
1
| Copyright © 2017 Tata Consultancy Services Limited

How to ensure OpenStack Swift & Amazon S3 Conformance for
storage products & services supporting multiple Object APIs

Ankit Agrawal

Tata Consultancy Services Ltd.

30 May 2017

2

Focal Points of Discussion

1 Object Storage: Overview

2 Object Storage APIs: Overview

3 Conformance Testing Approach

4 Sample Test Cases

3

Object Storage: Overview (1/2)

Unstructured Data Growth

 What is Unstructured Data?

 Why Unstructured Data is growing massively?

 Unstructured Data Growth Report

 Why Unstructured Data is so important?

4

Object Storage: Overview (1/2)

Why Object Storage for Unstructured Data

 Limitless Scalability

 Runs on Commodity Hardware

 Highly Available

 Anytime / Anywhere access

 Flat address space

 Unique ObjectID

 Manageability

REST API

Get/Post/Put/Delete

Data Object Storage

5

Click to edit Master title styleObject Storage APIs: Overview

 Object Storage APIs ?

 Why Amazon S3 & OpenStack Swift ?

 Why Conformance to S3 & Swift is critical ?

6

Conformance Testing Approach

1. OpenStack Swift

2. Amazon S3

7

Conformance Testing Approach

 Supports the REST API

 Supports Token Based Authentication

8

Conformance Testing Approach

Discoverability Operations Endpoints Operations: Operations on the Accounts

 GET /info

 lists the activated capabilities

 GET /v1/endpoints

 List endpoints

Show account details and list
containers

 GET /v1/{account}

Create, update, or delete account
metadata

 POST /v1/{account}

Show account metadata

 HEAD /v1/{account}

9

Conformance Testing Approach

Operations on the Containers Operations on the Objects

Show container details and list objects

 GET /v1/{account}/{container}

Create container

 PUT /v1/{account}/{container}

Create, update, or delete container metadata

 POST /v1/{account}/{container}

Show container metadata

 HEAD /v1/{account}/{container}

Delete container

 DELETE /v1/{account}/{container}

Get object content and metadata

 GET /v1/{account}/{container}/{object}

Create or replace object

 PUT /v1/{account}/{container}/{object}

Copy object

 COPY /v1/{account}/{container}/{object}

Delete object

 DELETE /v1/{account}/{container}/{object}

Show object metadata

 HEAD /v1/{account}/{container}/{object}

Create or update object metadata

 POST /v1/{account}/{container}/{object}

10

Figure: 1
Test Case#1:
Show container details and list objects

Test Case#2:
Show container details and list objects
for container that does not exist

Test Case#3:
Create a Container using Swift API

Test Case#4:
Create a Container using custom
metadata

Test Case#5:
Delete container metadata

Test Case#6:
Show container metadata

Test Case#7:
Create a container with an ACL to
allow anybody to get an object in the
particular container

Test Case#8:
Delete an empty Container

Test Case#9:
Delete a Container that does not exist.

Test Case#10:
Delete a non-empty Container

Test Cases:
OpenStack Swift APIs - Container Operations

Container Storage

POST/PUT/

GET/DELETE

Sample Test Cases

Container

11

Object

Test Case#1:
Show object details for the particular
object in the particular container

Test Case#2:
Show object details for the object,
which does not exist, in the particular
container

Test Case#3:
Create object using Swift API

Test Case#4:
Update existing Object.

Test Case#5:
Copy existing object from one
container to other

Test Case#6:
Create object metadata

Test Case#7:
Show object metadata

Test Case#8:
Update object metadata

Test Case#9:
Copy non-existing object from one
container to other

Test Case#10:
Delete existing object from the
particular container

Test Case#11:
Delete non-existing object from the
particular container

Test Case#12:
Delete static large object (segments &
manifest object)

Test Cases:
OpenStack Swift APIs - Object Operations

Sample Test Cases

Figure: 2

Object Storage

POST/PUT/

GET/DELETE

12

Conformance Testing Approach

1. OpenStack Swift

2. Amazon S3

13

Conformance Testing Approach

 Current Version: 2006-03-01

 Supports the REST APIs

 Authentication - AWS Signature Version 4 Algorithm

 Authentication Methods

 HTTP Authorization header

 Query string parameters

14

Conformance Testing Approach

Common Request Headers Common Response Headers

 Authorization

 Content-Length

 Content-Type

 Content-MD5

 Date

 Expect

 Host

 x-amz-content-sha256

 x-amz-date

 x-amz-security-token

 Content-Length

 Content-Type

 Connection

 Date

 Etag

 Server

 x-amz-delete-marker

 x-amz-id-2

 x-amz-request-id

 x-amz-version-id

15

Conformance Testing Approach

Operations on the Service

GET Service:

 Returns a list of all buckets owned by the
authenticated sender of the request.

 URI: GET /

16

Conformance Testing Approach

Operations on the Buckets
(Create/Update)

Operations on the Buckets
(Retrieve)

PUT Bucket

 creates a new bucket

PUT Bucket accelerate

 set the Transfer Acceleration state of an existing
bucket to enable to perform faster data transfers

PUT Bucket acl

 to set the permissions on an existing bucket using
access control lists (ACL)

PUT Bucket inventory

 adds an inventory configuration (identified by the
inventory ID) to the bucket.

PUT Bucket cors

 Sets the cors configuration for your bucket

GET Bucket (List Objects)

 returns some or all (up to 1,000) of the objects in a
bucket.

GET Bucket accelerate

 return the Transfer Acceleration state of a bucket,
which is either Enabled or Suspended.

GET Bucket acl

 return the access control list (ACL) of a bucket

GET Bucket inventory

 returns an inventory configuration (identified by
the inventory configuration ID) from the bucket.

GET Bucket cors

 Returns the cors configuration information set for
the bucket.

17

Conformance Testing Approach

Operations on the Buckets (Delete)

DELETE Bucket

 deletes the bucket named in the URI.

DELETE Bucket inventory

 deletes an inventory configuration
(identified by the inventory configuration
ID) from the bucket

DELETE Bucket cors

 Deletes the cors configuration
information set for the bucket.

18

Conformance Testing Approach

Operations on Objects
(Create)

Operations on Objects
(Retrieve)

PUT Object

 adds an object to a bucket.

PUT Object - Copy

 creates a copy of an object that is already stored

PUT Object acl

 Uses the acl subresource to set the access control
list (ACL) permissions for an object that already
exists in a bucket.

PUT Object tagging

 uses the tagging subresource to add a set of tags
to an existing object.

GET Object

 retrieves objects from Amazon S3.

GET Object ACL

 uses the acl subresource to return the access
control list (ACL) of an object.

GET Object tagging

 returns the tags associated with an object.

GET Object torrent

 uses the torrent subresource to return torrent files
from a bucket.

19

Conformance Testing Approach

Operations on Objects
(Delete)

Operations on Objects
(Others)

Delete Multiple Objects

 delete multiple objects from a bucket using a
single HTTP request.

DELETE Object

 removes the null version (if there is one) of an
object

 If versioning enabled, permanently deletes the
version

DELETE Object tagging

 uses the tagging subresource to remove the entire
tag set from the specified object.

HEAD Object

 retrieves metadata from an object without
returning the object itself.

 retrieve metadata from a different version, use the
versionId subresource.

OPTIONS Object

 A browser can send this preflight request to
Amazon S3 to determine if it can send an actual
request with the specific origin, HTTP method, and
headers.

20

Sample Test Cases

<Test Case : Start>

 Compute and save authentication signature in “AUTH_SIGNATURE” variable using
Secret Access Key and AWS Signature Version 4 Algorithm.

 Create a bucket named "TestBucket1“ using Amazon S3 API
PUT / HTTP/1.1
Host: TestBucket1.cloud.example.com
Content-Length: 0
Date: Wed, 01 Mar 2006 12:00:00 GMT
Authorization: AUTH_SIGNATURE

 Verify if bucket “TestBucket1” created successfully:
Check for HTTP status code: 200 OK returned
Location header should be: /TestBucket1
x-amz-id-2 and x-amz-request-id should be returned

 “GET /TestBucket1” should run successfully.

 Expected Result: Bucket "TestBucket1" should be created successfully.

 Clean-up: Delete bucket “TestBucket1”

<Test Case : End>

Description

TestCase#1

Test Case Name

Create a new Bucket using Amazon S3
compatible APIs

Test Case Description

 Secret Access Key for Authentication

 Object Storage End-Point (cloud.example.com)

Pre-Test Dependencies

21

Sample Test Cases

<Test Case : Start>

 Compute and save authentication signature in “AUTH_SIGNATURE” variable using
Secret Access Key and AWS Signature Version 4 Algorithm.

 Create bucket TestBucket1 <<Refer: TestScript#1>> and add objects to it.

 List all objects contained in bucket "TestBucket1“, using Amazon S3 API
GET /?list-type=2 HTTP/1.1
Host: TestBucket1.cloud.example.com
x-amz-date: 20160430T233541Z
Authorization: AUTH_SIGNATURE
Content-Type: text/plain

 Verify if bucket “GET /TestBucket1” executed successfully:
Check for HTTP status code: 200 OK returned
Response Body should list all objects contained in TestBucket1

 Expected Result: All objects contained in bucket "TestBucket1“ should be listed
successfully.

 Clean-up: Delete bucket “TestBucket1”

<Test Case : End>

Description

TestCase#2

Test Case Name

List Objects contained in bucket
“TestBucket1” successfully.

Test Case Description

 Secret Access Key for Authentication

 Object Storage End-Point (cloud.example.com)

Pre-Test Dependencies

22

Sample Test Cases

<Test Case : Start>

 Compute and save authentication signature in “AUTH_SIGNATURE” variable using
Secret Access Key#1 and AWS Signature Version 4 Algorithm.

 Create a bucket named "TestBucket1“ using Amazon S3 API
PUT / HTTP/1.1
Host: TestBucket1.cloud.example.com
Content-Length: 0
x-amz-acl: private
Date: Wed, 01 Mar 2006 12:00:00 GMT
Authorization: AUTH_SIGNATURE

 Verify if bucket “TestBucket1” created successfully using Amazon S3 API:
Check for HTTP status code: 200 OK returned
Location header should be: /TestBucket1
x-amz-id-2 and x-amz-request-id must be returned

 Try to read bucket “GET /TestBucket1” using Access Key#2 <<Refer: TestCase#2>>, it
should return Error Code AccessDenied (403 Forbidden)

 Expected Result: Bucket "TestBucket1" should be created successfully.

 Clean-up: Delete bucket “TestBucket1”

<Test Case : End>

Description

TestCase#3

Test Case Name

Create a new bucket and configure access
permission using a canned ACL

Test Case Description

 Secret Access Key#1 for Account#1 and
Secret Access Key#2 for Account#2

 Object Storage End-Point (cloud.example.com)

Pre-Test Dependencies

23

TestCase#4

Test Case Name

Delete an existing bucket

Test Case Description

 Secret Access Key for Authentication

 Object Storage End-Point (cloud.example.com)

Pre-Test Dependencies

Sample Test Cases

<Test Case : Start>

 Compute and save authentication signature in “AUTH_SIGNATURE” variable using
Secret Access Key and AWS Signature Version 4 Algorithm.

 Create bucket TestBucket1 <<Refer: TestScript#1>>

 Delete bucket named "TestBucket1“ using Amazon S3 API
DELETE / HTTP/1.1
Host: TestBucket1.cloud.example.com
Date: Wed, 01 Mar 2006 12:00:00 GMT
Authorization: AUTH_SIGNATURE

 Verify if bucket “TestBucket1” deleted successfully:
Check for HTTP status code: 204 No Content returned
x-amz-id-2 and x-amz-request-id must be returned

 Try to read bucket “GET /TestBucket1”, it should return Error Code NoSuchBucket
(404 Not Found)

 Expected Result: Bucket "TestBucket1" should be deleted successfully.

<Test Case : End>

Description

24

Sample Test Cases

<Test Case : Start>

 Compute and save authentication signature in “AUTH_SIGNATURE” variable using

Secret Access Key and AWS Signature Version 4 Algorithm.

 Create a bucket named "TestBucket1“ using Amazon S3 API

PUT / HTTP/1.1

Host: TestBucket1.cloud.example.com

Content-Length: 0

Date: Wed, 01 Mar 2006 12:00:00 GMT

Authorization: AUTH_SIGNATURE

 Verify if bucket “TestBucket1” created successfully:

Check for HTTP status code: 200 OK returned

Location header should be: /TestBucket1

x-amz-id-2 and x-amz-request-id should be returned

 “GET /TestBucket1” should run successfully.

 Expected Result: Bucket "TestBucket1" should be created successfully.

 Clean-up: Delete bucket “TestBucket1”

<Test Case : End>

Description

TestCase#5

Test Case Name

Create a new Bucket using Amazon S3
compatible APIs

Test Case Description

 Secret Access Key for Authentication

 Object Storage End-Point (cloud.example.com)

Pre-Test Dependencies

25

Questions?

Thank You

IT Services
Business Solutions
Consulting

studioppt I 05 I 2017

Email: ankit29.a@tcs.com

mailto:ankit29.a@tcs.com

