
How to Code, Deploy, and
Operate Cloud-Native
Apps Using Kubernetes

Aditya Satrya
Head of IT Development
Jabar Digital Service
https://digitalservice.jabarprov.go.id

https://digitalservice.jabarprov.go.id

Outline

● Cloud-Native & 12-Factor App
● Kubernetes
● 12-Factor App using Kubernetes

Cloud-Native &
12-Factor App

Cloud-Native Application

● Operability: Expose control of application/system
lifecycle.

● Observability: Provide meaningful signals for
observing state, health, and performance.

● Elasticity: Grow and shrink to fit in available
resources and to meet fluctuating demand.

● Resilience: Fast automatic recovery from failures.
● Agility: Fast deployment, iteration, and reconfiguration

Cloud-Native
Trail Map
1. Containerization
2. CI/CD
3. Orchestration

--below this are optional--
4. Observability
5. Service Discovery
6. Networking & Policy
7. Distributed database & storage
8. Streaming & messaging
9. Container registry

10. Software distribution

12-Factor App

● Methodology to build app optimized
for the cloud (cloud-native)

● Drafted by developers at Heroku
(2011)

● http://12factor.net

http://12factor.net

The
Twelve
Factor

Code
I. One Codebase
One codebase tracked in
revision control, many deploys

II. Dependencies
Explicitly declare and isolate
dependencies

III. Config
Store config in the
environment

VI. Processes
Execute the app as one or
more stateless processes

IV. Backing services
Treat backing services as
attached resources

V. Build, release, run
Strictly separate build and run
stages
X. Dev/prod parity
Keep development, staging,
and production as similar as
possible
VII. Port binding
Export services via port
binding

VIII. Concurrency
Scale out via the process
model

IX. Disposability
Maximize robustness with
fast startup and graceful
shutdown

XI. Logs
Treat logs as event streams

XII. Admin processes
Run admin tasks as one-off
processes

Deploy Operate

Kubernetes

What is Kubernetes?

● Open-source system for automating:
○ deployment
○ scaling
○ management of containerized

applications

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Master 1 Master 2 Master 3

Workers

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Master 1 Master 2 Master 3

Workers

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Master 1 Master 2 Master 3

Workers

Run 5 instances
of
frontend:latest

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Master 1 Master 2 Master 3

Workers

Run 5 instances
of
frontend:latest

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Master 1 Master 2 Master 3

Workers

Run 5 instances
of
frontend:latest

frontend: 4/5

X

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Master 1 Master 2 Master 3

Workers

Run 5 instances
of
frontend:latest

frontend: 4/5

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Master 1 Master 2 Master 3

Workers

Run 5 instances
of
frontend:latest

frontend: 5/5

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Master 1 Master 2 Master 3

Workers

Run 5 instances
of
frontend:latest

Run 3 instances
of
backend:latest

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Master 1 Master 2 Master 3

Workers

Run 5 instances
of
frontend:latest

Run 3 instances
of
backend:latest

Run 10
instances of
analytics:latest

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Master 1 Master 2 Master 3

Workers

Run 5 instances
of
frontend:latest

Run 3 instances
of
backend:latest

Run 10
instances of
analytics:latest

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Master 1 Master 2 Master 3

Workers

Run 5 instances
of
frontend:latest

Run 3 instances
of
backend:latest

Run 10
instances of
analytics:latest

analytics: 7/10
frontend: 4/5
backend: 3/3

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Master 1 Master 2 Master 3

Workers

Run 5 instances
of
frontend:latest

Run 3 instances
of
backend:latest

Run 10
instances of
analytics:latest

analytics: 10/10
frontend: 5/5
backend: 3/3

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

10.x.x.x
label: analyticsServices

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

10.x.x.x
label: analytics

10.x.x.x
label: backend

10.x.x.x
label: frontendServices

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

10.x.x.x
label: analytics

10.x.x.x
label: backend

10.x.x.x
label: frontendServices

Internet

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

10.x.x.x
label: analytics

10.x.x.x
label: backend

10.x.x.x
label: frontend

Cloud Load Balancer

Services

Internet

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

10.x.x.x
label: analytics

10.x.x.x
label: backend

10.x.x.x
label: frontend

Cloud Load Balancer

stats.example.com api.example.com example.com

Services

Internet

12-Factor App
Using
Kubernetes

Code
I. One Codebase
One codebase tracked in
revision control, many deploys

II. Dependencies
Explicitly declare and isolate
dependencies

III. Config
Store config in the
environment

VI. Processes
Execute the app as one or
more stateless processes

IV. Backing services
Treat backing services as
attached resources

V. Build, release, run
Strictly separate build and run
stages
X. Dev/prod parity
Keep development, staging,
and production as similar as
possible
VII. Port binding
Export services via port
binding

VIII. Concurrency
Scale out via the process
model

IX. Disposability
Maximize robustness with
fast startup and graceful
shutdown

XI. Logs
Treat logs as event streams

XII. Admin processes
Run admin tasks as one-off
processes

Deploy Operate

Code
I. One Codebase
One codebase tracked in
revision control, many deploys

II. Dependencies
Explicitly declare and isolate
dependencies

III. Config
Store config in the
environment

VI. Processes
Execute the app as one or
more stateless processes

Dockerfile

Kubernetes cluster

Node

Pod

Node

Pod
yaml

Pod Pod

Code
I. One Codebase
One codebase tracked in
revision control, many deploys

II. Dependencies
Explicitly declare and isolate
dependencies

III. Config
Store config in the
environment

VI. Processes
Execute the app as one or
more stateless processes

Kubernetes cluster
<staging>

yaml Kubernetes cluster
<test>

Kubernetes cluster
<prod>

Code
I. One Codebase
One codebase tracked in
revision control, many deploys

II. Dependencies
Explicitly declare and isolate
dependencies

III. Config
Store config in the
environment

VI. Processes
Execute the app as one or
more stateless processes

Code
I. One Codebase
One codebase tracked in
revision control, many deploys

II. Dependencies
Explicitly declare and isolate
dependencies

III. Config
Store config in the
environment

VI. Processes
Execute the app as one or
more stateless processes

fmt.Fprintf(w, "ENV: %s\n", os.Getenv("ENV"))

fmt.Fprintf(w, "DB_HOST: %s\n", os.Getenv("DB_HOST"))

fmt.Fprintf(w, "DB_PORT: %s\n", os.Getenv("DB_PORT"))

fmt.Fprintf(w, "DB_USER: %s\n", os.Getenv("DB_USER"))

fmt.Fprintf(w, "DB_PASSWORD: %s \n", os.Getenv("DB_PASSWORD"))

Application code:

containers:

 - name: demo-app

 image: asatrya/alpine-k8s-pod-lb-demo

 env:

 - name: DB_HOST

 valueFrom:

 configMapKeyRef:

 name: demo-configmap

 key: DB_HOST

 - name: DB_PORT

 valueFrom:

 configMapKeyRef:

 name: demo-configmap

 key: DB_PORT

k8s yaml:

Code
I. One Codebase
One codebase tracked in
revision control, many deploys

II. Dependencies
Explicitly declare and isolate
dependencies

III. Config
Store config in the
environment

VI. Processes
Execute the app as one or
more stateless processes

● Share nothing
● Do not write persistent data to

node memory/filesystem

IV. Backing services
Treat backing services as
attached resources

V. Build, release, run
Strictly separate build and run
stages
X. Dev/prod parity
Keep development, staging,
and production as similar as
possible
VII. Port binding
Export services via port
binding

Deploy

configMap.yaml

DB_HOST=mydbhost
DB_PORT=3306

Pod

deployment.yaml

image: imagename
env: ….

secret.yaml

DB_USER=mydbuser
DB_PASS=mydbpass

Docker Registry

image

os.Getenv(‘DB_HOST’)
os.Getenv(‘DB_PORT’)
os.Getenv(‘DB_USER’)
os.Getenv(‘DB_PASS’)

IV. Backing services
Treat backing services as
attached resources

V. Build, release, run
Strictly separate build and run
stages
X. Dev/prod parity
Keep development, staging,
and production as similar as
possible
VII. Port binding
Export services via port
binding

Deploy

Build image

Registry

Deploy & Run
<staging>

Deploy & Run
<prod>

push image
(release)

pull image
pull image

Config for
staging

Config for
prod

IV. Backing services
Treat backing services as
attached resources

V. Build, release, run
Strictly separate build and run
stages
X. Dev/prod parity
Keep development, staging,
and production as similar as
possible
VII. Port binding
Export services via port
binding

Deploy

IV. Backing services
Treat backing services as
attached resources

V. Build, release, run
Strictly separate build and run
stages
X. Dev/prod parity
Keep development, staging,
and production as similar as
possible
VII. Port binding
Export services via port
binding

Deploy

Node 1
NodePort

Pod
TargetPort

Load Balancer

Service

Port

Pod
TargetPort

Service

Port

Node 2
NodePort

Pod
TargetPort

Service

Port

Pod
TargetPort

Service

Port

VIII. Concurrency
Scale out via the process
model

IX. Disposability
Maximize robustness with
fast startup and graceful
shutdown

XI. Logs
Treat logs as event streams

XII. Admin processes
Run admin tasks as one-off
processes

Operate
● Manual Scaling

○ kubectl scale
● Autoscaling

○ based on CPU utilization
○ based on custom metrics

VIII. Concurrency
Scale out via the process
model

IX. Disposability
Maximize robustness with
fast startup and graceful
shutdown

XI. Logs
Treat logs as event streams

XII. Admin processes
Run admin tasks as one-off
processes

Operate
Service

Healthy Unhealthy
(Loading 45%)

Liveness PASS
Readiness PASS

Liveness PASS
Readiness FAIL

VIII. Concurrency
Scale out via the process
model

IX. Disposability
Maximize robustness with
fast startup and graceful
shutdown

XI. Logs
Treat logs as event streams

XII. Admin processes
Run admin tasks as one-off
processes

Operate

VIII. Concurrency
Scale out via the process
model

IX. Disposability
Maximize robustness with
fast startup and graceful
shutdown

XI. Logs
Treat logs as event streams

XII. Admin processes
Run admin tasks as one-off
processes

Operate
● CronJob
● Job

Demo
You can access demo source code at
https://github.com/asatrya/k8s-12-factor-demo

Note: Read README first.

Summary

● Code: optimize for automation
● Deploy: portability
● Operate: scalability, resiliency

Thank you!

