver
Module Motor Control Shield Drive”

1
Dc power supply, output ca 20Vdc
(power ≥ 120W)

See notes below

1 Power connector See notes below

Notes:

1. I had available a HP charger for a laptop (output 20Vdc 230W), and a HP connector adapter (link); These two

parts have influenced the way I’ve organized the power supply system.

2. In my case I also bought some additional material (i.e. Micro HDMI to HDMI cable, bread board, etc), as this

was my 1st experience with Raspberry pi.

In the embedded excel file the references to the parts I bought, and related info (shop, cost, delivery time, issues)

CubeSolverCompone

nts.xlsx

https://it.aliexpress.com/item/1005001708292729.html?src=google&src=google&albch=shopping&acnt=494-037-6276&slnk=&plac=&mtctp=&albbt=Google_7_shopping&albagn=888888&isSmbAutoCall=false&needSmbHouyi=false&albcp=12556492032&albag=121061693882&trgt=539263010115&crea=nl1005001708292729&netw=u&device=c&albpg=539263010115&albpd=nl1005001708292729&gclid=Cj0KCQjwkbuKBhDRARIsAALysV78D9VktZCQXcXdiueHvI4zsS4USpupIyMs1nxXkeuqi1RExdv2R4waAhEsEALw_wcB&gclsrc=aw.ds&aff_fcid=6e2fb513db544bf5974a0ed4af64c1d8-1632568028393-06225-UneMJZVf&aff_fsk=UneMJZVf&aff_platform=aaf&sk=UneMJZVf&aff_trace_key=6e2fb513db544bf5974a0ed4af64c1d8-1632568028393-06225-UneMJZVf&terminal_id=ab95ac68e2c94a95b442fbdd62bf94ea

Fixings:

Q.ty Part Notes

50 2.5x13mm wood screw For the Box construction, and thicker part toward the Box

50 2.5x10mm wood screw For thinner parts toward the Box

2 M3x 30 + self-locking nuts For the feet and feet hinges

1 M3x16 Lifter lever to lifter lever link

8 M3x10
Servo to servo holder (3 each)
Upper cover to servo metal lever “25T”
Flipper lever link to servo lever

4 M3x8 Motor to motor support

2 M3x4
Metal lever “25T” to the servos. Use some spacers or reduce screw
length in case too long screw available

1 M6x16 Upper cover to upper cover hinge (note: pre-thread the upper cover)

1 M5x30 + self-locking nut Lifter to lifter hinge

6 Rubber pads 4 on the Box base, 2 on the feet

4x 1cm Filament 1.75 To fix the PiCamera to its holder (hot deforming)

2 Hinges For easy opening of the Box top panel

Electrical small parts:

Q.ty Part Notes

1x10 Headers To connect to GPIO (odd pins)

1x6 Headers To connect to servo driver

2x4 Headers To connect to Displays

? Headers To connect to stepper motor driver interface

1 Capacitor 16V 470uF Closer to the Raspberry pi

1 Capacitor 25V 180uF
At the stepper motor driver (or use a “DRV8825/A4988 42 Stepper Driver
Module Motor Control Shield Drive”)

?
Resistors might be
needed

In my case:
1 x 1 KΩ at On-off button (not clear specs on max current)
1 x 10 KΩ at stepper motor driver, to pull up the enable signal
1 x 4.7 KΩ at stepper motor driver if A4988 driver, to pull up the step signal

Off course some other common materials are needed (Wires, solder and solder device, tire wraps, etc)

Electrical scheme:

Note:

HP (and other) manufacturers of laptop’s chargers, use of a sensing pin on the connector to enable a sort of smart

power management; The HP power supply I have, goes in low power mode if the sensing pin is “floating”.

Based on https://www.fixya.com/support/t1877467-hp_zd8000_laptop_power_supply# I’ve add a 47kΩ between

the central pin and the +19Vdc, and it simply works fine.

https://www.fixya.com/support/t1877467-hp_zd8000_laptop_power_supply

Modules and connections:

Proto board for DRV 8825 driver:
Alternatively an extension board for DRV8825 will do the job (ref: link1, or link2)

Notes:

1. MS1 (micro step1) is connected to +3.3Vdc, therefore high: It forces the driver to microstep ½ (from 200

steps to 400 steps per revolution. This setting is used for the cube spinning and rotation.

2. MS2 (+MS1): When high it forces the driver to microstep 1/8 (from 200 to 800 steps per revolution. This

setting is used during motor alignment to the synchronization disk

3. MS3: Not used

4. SLEEP connected to RESET.

5. ENABLE: Added a 10KΩ pullup, to prevent the driver to activate the motor due to noise (Servos activations).

This input is used to activate/de-activate the motor current, according to the robot phase.

6. STEP: Input used to steer the revolution amount and its speed

7. DIR: Used to steer the rotation direction

Setting the max motor current:

Vref is set on 0.63V, the max

reached via the potentiometer.

R sense=0.1Ω, Vref=Imax/2 →

Max current = 1.3A

https://it.aliexpress.com/item/4000393299508.html?src=google&src=google&albch=shopping&acnt=494-037-6276&slnk=&plac=&mtctp=&albbt=Google_7_shopping&albagn=888888&isSmbAutoCall=false&needSmbHouyi=false&albcp=12556492032&albag=121061693882&trgt=539263010115&crea=nl4000393299508&netw=u&device=c&albpg=539263010115&albpd=nl4000393299508&gclid=Cj0KCQjw18WKBhCUARIsAFiW7Jwd27uIJvNOPpWT-oXAsXgbVFkzYxW8JZ1X9gzy65Mj7hADAZc6mCIaAhvZEALw_wcB&gclsrc=aw.ds&aff_fcid=c81d8114021c4d10854f16f35f29e429-1632762644047-09381-UneMJZVf&aff_fsk=UneMJZVf&aff_platform=aaf&sk=UneMJZVf&aff_trace_key=c81d8114021c4d10854f16f35f29e429-1632762644047-09381-UneMJZVf&terminal_id=ab95ac68e2c94a95b442fbdd62bf94ea
https://www.banggood.com/A4988-or-DRV8825-Stepper-Motor-Control-Board-Expansion-Board-For-3D-Printer-p-1238774.html?utm_source=googleshopping&utm_medium=cpc_organic&gmcCountry=NL&utm_content=minha&utm_campaign=minha-nl-en-pc¤cy=EUR&cur_warehouse=CN&createTmp=1&utm_source=googleshopping&utm_medium=cpc_bgs&utm_content=sandra&utm_campaign=ssc-nl-css-all-0302&ad_id=337480208048&gclid=Cj0KCQjw18WKBhCUARIsAFiW7JxTh3HPVWbtqJbR5XKRwg96kXr43a9mbVWYzwLxUYxGF-DuQIESrBwaArymEALw_wcB

(Raspberry pi) GPIO pinout:

Assembly steps and attention points:

Preparation and pre-checks, to be done before final assembly:

1. Cube holder bottom part must enter the motor axis (the flat part must match!). If there is too much friction, pass

wax candle over the motor axis.

2. It must be possible to insert fully these 2 parts, resulting in ca 28mm clearance between the motor flange and

the Cube holder upper part large surface.

3. Photo Switch must enter the motor support

4. PiCamera holder must be fixed to the Upper cover; Insertion direction is the PiCamera sliding down to the Upper

cover.

5. Servo’s metal lever must match the seat on the Upper cover.

6. Orient the servo’s outlet, by using the servo’s metal lever “25T”, to have enough stroke toward the direction

later required.

7. Assemble the servo for the Lifter, to the Lifter servo holder (3 bolts M3x10mm).

8. Assemble the Lifter link to the Lifter (M3x16mm, insertion from right to left by standing in front of the robot);

Make sure the Lifter can rotate without friction excess.

Final assembly:

Cube holder, motor, Photo Switch

9. Prepare the Box.

10. Assemble the motor to the Motor support (4 bolts M3x8mm)

11. Press the Cube holder bottom part to the Cube holder upper part: There are some small ribs and undercuts all

around, to hold these two parts well together. The two parts should have no visible gap in between. If these

parts are too loose, apply some glue.

12. Inserts the Cube holder through the Box top panel

13. Insert the Synchronization disk to the cube holder; These two parts have a couple of ribs/recesses suggesting the

right orientation.

14. Motor support and Cube holder to the Box top panel; This step requires a bit more attention:

a. Place the Photo Switch on the Box top panel recess

b. Orient the Motor axis to match the Cube holder bottom part.

c. Slide the Motor + Motor support completely, while keeping the Cube holder.

d. Keep the Motor support forced toward the Box top panel and verify that Synchronization disk rotates

without touching the Photo switch and other parts (i.e., Motor bolts).

e. Screw the Motor support to the Box top panel

Lifter and Lifter servo

15. Fix the Hinge for Upper Cover and Lifter to the Box top panel.

16. Fix the Lifter to the Hinge for Upper cover and Lifter (M5x30mm and self-locking nut).

17. Fix the Lifter servo holder + servo to the Box top panel.

18. Fix the servo “25T” metal lever to the servo for Lifter (M3x4mm), and tight the tangential screw.

19. Fix the servo “25T” metal lever to the Lifter link (M3x10mm).

Upper cover and related servo

20. Fix the servo “25T” metal lever to the servo for Upper Cover (M3x4mm), and tight the tangential screw.

21. Fix the servo “25T” metal lever to the Upper Cover (M3x10mm).

22. Slide the servo + Upper Cover onto the Hinge for Upper cover and Lifter; Fix the servo with 3 bolts M3x10 (one of

the three screw can be tighten via the hole on Upper Cover, when placed in vertical position.

23. Place and tight the M6x16mm bolt (opposite side of the Upper Cover servo lever), that acts as fulcrum for the

Upper Cover. The bolt must be fixed to the Upper Cover, and free to rotate on the Hinge for Upper cover and

Lifter.

24. Pass the servo cable through the Box Top panel hole; Keeps the cable out of the Lifter way, by making a nice “L”

bend to the right and fix the cable with two small tire wraps.

Electrical part

25. Place and fix the remaining electrical parts into the Box

26. On the two Displays, it’s convenient to de-solder the connector and re-solder it on the opposite board side; This

makes easier the displays placement on the Box front panel, as well as the connection with the wiring.

27. Fix the Raspberry Pi

28. Complete the connections

PiCamera

Connecting the PiCamera and its cable should be done as one of the latest parts

Before fixing the PiCamera to the PiCamera holder, check whether the cube is on focus (see Fine Tuning part).

29. PiCamera must be fixed to the PiCamera holder, by using 4 little pieces of filament, Ø1.75mm; Deform the

protruding parts with a hot blade. Do not insert the PiCamera flat cable to the parts yet.

30. Slide the PiCamera flat cable (50cm long) along the slot on the Upper Cover and PiCamera Holder

31. Pass the PiCamera flat cable though the Box Top panel opening.

32. Connect the cable to the Raspberry pi; Electrical contact are on one side only of the cable (many tutorials

helping on this)

Setting up the microSD and raspberry pi:

Overall steps are:

Step #1: Setting up RASPBERRY PI (4B)

Step #2: Install dependencies for CV (virtual environment)

Step #3: Install packages for cube solver

Step #4: Get the robot starting, after raspberry pi boots (this step can be done at later stage)

Details of these steps are on the embedded document SD and Rpi settings_20211003.pdf

SD and Rpi

settings_20211003.pdf

I’m not an expert, yet I had done these steps twice as the first microSD card crashed; In both cases the process was

smooth but not short!

I hope these steps won’t change much in future, fortunately many helps can be found in internet.

Python script, high level info:

1. There are two main python scripts on the robot: AF_cube_robot.py and AF_cube_robot_noVideo.py

2. The difference between these two files belongs to the Boolean variable screen, on the "__main__": screen=True

on AF_cube_robot.py while screen=False on AF_cube_robot_noVideo.py.

3. The script AF_cube_robot_noVideo.py starts automatically at the robot, after the Raspberry pi boots; This script

doesn’t use commands requiring a screen communication, thus the robot works autonomously without any

screen connected to it (without returning errors).

4. Alternatively, the script AF_cube_robot.py starts only is manually started, and it makes use of commands

requiring screen communication; With this script there are some graphical information shared, that makes the

robot working more enjoyable. In case the isn’t a screen connected the script doesn’t work properly.

5. The script AF_cube_robot.py works in either the robot (Raspberry pi) and a python interpreter in windows

laptop; In the script there is a trivial check to determine whether it is running on the robot … if not it considers

to be on a PC.

6. Depending on where the script is running, different libraries are loaded; Below table in mainly meant to show

the split of needed libraries needed for the robot and those to play with the Vison part on a PC.

Notes:

• modified means the file is largely based on a public version, by applying some personalization and/or

corrections.

• specific means the file has been basically made from scratch

• Kociemba solver, the first time is called, build many tables. This takes quite some time on a PC, and up to 6

hours on a Raspberry pi (Kociemba info); Differently, it is simply possible to generate these table on a PC,

and later copy them on the Raspberry pi (Kociemba files are about 70Mb, and those needed are listed on the

file SD and Rpi settings_20211003.pdf).

Library HD Main scope notes

cv2 both For the vision part

numpy both Array related analysis

copy (deepcopy) both To manipulate copy of the original array (image)

scipy.spatial (distance) both Distance calculation on array

math both For different math need

statistics both To easily calculate the median

time both To manage time

datetime both To log date and time when saving data

solver both Kociemba solver for the cube see below

os robot To manage folder and file presence check

RPi.GPIO robot To manage the GPIO at Raspberry pi

threading (Timer) robot To manage repetitive timers

picamera robot To manage the PiCamera

multiprocessing robot To multiprocessing while the robot solves the cube

AF_set_picamera_gain robot To manage settings on PiCamera modified

AF_tm1637 robot To manage the displays modified

AF_robot_moves robot To translate the cube solution in robot’s movements sequence specific

AF_servo_and_motor robot To operate the robot moving parts specific

IPython.display
(clear_output)

PC To clear the terminal in between phases

7. The script uses a “tentative” approach, on a couple of analysis:

a. When the image is analysed, it returns contours of facelets and many other unwanted; This happens

in the function get_facelets(). Afterward, consecutive filters are applied to only keep contours to be

potentially a cube’s facelet. This process ends when 9 facelets, all matching the filters criteria, are

retrieved from a single image (frame).

b. When determining the cube status, according to the facelets colour; The analysis starts with a first

method determining each (side and corner) facelet colour, based on the colour distance from the

colours of the 6 centers. In case the cube status obtained with this first method is not coherent, then

a second method is called. The second method uses the Hue value of each (non-white) facelet and it

compared it with expected (predefined) Hue ranges. In case also the second method doesn’t provide

a coherent cube status, then an error message is returned, and relevant info logged in a text file.

8. On below image are plot two contours per each facelet:

a. The outer one, in black, shows the simplified contour retrieved by the edge analysis; This analysis is

used to find the 9 facelets per each cube side. This area is used to calculate the BGR average value

for colour interpretation according to the 1st method (BGR colour distance).

b. The inner one, in white, depicts a smaller square area (at script ➔ side = 2 * edge) centred on the

outer contour; This smaller area is used to calculate the HSV average colours, used for colour

interpretation according to the 2nd method (Hue value).

9. To get consistent colours, while detecting the 54 cube’s facelets, it is convenient to fix some PiCamera

parameters, like the AWB and Exposition (and gains).

The approach follows these phases:

a. Warm up the PiCamera: Keep the camera AWB and Exposition (and gains) in auto mode while the

cube is facing the camera; Once these parameters get stable the warmup phase is released.

b. Start retrieving the facelets on the first cube side; Once 9 facelets are retrieved the camera is set to

manual and the last camera parameters) used to get these first facelets= are set to the camera.

c. The camera with fixed AWB and Exposition, is used to detect the next 5 cube’s faces.

d. The camera is set off to release these parameters; It restarts in auto-mode at the next cube reading.

10. Rotation of the cube holder has different phases and conditions:

a. Initial rotation speed has two levels, low and high; High speed is used when the cube is spined

entirely, while Low initial speed is used when the upper cover engages the cube (cube’s bottom layer

rotation).

b. By linearly accelerating the first third of the requested rotation (it can a 90-degree rotation, or a 180-

degree rotation); This ensures sufficient torque to start rotating the parts

c. By keeping the max speed for the second third of rotation

d. By decelerating the remaining rotation part; This ensures to limit the cube inertia before the rotation

stop, as differently the mid at top cube layers rotates further than the first one.

e. Each rotation includes a slightly over-rotation, that ensures to get all the cube layers aligned.

f. At the rotation end, the cube holder is rotated back by the over-rotation part; This releases majority

of friction between cube holder, cube, and top cover so the upper cover can open easily as well as

the new rotation starts without initial high friction.

11. When the script is running on Raspberry pi, it saves some data:

a. After detecting a cube’s status, it saves a png image (filename: cube_collagedate_time.png);

This appears as the unfolded cube, made via a collage of images taken during the cube status

detection (sketches of detected and interpreted colours are also added to the collage).

I’ve uploaded in YouTube a movie made with about 150 of these collected images:

https://www.youtube.com/watch?v=BOcjhvVn50s

b. After solving the cube, a string is added to a text log file with the more relevant data, for debug and

statistic purposes; Data is tab separated:

• Date and time (for reference)

• ColorAnalysisWinner (which method has determined the “coherent” cube status)

• RobotTime (total time: cube detection + solver time + solving)

• CubeStatus (BGR or HSV or BGR,HSV)

this is a dictionary with the average colours per each facelet, according to the colour space of the

winner detecting method; In case both the detecting method failed, then the average colour read

by both the colour spaces are reported

• CubeStatus (cube status according to the used notation)

• CubeSolution (cube solution, as given by Kociemba solver)

https://www.youtube.com/watch?v=BOcjhvVn50s

12. Date and especially time are used by the robot:

Raspberry pi hasn’t RTC, therefore when the robot isn’t connected to a PC and/or internet, this info could be

inaccurate.

In my experience the robot was able to complete the task without issues.

In case the robot is already working on a cube solving, while it establishes a connection to internet, then some

timers could get heavily affected, for example the total solution time could reach nonsense values, like > 600

seconds.

If you want to prevent this, a RTC extension board (with related battery) could be add to the Raspberry pi.

How to operate the robot:

SHUTDOWN: Closes the Raspberry Pi OS, wait 15 seconds before to unplug the robot.

BOOT: After a shutdown, a short press starts the boot (takes 30secs to complete); Boot starts automatically after the

robot is plugged.

START: Only when Display2 shows Press.

STOP: Stops the robot, at any moment, when it is “moving”; If the button is released within 5 seconds the python

script is reloaded and the robot gets ready again for a new cycle.

RESET: Ends the python script. Raspberry Pi OS remains up (use SHUTDOWN before unplug).

The robot has 2 main working modes:
A) Without any screen connected; This is the default mode, that starts once the robot is energized.

B) With a screen connected, by wiring or via SSH.

To quit mode A) or B), press STOP for 5 seconds. Displays segments go full ON and OFF shortly after.

To start mode B):

• Quit mode A)

• Connect to the raspberry pi (i.e. with VNC viewer, via SSH)

• Activate the virtual environment (workon cv)

• From root (/home/pi) enter the cube folder (cd cube/kociemba)

• Run the python script (python AF_cube_robot.py)

• SHUTDOWN (led goes OFF)

• BOOT (led goes ON in 30 secs)

• LOADING STATUS

• TIMER

• START

• STOP (0.5s < press < 5 sec)

• RESET (>5 sec press)

• INFO

• COUNTDOWN MOVES

Display 1

 Display 2

Fine tuning:

1. PiCamera focus

This camera comes with a fixed focus, yet in case of non-satisfactory result its possible to adjust it.

I did follow this tutorial: https://projects.raspberrypi.org/en/projects/infrared-bird-box/6

After correcting the focus, I did not glue it the lens as there was still quite some friction, preventing it from getting

loose though.

2. Capturing consistent images with PiCamera:

https://picamera.readthedocs.io/en/release-1.13/recipes1.html#capturing-consistent-images

https://gist.github.com/rwb27/a23808e9f4008b48de95692a38ddaa08/

Measurements I’ve made on the robot: PiCamera warm-up based on gains stability

To cover all these situations, the PiCamera warmup time has been linked to the stability of all gains: The average of

last N measurements (ca 2 to 3 secs) must be within 2% variation from the average value. A timeout is anyhow to set

20 secs, at it seems more than sufficient time to have the camera perfectly stable.

3. Cube holder rotation speed:

This robot isn’t very fast, yet it typically detects the cube’s status and solves it within 1 minute.

Stepper motor torque decreases while increasing the speed.

Depending on the motor torque, input voltage, max driver current, and cube rotation friction, it might result in

loosing steps by the motor; In that case a lower speed might solve the issue.

The script provided with this instruction has been tuned to get the max possible speed, on my setup; It will be

convenient to start at lower speed, and progressively increase it.

PiCamera gains (range 0 to 8) are plot versus

time (secs).

In this case the cube was placed after 2 secs

from pressing robot start-button; This means

the camera was initially adjusting the gains on

the black cube support, and right after it was

adjusting on the cube having three white

facelets: It’s clear that AWB adjustment takes

quite some time to get stable

If the cube is differently placed on the cube

support, few secs before pressing the button,

then the gain are already well set.

https://projects.raspberrypi.org/en/projects/infrared-bird-box/6
https://picamera.readthedocs.io/en/release-1.13/recipes1.html#capturing-consistent-images
https://gist.github.com/rwb27/a23808e9f4008b48de95692a38ddaa08/

4. Lifter and Upper cover (servos) angular speed:

As per the step motor, also the servos don’t provide feedback when they have completed the requested angular

rotation.

The script that controls the servos, have some delays at each servo activation.

The script provided with this instruction has been tuned to get the max possible speed, on my setup; It will be

convenient to start by increasing these delays, and progressively reduce them.

5. Reference angles for servos:

The servos I bought, have 180-degrees of rotation, that is more than sufficient for the (lifter and Upper cover) angles

of these robot.

The point is that the connection between the metal arm “25T”, and the servo’s outlet gear, have many possible

positions; This means the reference angles set on Servo_and_Motor.py are likely not the same on other systems.

To tune these parameters on your system, the advice it to load just this script, and to adjust one parameter at the

time; At the script beginning there are the angle of reference for the different parts and needs.

At the end of this script, at __name__ == "__main__", there are some examples I’ve used to tune my system.

6. Cube’s facelet and light reflection:

Edges, as well as colours, detection can be largely affected by light reflection from the facelets.

I have two cubes available, one with in-moulded coloured facelets, and the other with glossy stickers.

On the cube with plastic facelet, I made the surface matt by using a fine grit sandpaper (grit 1000), and this makes the

system quite unsensitive the light situation the robot operates.

Cube with in-moulded coloured facelet, that I

made matt with sandpaper (grit 1000)

Cube with in-glossy stickers

Collection of robot’s pictures:

Motor support, synchronization disk, and

photo switch (quite hidden)

Useful links:

1. Cube solver:

Hegbert Kociemba solver: https://github.com/hkociemba/RubiksCube-TwophaseSolver

2. Combined Power on / power off (single) button:

https://github.com/lihak/rpi-power-button

https://howchoo.com/g/mwnlytk3zmm/how-to-add-a-power-button-to-your-raspberry-pi

3. Led indicator for power on / power off:

https://howchoo.com/g/ytzjyzy4m2e/build-a-simple-raspberry-pi-led-power-status-indicator

4. Edge detection:

https://medium.com/swlh/how-i-made-a-rubiks-cube-color-extractor-in-c-551cceba80f0

http://programmablebrick.blogspot.com/2017/02/rubiks-cube-tracker-using-opencv.html

https://programmer.help/blogs/rubik-cube-recognition-using-opencv-edge-and-position-recognition.html

5. Approximated contours

https://docs.opencv.org/4.5.3/dd/d49/tutorial_py_contour_features.html

6. Order coordinates clockwise

https://www.pyimagesearch.com/2016/03/21/ordering-coordinates-clockwise-with-python-and-opencv/

7. Colour space conversion:

From RGB to CIELab color space conversion: https://gist.github.com/ manojpandey/

f5ece715132c572c80421febebaf66ae

8. Distance between two (L*a*b*) colours:

How to calculate the (CIEDE2000) colour distance between two CIE L*a*b* colours: https://github.com/lovro-

i/CIEDE2000

9. How to average two colours on the right way:

https://sighack.com/post/averaging-rgb-colors-the-right-way

10. Infinite timer:

https://stackoverflow.com/questions/12435211/python-threading-timer-repeat-function-every-n-seconds

https://github.com/hkociemba/RubiksCube-TwophaseSolver
https://github.com/lihak/rpi-power-button
https://howchoo.com/g/mwnlytk3zmm/how-to-add-a-power-button-to-your-raspberry-pi
https://howchoo.com/g/ytzjyzy4m2e/build-a-simple-raspberry-pi-led-power-status-indicator
https://medium.com/swlh/how-i-made-a-rubiks-cube-color-extractor-in-c-551cceba80f0
http://programmablebrick.blogspot.com/2017/02/rubiks-cube-tracker-using-opencv.html
https://programmer.help/blogs/rubik-cube-recognition-using-opencv-edge-and-position-recognition.html
https://docs.opencv.org/4.5.3/dd/d49/tutorial_py_contour_features.html
https://www.pyimagesearch.com/2016/03/21/ordering-coordinates-clockwise-with-python-and-opencv/
https://gist.github.com/%20manojpandey/%20f5ece715132c572c80421febebaf66ae
https://gist.github.com/%20manojpandey/%20f5ece715132c572c80421febebaf66ae
https://github.com/lovro-i/CIEDE2000
https://github.com/lovro-i/CIEDE2000
https://sighack.com/post/averaging-rgb-colors-the-right-way
https://stackoverflow.com/questions/12435211/python-threading-timer-repeat-function-every-n-seconds

