
How to Find Ternary LWE Keys
Using Locality Sensitive Hashing

Elena Kirshanova1,2 ? and Alexander May1 *

1 Horst Görtz Institute for IT-Security, Ruhr University Bochum
2 Immanuel Kant Baltic Federal University, Kaliningrad, Russia

elena.kirshanova, alex.may{@rub.de}

Abstract. Let As = b+e mod q be an LWE-instance with ternary keys
s, e ∈ {0,±1}n. Let s be taken from a search space of size S. A standard
Meet-in-the-Middle attack recovers s in time S0.5. Using the representa-
tion technique, a recent improvement of May shows that this can be low-
ered to approximately S0.25 by guessing a sub-linear number of Θ( n

logn
)

coordinates from e. While guessing such an amount of e can asymptot-
ically be neglected, for concrete instantiations of e.g. NTRU, BLISS or
GLP the additional cost of guessing leads to complexities around S0.3.
We introduce a locality sensitive hashing (LSH) technique based on
Odlyzko’s work that avoids any guessing of e’s coordinates. This LSH
technique involves a comparably small cost such that we can signifi-
cantly improve on previous results, pushing complexities towards the
asymptotic bound S0.25. Concretely, using LSH we lower the MitM com-
plexity estimates for the currently suggested NTRU and NTRU Prime
instantiations by a factor in the range 220−249, and for BLISS and GLP
parameters by a factor in the range 218 − 241.

Keywords: Ternary LWE, Combinatorial attack, Representations, LSH.

1 Introduction

The LWE problem is currently without a doubt the richest source for construct-
ing efficient quantum-resistant cryptography. Let (A, b) ∈ Fn×nq ×Fnq be an LWE
public key with secret key s ∈ Fnq satisfying As = b + e mod q for some er-
ror e ∈ Fnq . The unknown vectors s, e have entries significantly smaller than
q. For efficiency reasons, many modern LWE variants even use ternary secrets
s, e ∈ {0,±1}n. Thus, it is of uttermost interest to understand the complexity
of ternary key LWE – also called NTRU-type – schemes.

A standard Meet-in-the-Middle algorithm (MitM) splits s = s1 + s2 with
s1 ∈ {0,±1}n/2 × 0n/2 and s2 ∈ 0n/2 × {0,±1}n/2. Therefore, we obtain the
identity

As1 = −As2 + b+ e mod q. (1)

? Supported by the Ministry of Science and Higher Education of the Russian Fed-
eration (agreement no. 075-02-2021-1748) and the ”Young Russian Mathematics”
grant.

https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675


2 Elena Kirshanova1,2 and Alexander May1 *

One then computes for all potential s1, s2 the values As1 and −As2 + b. With
high probability only for the correct pair s1, s2 these values are apart by a
ternary error e ∈ {0,±1}n. The correct pair is efficiently identified by a locality
sensitive hash function proposed by Odlyzko, mentioned in the original NTRU
paper [HPS98].

Recently, the above MitM attack has been improved by May [May21], based
on the representation techniques that was developed in [HJ10,BCJ11,BJMM12].
The key idea in [May21] is to search over all s1, s2 ∈ {0,±1}n that satisfy
Equation (1) on k = Θ( n

logn ) coordinates exactly, and on the remaining n − k
coordinates up to the entries of e (using Odylzko’s hashing). This in turn implies
that we have to initially guess k coordinates of e to realize the exact matching.

Our contribution: We show that a suitable modification of Odylzko’s locality
sensitive hash function (LSH) allows to avoid any error guessing in [May21].
Since the cost of our LSH function is comparatively small, in turn we significantly
improve over the MitM complexities given in [May21], see Table 1.3

(n, q, w) S [May21] Our [DDGR20]
[bit] [bit] [bit] Core-SVP

NTRU IEEE [IEE08] (659, 2048, 76) 408 146 135 151

(761, 2048, 84) 457 166 162 176

(1087, 2048, 126) 680 243 221 260

(1499, 2048, 158) 877 315 283 358

NTRU [CDH+20] (509, 2048, 254) 754 227 191 124

(677, 2048, 254) 891 273 226 167

(821, 4096, 510) 1286 378 358 197

(701, 8192, 468) 1101 327 295 155

NTRU Prime [BBC+20] (653, 4621, 288) 925 272 228 148

(761, 4591, 286) 1003 301 268 174

(857, 5167, 322) 1131 338 315 196

BLISS I+II [DDLL13] (512, 12289, 154) 597 187 159 102

GLP I [GLP12] (512, 8383489, 342) 802 225 184 60

Table 1: Results of our LSH Meet-in-the-Middle Attack.

In comparison to the results in [May21], for the encryption schemes NTRU
and NTRU Prime we gain a run time factor between 220 for NTRU-821 and 249

3 The scripts to reproduce the tables are available at https://github.com/
ElenaKirshanova/ntru with lsh

https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675
https://github.com/ElenaKirshanova/ntru_with_lsh
https://github.com/ElenaKirshanova/ntru_with_lsh


How to Find Ternary LWE Keys Using Locality Sensitive Hashing 3

for NTRU-677. For the signatures schemes we gain a 218 factor for BLISS I+II,
and a 241-factor for GLP I.

In terms of the search space size S for the secret key, we obtain attacks in the
range S0.23 for GLP-I and S0.28 for NTRU-821. These exponents in the range
[0.23, 0.28] are close to the asymptotic exponents achieved in [May21], and thus
indicate the optimality of our LSH approach.

Another direction of improvement is the use of the representation technique
not only for the enumeration of s as in [May21], but also for the error vector
e. This approach yields comparable improvements to our LSH technique: we
provide more details in Appendix A. Since LSH and representations of e are
somewhat orthogonal techniques to exploit the structure of e, we currently do
not see a way to combine both approaches.

In comparison to the (highly optimized) lattice attacks in the Core-SVP
metric from [DDGR20], our estimates are still a tad bit away. However, we beat
current lattice estimates for a selection of the NTRU IEEE 1363-2008 stan-
dard [IEE08], see Table 1. For instance, for the ees1499ep1 parameter set we
further improve the attack of [May21] by another 32 bits, now beating current
lattice estimates by 75 bits.

This demonstrates that our purely combinatorial attack shows its strength
in the small weight regime, e.g. for ees1499ep1 with only w = 158 non-zero
secret key coefficients. We would like to point out that current cold-boot attack
scenarios such as [ADP18] live in the (really) small weight regime. We provide
cold-boot applications of our attack in Section 6.

On the technical level, we have to construct an LSH approach that realizes
an approximate hashing over many levels of a search tree. This is not straightfor-
ward, since Odlyzko’s original LSH function does not provide linearity. We realize
an LSH hashing over search trees via suitable combinations of projections. Given
the importance of search tree constructions optimizations with LSH [MO15], we
hope that our projection technique will find more applications.

Notations. We denote by Zq the ring of integers modulo q ≥ 2. Vectors are
denoted by lowercase letters, matrices by uppercase letters. The n × n identity
matrix is denoted by In. The `∞-norm of vector x, denoted by ‖x‖∞, is maxi |xi|.
For a set S, we denote by |S| its size.

We shall also make use of multinomial coefficients: for positive integers n,
{ni}i≤k such that n = n1 + . . . + nk, the multinomial coefficient, denoted by(

n
n1,...,nk−1,·

)
, is the product

(
n
n1

)
·
(
n−n1

n2

)
· . . . ·

(
n−
∑
i<k ni
nk

)
.

2 Generalizing Odlyzko’s LSH

In order to generalize Odlyzko’s LSH to search trees, we consider the following
problem abstraction that we face for every node of our search tree constructions.

Definition 1 (Close pairs problem in `∞-norm). Given two equal-sized
lists L1, L2 of iid. uniform random vectors from Znq , find an (1− o(1))-fraction



4 Elena Kirshanova1,2 and Alexander May1 *

of all pairs (x1, x2) ∈ L1 × L2 that satisfy ‖(x1 − x2) mod q‖∞ = 1. Any such
pair is called 1-close.

This is an average-case version of the close pairs problem and we shall make
use of the distribution in our analysis. In particular, we assume that elements
from the lists L1, L2 do not cluster, i.e., there is no subset of vectors with small
diameter. For the worst-case version of the problem, an algorithm is given by
Indyk in [Ind01]. Note also that we are in the special case of the `∞ norm on the
torus Zq = {0, . . . , q − 1}, i.e., it holds that ‖0− (q − 1)‖∞ = 1. Furthermore,
the lists L1, L2 are assumed to be of exp(n)-size.

The close pairs problem is solved using the so-called locality-sensitive hash
functions (LSH) [IM98,AI06]. Informally, such a hash function has higher colli-
sion probability for elements that are close than for those that are far apart.

For the `∞-norm over Zq, Odlyzko proposed a construction of a locality-
sensitive hash (LSH) function [HPS98]. Odlyzko’s LSH splits Zq into two halves:
[0, bq/2c − 1] and [bq/2c, q − 1], and assigns the 0-label to the first half and
the 1-label to the second half. It is extended to vectors coordinate-wise thus
mapping Znq to {0, 1}n. It is likely that close vectors have the same label under
this mapping. In order to avoid losing close pairs, Odlyzko suggests to assign
both 0- and 1-labels to the “border” values bq/2c − 1 and bq/2c. We do not
perform such a double assignment, but instead we re-randomize the function as
we explain below.

The choice to split Zq into two halves works particularly well when there
is a unique close pair in the sense that the other pairs have a different label
under Odlyzko’s mapping. In our average case setting non-close pairs differ by
label with probability 1 − 2−n, since the probability that two uniform random
elements from Zq are in the same half wrt. to bq/2c is 1/2.

In our applications we will be in the setting where a solution may not be
unique and thus we require in Definition 1 to output (almost) all close pairs.
Odlyzko’s LSH generalises to this setting by

1. dividing the Zq torus into more than 2 parts, and
2. re-randomizing the hash function (see also [Ngu21]) so that we can handle

border values in a more elegant way than assigning multiple labels4.

More precisely, consider the following straightforward generalisation of Odlyzko’s
LSH. For a fixed bound B ∈ {1, . . . , q} and a uniformly chosen shift-vector
u ∈ Znq define

hu,B : Znq →
[
0, . . . ,

⌈ q
B

⌉
− 1
]n

(x1, . . . , xn) 7→
(⌊

x1 + u1
B

⌋
, . . . ,

⌊
xn + un

B

⌋)
.

4 In fact, the ‘multiple’ labels assignment is what is done in [Ind01] to handle worst-
case inputs. We could also use this algorithm but it turns out to be less memory-
efficient than what we propose for the average-case setting.

https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675


How to Find Ternary LWE Keys Using Locality Sensitive Hashing 5

In the original Odlyzko’s LSH, B is set to q/2. We choose a uniform random
function from the family HB = {hu,B | u ∈ Znq }. For a list L1 ⊂ Znq , the shift
L1 + u is just a rotation of all the elements on the Zq torus. Any function hu,B
can be evaluated in O(n) operations over Zq.

Algorithm 1 Our LSH-Odlyzko algorithm for finding 1-close pairs

Input: L1, L2 – list of iid. uniform vectors from Znq , each of size |L|.
Output: (1 − o(1))-fraction of all pairs (x1, x2) ∈ L1 × L2 such that
‖(x1 − x2) mod q‖∞ = 1

1: Choose B ≥ q

|L|1/n ∈ {1, . . . , q} suitably. Choose u
$←− Znq .

2: Apply hu,B to L1, L2. Sort L1, L2 according to the hash values.
3: Merge the sorted lists according to their hash labels. Output only those pairs

(x1, x2) ∈ L1 × L2 that satisfy ‖(x1 − x2) mod q‖∞ = 1
4: Repeat Steps 1–3 N times, where

N =

(
B

B − 1

)n
· n logn (2)

Let us now provide our algorithm LSH-Odylzko (Algorithm 1) that solves
the close pairs problem from Definition 1. For our NTRU-type applications,
we later solve close pairs problems on suitably chosen projections of all n co-
ordinates. Notice that hu,B can easily applied on projections, since it works
coordinate-wise.

Theorem 1 (Adapted from [IM98]). Given two lists L1, L2 of equal size |L|
with iid. elements taken from the uniform distribution on Znq , LSH-Odlyzko
(Algorithm 1) solves the close pairs problem from Definition 1 in space and time
complexities

S = max

{
|L| , |L|2 ·

(
3

q

)n}
· poly(n),

TLSH(|L|, n,B) = max

{
S, |L|2

(
B2

(B − 1)q

)n
· poly(n)

}
.

Proof. The proof is an adaptation of [IM98, Theorem 5] to the average-case
`∞-norm setting.

We start with the analysis of Steps 1–3 of Algorithm 1.
In Step 2, hashing and sorting can be performed within time and memory

complexity Õ(|L|) = |L| · poly(n).

Notice that our choice of B in Step 1 implies |L|
(
B
q

)n
≥ 1, which is the

expected number of elements from L1 (or L2) that receive the same hash label.

Thus the number of elements in L1×L2 that match by hash label is |L|2
(
B
q

)n
,



6 Elena Kirshanova1,2 and Alexander May1 *

and these pairs can be found in Step 3 in time |L|2
(
B
q

)n
· poly(n) time. Among

the pairs (x1, x2) ∈ L1 × L2 we filter out all those that are not 1-close in `∞
norm.

Notice that in total we expect |L|2 ·
(

3
q

)n
1-close pairs. However, since we

consider only those pairs with matching LSH-label, in each iteration we only
obtain a certain fraction of all 1-close pairs. It remains to show that by our
choice of N repetitions in Step 4 we eventually find almost all 1-close pairs.

Let (x1, x2) ∈ L1×L2 be a solution to the close pairs problem, and consider
the event E that hu,B(x1) = hu,B(x2), i.e., x1, x2 receive the same hash label
for a random hash function. Then

Pr[E] =

n∏
i=1

(
1− Pr

hu,B

[⌊
xi + ui
B

⌋
6=
⌊
x′i + ui
B

⌋])
=

(
1− q/B

q

)n
= (1− 1/B)

n
.

Thus, E happens after N = (Pr[E])−1n log n repetitions with probability

1− (1− Pr[E])
N ≤ 1− e−n logn.

Taking the union bound over all exp(n)-many potentially 1-close pairs (x1, x2) ∈
L1 × L2 ensures that we find with high probability an (1 − o(1))-fraction of all
1-close pairs. ut

Notice that Algorithm 1 requires some optimization of B. The larger B, the
larger is the number of 1-close pairs that we find per iteration, and the smaller
the required number N of iterations. In our applications, we found the optimal
value B that minimizes TLSH(|L|, n) in Theorem 1 by an exhaustive search.

Combining approximate with exact matching. Algorithm 1 can be easily adapted
to exact matching by setting B = q, N = 0, and the whole process will cor-
respond to simple merge sort. Now, assume we need to combine approximate
matching on some k1 coordinates and exact matching on some other k2 coordi-
nates. A hash label is then a concatenation of an approximate label of dimension
k1 and an exact label of dimension k2. Then the number of elements in L1 ×L2

that have the same label is |L|2
(
B
q

)k1 (
1
q

)k2
. The space and time complexity

of this combined LSH+Exact algorithm are up to poly(n) terms

S = max

{
|L| , |L|2 ·

(
3

q

)k1 (1

q

)k2}
,

TLSH+Exact(|L|, k1, k2, B) = max

{
S, |L|2

(
B

q

)k1 (1

q

)k2
·N

}
.

(3)

3 Our LSH-based MitM with Rep-0 Representations

Since our algorithm builds on top of the representation technique-based Meet-
LWE algorithm of [May21], let us briefly sketch the idea of representations, how

https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675


How to Find Ternary LWE Keys Using Locality Sensitive Hashing 7

they are used inside Meet-LWE, and how our LSH-technique for 1-close pairs
from Section 2 leads to an improved LSH-Meet-LWE algorithm. As a warm-
up, for didactical reasons we describe in this section the idea how to use our
LSH technique with depth-2 search trees, where our technique is only used once

to construct the level-1 lists L
(1)
1 and L

(1)
2 (the upper index denotes the level of

the lists in Figure 1). In the subsequent sections, we show how to generalize the
technique to larger depth.

s
(2)
1 ∈ T

n
2 (w8 )× 0

n
2

L
(2)
1

s
(2)
2 ∈ 0

n
2 × T

n
2 (w8 )

L
(2)
2

s
(2)
3 ∈ T

n
2 (w8 )× 0

n
2

L
(2)
3

s
(2)
4 ∈ 0

n
2 × T

n
2 (w8 )

L
(2)
4

s1 = s
(2)
1 + s

(2)
2 ∈ T n(w4 )

L
(1)
1

|As1|∞:

0 1

n − k k
2

k
2

s2 = s
(2)
3 + s

(2)
4 ∈ T n(w4 )

L
(1)
2

|As2 − b|∞:

1 0

n − k k
2

k
2

s ∈ T n(w/2)

|As− b|∞:

±1, 0

Fig. 1: LSH-Meet-LWE algorithm with Rep-0 representations

Reprentations and Meet-LWE. Let T n = {0,±1}n ∩ Fnq denote the set of
ternary vectors. Moreover we denote by T n(w/2) the set of ternary vectors
having weight w with exactly w/2 1-entries and w/2 (−1)-entries.

Let As = b+e mod q be the LWE key equation with e ∈ T n and s ∈ Tn(w/2).
We represent s = s1 + s2 where s1, s2 ∈ Tn(w/4), i.e. s1, s2 have exactly w/4

1- and (-1)-entries each. Notice that there are R =
(
w/2
w/4

)2
ways to represent s



8 Elena Kirshanova1,2 and Alexander May1 *

as a sum of two weight w/2-vectors s1, s2. We call each such a tuple (s1, s2) a
Rep-0-representation of s.

Choose k maximal such that qk < R. Assume that on level 1 of the search
tree, we first match on k coordinates, and on level 0 we match on the remaining
n− k coordinates. Further let πk : Fn2 → Fk2 denote the projection on the first k
coordinates.

We rewrite the LWE MitM identity from Equation (1) as

πk(As1+e1) = πk(b−As2+e2) for some e1 ∈ 0k/2×T k/2, e2 ∈ T k/2×0k/2. (4)

Since qk < R, we expect that for each target value t ∈ Fkq there exists a repre-
sentation (s1, s2) such that πk(As1 + e1) = t = πk(b − As2 + e2). Meet-LWE
guesses e1, e2 to realize the exact matching to target t on these k coordinates.

High-Level Idea of LSH-Meet-LWE. Using our LSH approach, one finds all s1
such that πk(As1) in Equation (4) matches t on the first k/2 coordinates exactly,
and on the remaining coordinates up to some ternary vector. By contrast, we
construct all s2 such that πk(b − As2) matches t on the last k/2 coordinates
exactly, and on the first k/2 coordinates up to some ternary vector.

The approximate matching on the remaining n−k coordinates is again done
via LSH-Odlyzko. Notice that by construction we eventually construct s =
s1 + s2 such that As = b up to some ternary error vector e ∈ T n, as desired.

Let us state our LSH-based algorithm more precisely.

Description of our LSH-Meet-LWE algorithm.

1. Enumerate the following 4 level-2 lists:

L
(2)
1 = {(s(2)1 ∈ T n

2

(w
8

)
× 0

n
2 )},

L
(2)
2 = {(s(2)2 ∈ 0

n
2 × T n

2

(w
8

)
)},

L
(2)
3 = {(s(2)3 ∈ T n

2

(w
8

)
× 0

n
2 )},

L
(2)
4 = {(s(2)4 ∈ 0

n
2 × T n

2

(w
8

)
)}.

(5)

2. Let R =
(
w/2
w/4

)2
. Choose a positive even integer k < n that satisfies

k =

⌊
log2(R)

log2 q − 0.5 log2 3

⌋
.

This choice of k allows to expect one solution to survive during the merge

of L
(2)
1 with L

(2)
2 and L

(2)
3 with L

(2)
4 as we find exact matches on k/2 co-

ordinates and all 1-close pairs on another k/2 coordinates, hence we expect

R ≈ q k2
(
q
3

) k
2 .

3. Find all (As
(2)
1 , As

(2)
2 ) that

https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675


How to Find Ternary LWE Keys Using Locality Sensitive Hashing 9

(a) match (sum to 0) on the coordinates [k/2 + 1, k], and are
(b) 1-close on the coordinates [1, k/2].

Analogously, find all (As
(2)
3 , As

(2)
4 ) that

(a) match (sum to 0) on the coordinates [1, k/2], and are
(b) 1-close on the coordinates [k/2 + 1, k].
Use our LSH-Odlyzko (Algorithm 1) with optimal B to find 1-close pairs.
This gives us two lists

L
(1)
1 = {(s1 ∈ T n

(w
4

)
: As1 ∈ Zn−kq × 0k/2 × {±1, 0}k/2)}

L
(1)
2 = {(s2 ∈ T n

(w
4

)
: As2 ∈ Zn−kq × {±1, 0}k/2 × 0k/2)}.

4. Use LSH-Odlyzko again to find pairs from L
(1)
1 , L

(1)
2 that are 1-close on

the remaining n− k coordinates.

Let |L(j)| denote the common length of all level-j lists. Notice that on level
1 we obtain expected list length

∣∣∣L(1)
1

∣∣∣ =
∣∣∣L(2)

1

∣∣∣2 · (3

q

)k/2
·
(

1

q

)k/2
.

Using Theorem 1 and ignoring polynomial factors, the running time of LSH-
Meet-LWE with Rep-0 representations is (here N is given in Eq (2))

TRep-0 = max

{
|L(2)|, TLSH+Exact

(
|L(2)|, k

2
,
k

2
, B

)
, TLSH(|L(1)|, n− k, q/2)

}
= max

{
|L(2)|,

∣∣∣L(2)
∣∣∣2 · (B

q
· 1

q

)k/2
·N,

∣∣∣L(2)
∣∣∣4 · ( 3

q2

)k
·N · 2−(n−k)

}
.

Table 1 gives concrete values of TRep-0. For all of them the optimal value
of the LSH-Odlyzko parameter is B = 3. For concrete parameters, B can be
found using a brute-force search.

4 Generalizing our LSH-based MitM to Rep-1
Representations

The algorithm from the previous section can be generalised and improved by

1. representing weight-w secrets s = s1 + s2 with s1, s2 having weight larger
than w/2. As opposed to Section 3 this allows to represent 0-coordinates of
s not only by 0 + 0, but also as −1 + 1 or as 1 + (−1). These are called Rep-
1 representations in [May21]. Notice that Rep-1 in comparison to Rep-0
increases the search space.

2. by constructing a deeper search tree to amortize the increased search space
over many levels.



10 Elena Kirshanova1,2 and Alexander May1 *

LSH-Meet-LWE Meet-LWE

(n, q, w) Rep-0 log2(N), k [May21]

NTRU-Enc (509, 2048, 254) 299 16, 24 305

(677, 2048, 254) 360 18, 24 364

(821, 4096, 510) 509 27, 44 520

(701, 8192, 468) 449 22, 36 461

NTRU-Prime (653, 4621, 288) 370 17, 24 370

(761, 4591, 286) 407 18, 24 408

(857, 5167, 322) 473 20, 26 459

BLISS I+II (512, 12289, 154) 267 7, 10 247

GLP I (512, 8383489, 342) 326 9, 14 325

Table 2: Comparison bit complexities for Rep-0 using our LSH-Meet-LWE
and Meet-LWE.

Let us describe the depth-3 version of our LSH-Meet-LWE with Rep-1.
The reader is advised to follow Figure 2. We implicitly assume that all fractions
that appear are integers by appropriate rounding. We count the levels from
bottom to top starting with 0, e.g., on level 3 we have 8 lists. The upper index
of the elements refers to the level. In Figure 2, we also visualize how we define
suitable projections such that our LSH-Odlyzko eventually finds 1-close pairs.

LSH-Meet-LWE for Rep-1 with depth 3. The eight top-most lists are of the
form

L
(3)
i =

{
s
(3)
i ∈ T

n
2

(
w

16
+
ε[1]

4
+
ε[2]

2

)
× 0

n
2

}
for odd i,

L
(3)
i =

{
s
(3)
i ∈ 0

n
2 × T n

2

(
w

16
+
ε[1]

4
+
ε[2]

2

)}
for even i,

where ε[i] describes the number of additional 1’s we add in the representation of
the secret s on level i. More precisely, on the bottom level, we target the solution

s of weight w, i.e., s ∈ T n(w/2). We split s into s = s
(1)
1 + s

(1)
2 , where each

s
(1)
1 , s

(1)
2 ∈ T n(w/4 + ε[1]) for some ε[1] ≥ 0. This gives us, as in the previous

section,
(
w/2
w/4

)2
ways to represent 1’s and -1’s in s, and in addition

(
n−w

ε[1],ε[1],·
)

ways to represent 0’s in s. The total number of representations for s on level 1
is therefore

R(1) =

(
w/2

w/4

)2

·
(

n− w
ε[1], ε[1], ·

)
.

Next, we go one level up by splitting s
(1)
1 (analogously for s

(1)
2 ) into two vec-

tors s
(2)
1 , s

(2)
2 , each from T n(w8 + ε[1]

2 +ε[2]). Therefore, the 1’s and -1’s in s
(1)
1 can

https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675


How to Find Ternary LWE Keys Using Locality Sensitive Hashing 11

L
(3)
1 L

(3)
2 L

(3)
3 L

(3)
4 L

(3)
5 L

(3)
6 L

(3)
7 L

(3)
8

s
(2)
1 = s

(3)
1 + s

(3)
2∣∣∣As(2)1

∣∣∣
∞

:

0001

k[2]
4

s
(2)
2 = s

(3)
3 + s

(3)
4∣∣∣As(2)2

∣∣∣
∞

:

0010

s
(2)
3 = s

(3)
5 + s

(3)
6∣∣∣As(2)3

∣∣∣
∞

:

0100

s
(2)
4 = s

(3)
7 + s

(3)
8∣∣∣As(2)4 − b

∣∣∣
∞

:

1000

s
(1)
1 = s

(2)
1 + s

(2)
2∣∣∣As(1)1

∣∣∣
∞

:

001110

k[1]
2

k[2]
4

s
(1)
2 = s

(2)
3 + s

(2)
4∣∣∣As(1)2 − b

∣∣∣
∞

:

110001

s = s
(1)
1 + s

(1)
2

|As− b|∞ :

1

Fig. 2: LSH-Meet-LWE algorithm using Rep-1 with depth 3



12 Elena Kirshanova1,2 and Alexander May1 *

be represented in
(
w/4+ε[1]
w/8+ε[1]/2

)2
ways, while for 0’s of s

(1)
1 we have

(
n−w/2−2ε[1]
ε[2],ε[2],·

)
representations. In total, the number of level-2 representations is

R(2) =

(
w/4 + ε[1]

w/8 + ε[1]/2

)2

·
(
n− w/2− 2ε[1]

ε[2], ε[2], ·

)
.

If we wanted to construct a tree of depth larger than 3, we would continue

with representations for s
(2)
1 , s

(2)
2 . Instead, our depth-3 algorithm enumerates

s
(2)
1 , s

(2)
2 a standard Meet-in-Middle way by considering s

(2)
1 = s

(3)
1 + s

(3)
2 , where

s
(3)
i ∈ T n/2( w16 + ε[1]

4 + ε[2]
2 ).

The cost of building the top-level lists is determined by their sizes, i.e.,

T [3] =
∣∣∣L(3)
i

∣∣∣ .
Having constructed the top-most lists L

(3)
i , we merge them into the lists L

(2)
i

leaving only a 1/R(2)-fraction of pairs L
(3)
i ×L

(3)
i+1. To this end, we consider only

those pairs (s
(3)
i , s

(3)
i+1) ∈ L(3)

i × L
(3)
i+1 for which

1. As
(3)
i = As

(3)
i+1 on certain 3

4k[2]-coordinates, and

2.
∣∣∣As(3)i −As(3)i+1

∣∣∣
∞
≤ 1 on certain 1

4k[2]-coordinates (see Figure 2 for our

projections).

Here, k[2] satisfies

k[2] =

⌊
log2(R(2))

log2 q − 0.52 log2 3

⌋
.

More generally, we have

k[i] =

⌊
log2(R(i))

log2 q − 0.5i log2 3

⌋
.

For concrete parameters we must further assure that k[i] is divisible by 2i for
realizing our projections.

As before, let |L(j)| denote the common length of all level-j lists. The ap-
proximate merging on 1

4k[2] coordinates is performed using LSH-Odlyzko with
LSH parameter B[2]. This is combined with exact merging on 3

4k[2] coordinates.
This implies that we expect on level 2 list size∣∣∣L(2)

i

∣∣∣ =
∣∣∣L(3)
i

∣∣∣2 · (1

q

) 3
4k[2]

·
(

3

q

) 1
4k[2]

.

The complexity of constructing level-2 lists is

T [2] = max

{
TLSH+Exact

(
|L(3)|, 1

4
k[2],

3

4
k[2], B[2]

)
, |L(2)

i |
}

= N [2] · (q 3
4k[2] · d(q/B[2])e 1

4k[2]) ·

(∣∣∣L(3)
i

∣∣∣ · (1

q

) 3
4k[2]

(
B[2]

q

) 1
4k[2]

)2

.

https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675


How to Find Ternary LWE Keys Using Locality Sensitive Hashing 13

Level-1 lists are constructed in a similar way to level-2 lists. Concretely, L
(1)
1 , L

(1)
2

are constructed via approximate matching on 1
2k[1] coordinates and exact match-

ing on 1
2k[1] coordinates. Note that by our construction the elements from

L
(1)
1 , L

(1)
2 are already 1-close on k[2]/2 coordinates. The expected level-1 list

size is therefore∣∣∣L(1)
i

∣∣∣ =
∣∣∣L(2)
i

∣∣∣2 · (1

q

) 1
2k[1]−

1
2k[2]

(
3

q

) 1
2k[1]−

1
2k[2]

.

The complexity of constructing level-1 lists is

T [1] = max

{
TLSH+Exact

(
L(2),

1

2
(k[1]− k[2]) , B[1]

)
, |L(1)|

}

= N [1]

q k[1]2 −
k[2]
2 ·

⌈
q

B[1]

⌉ k[1]
2 −

k[2]
2

∣∣∣L(2)
i

∣∣∣ · (1

q

) k[1]
2 −

k[2]
2
(
B[1]

q

) k[1]
2 −

k[2]
2

2

.

In order to construct the final list and determine the solution s, we use LSH-
Odylzko once again on the remaining n − k[1] coordinates with parameter
B[0] = q/2 in time

T [0] = |L(1)
i | · 2

n−k[1].

Overall, the asymptotic time and memory complexities of LSH-Meet-LWE
on Rep-1 with depth 3 are respectively

T = max
0≤i≤3

{T [i]} and S = max
0≤i≤3

{L[i]}.

5 Results: LSH-Meet-LWE (Rep-1) Compared to Lattices

Let us compare the performance of LSH-Meet-LWE to lattice attacks on
NTRU-type cryptosystems. Concrete bit securities of proposed NTRU parame-
ter sets are shown in Table 3.

The estimates for lattice attacks are computed with the help of the “leaky-
LWE-Estimator” available at https://github.com/lducas/leaky-LWE-Estimator5.
We used this estimator in the so-called Probabilistic-simulation regime, which
gives slightly more accurate figures than, e.g., predictions from [ACD+18].

The estimator, based on the results from [DDGR20], produces bit securities
for the so-called primal lattice attack. This attack runs a BKZ-reduction algo-

rithm on the 2n-dimensional lattice Λ = {(x, y) ∈ Z2n : [A|In]
[
x
y

]
= 0 mod q},

where [A|In] is the column-wise concatenation of matrices A and In.
The estimator, given the NTRU parameters, produces a block-size parameter

β, which determines the hardness of the BKZ reduction. In particular, we con-
servatively assume that the lattice attack will run in time 20.292β+16.4 [BDGL16]

5 We used commit 4027151 of the branch NTRU keygen, https://github.com/lducas/
leaky-LWE-Estimator/tree/NTRU keygen.

https://github.com/lducas/leaky-LWE-Estimator
https://github.com/lducas/leaky-LWE-Estimator/tree/NTRU_keygen
https://github.com/lducas/leaky-LWE-Estimator/tree/NTRU_keygen


14 Elena Kirshanova1,2 and Alexander May1 *

(n, q, w) Rep-0 Rep-1 Rep-1 Rep-1 Lattices
depth 2 depth 3 depth 4 [DDGR20]

[bit] [bit], ε [bit], ε [bit], ε β, 0.292β + 16.4

NTRU IEEE-2008 [IEE08]

(401, 2048, 226) 260 237, [2] 179, [11,2] 180, [39,18,3] 273, 96

(449, 2048, 268) 290 271, [2] 208, [13,4] 180, [31,13,3] 318, 109

(677, 2048, 314) 414 362, [4] 287, [25,6] 242, [31,13,2] 522, 169

(1087, 2048, 240) 445 375, [10] 289, [28,8] 306, [38,13,3] 835, 260

(541, 2048, 98) 213 177, [8] 144, [13, 3] 160, [27,8,1] 372, 126

(613, 2048, 110) 221 192, [6] 160, [10,3] 174, [26,11,1] 435, 143

(887, 2048, 162) 342 287, [12] 231, [19,6] 230, [26,13,4] 677, 214

(1171, 2048, 212) 427 365, [12] 300, [23,6] 283, [35,14,3] 945, 292

(659, 2048, 76) 191 156, [6] 135, [13,4] 167, [27,11,1] 460, 151

(761, 2048, 84) 221 179, [6] 162, [12,1] 181, [37,17,5] 545, 176

(1087, 2048, 126) 311 251, [8] 221, [16,4] 230, [38,17,4] 835, 260

(1499, 2048, 158) 389 324, [12] 286, [26,7] 283, [28,10,0] 1170, 358

NTRU [CDH+20]

(509, 2048, 254) 299 282, [6] 203, [12, 4] 191, [27, 16, 3] 369, 124

(677, 2048, 254) 360 322, [6] 244, [20, 6] 226, [27, 16, 3] 517, 167

(821, 4096, 510) 509 501, [2] 374, [18, 5] 358, [27, 8, 1] 619, 197

(701, 8192, 468) 449 441, [0] 336, [27, 4] 295, [23, 14, 2] 474, 155

NTRU Prime [BBC+20]

(653, 4621, 288) 370 333, [4] 265, [22, 3] 228, [26, 15, 4] 449, 148

(761, 4591, 286) 407 359, [6] 276, [24, 6] 268, [24, 6, 5] 539, 174

(857, 5167, 322) 473 413, [8] 317, [27, 8] 315, [27, 10, 4] 615, 196

BLISS I+II [DDLL13]

(512, 12289, 154) 267 216, [6] 166, [15, 3] 159, [23, 11, 1] 292, 102

GLP I [GLP12]

(512, 8383489, 342) 326 326, [0] 262, [10, 0] 184, [27, 11, 2] 148, 60

Table 3: Bit complexities for our LSH-Meet-LWE using Rep-0, Rep-1 from Sec-
tions 3 and 4 with depths-{2− 4} search trees. We give the optimized values of
ε in square brackets. The last column provides the complexity of lattice-based
attacks relying on the results of [DDGR20].

(the constant 16.4 replaces o(β) in the asymptotic SVP complexity 20.292β+o(β),
see [APS15]). The values for β as well as the bit complexities of the primal attack
are given in the last column of Table 3.

https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675


How to Find Ternary LWE Keys Using Locality Sensitive Hashing 15

Parameter Sets. In Table 3 we consider three different NTRU encryption schemes:
the IEEE-2008 NTRU standard from [IEE08] with 12 different parameter sets, 4
parameter sets from the NIST standardisation candidate NTRU [CDH+20], and
3 parameter sets from the alternative NIST standardisation candidate NTRU
Prime [BBC+20]. We also consider two signature schemes based on ternary LWE:
BLISS with parameter sets I and II from [DDLL13] and GLP [GLP12]. Except
BLISS, all these schemes the weight of e is chosen to be 2 · bn/3c. Note that
the exact value of the error weight is relevant only for the lattice attack, while
our LSH-Meet-LWE’s complexity algorithm is independent of e’s weight, but
highly sensitive to the weight of the secret s. Both LSH-Meet-LWE and lattice
reduction require memory exponential in n.

Conclusions. From Table 3 we observe that our combinatorial LSH-Meet-LWE
attack highly profits from small weight. For example, the third package of NTRU
IEEE-2008 parameters (speed optimized according to the specification [IEE08])
has smallest weight relative to n. For all four instances of this package, our
estimates outperform the lattice estimates.

The decision to choose larger weights in recent standardization proposals
such as NTRU [CDH+20] and NTRU Prime [BBC+20] appears to be a wise
decision in light of our new combinatorial attack results. For these instances, we
cannot compete with current lattice estimates.

We note that the figures in Table 3 both for lattices and LSH-Meet-LWE
are likely to underestimate actual costs. For lattices, the 20.292β+16.4 Core-SVP
model does not include several SVP calls within the BKZ reduction, and also
hides the complexity of decoding random spherical codes of length O(

√
β). For

LSH-Meet-LWE, we omit polynomial factors for LSH-Odlyzko and sorting.

6 Cold boot attack

Our combinatorial Rep-1 attack performs best when the secret is sparse. In some
cases, see Table 3, it even outperforms lattice-based attacks. Sparse secrets also
naturally appear in the so-called cold boot attack scenario [HSH+09]. Belonging
to the class of side-channel attacks, in an cold-boot attack one has read-access
to RAM where the secret key is stored, but some small fraction of bits in this
RAM is flipped (after power shut-down).

Thus an attacker obtains a noisy version s′ of the secret key s. Concretely,
let s′ = s+∆, where ∆ is of small Hamming weight w∆. With this noisy secret
s′, the attacker produces from the original ternary LWE instance (A, b) a new
instance (A, b′), where

b′ = b−As′ = A ·∆+ e,

i.e., we replace the secret s by ∆.
Following [HSH+09,ADP18], let us assume a typical average bit flip rate of

0.55%. In order to estimate w∆, we notice that a ternary NTRU secret key
requires 2n bits of storage, since each coefficient occupies 2 bits. Therefore, we



16 Elena Kirshanova1,2 and Alexander May1 *

(n, q, w,w∆) Rep-1 Lattices [ACD+18]
[bit], ε 0.292β + 16.4

NTRU [CDH+20]

(509, 2048, 254, 6) 40, [0] 41

(677, 2048, 254, 8) 42, [0] 48

(821, 4096, 510, 10) 60, [2] 56

(701, 8192, 468, 8) 43, [0] 47

NTRU Prime [BBC+20]

(653, 4621, 288, 8) 42, [0] 47

(761, 4591, 286, 9) 57, [2] 48

(857, 5167, 322, 10) 60, [2] 55

BLISS I+II [DDLL13]

(512, 12289, 154, 6) 41, [0] 38

GLP I [GLP12]

(512, 8383489, 342, 6) 40, [0] 33

Table 4: Bit complexities for the cold boot attack on NTRU-type encryption
schemes and signatures. Lattice-based attacks are estimated using the results
from [ACD+18].

expect w∆ = d2n · 0.55100 e. For the concrete cryptographic parameters in Table 4
this translates to w∆ in a range between 6 and 10.

We note that some implementations may choose to store the secret keys dif-
ferently than just two bits per coefficient, and this will impact the efficiency of
our cold boot attack. For example, [CDH+20] describes a compression mecha-
nism of ternary keys to bit-strings. Thus, flipping one bit of the bit-string may
impact many entries in the ternary key. For simplicity of exposition, we ignore
such implementation subtleties here.

Let us now apply our Rep-1 attack to this new extremely sparse secret LWE
setup. Concrete figures are given in Table 4. Since the secret is very sparse, we do
not have to construct deep search trees to outperform lattice attacks. It is suffices
to the consider depth-2 Rep-1 (or even sometimes Rep-0) algorithm. To estimate
lattice-based attacks for sparse secret we use the estimator from [ACD+18] since
it incorporates the so-called ‘drop-and-solve’ guessing technique for sparse secret,
see [ACW19].

This ‘drop-and-solve’ technique can be applied as well to our algorithm: we
guess that a certain c coordinates of s′ are 0 and remove these columns from
the matrix A. The probability of guessing the 0’s correctly is p0 =

(
w∆
n−c
)
/
(
w∆
n

)
.

The LWE problem becomes easier as the dimension is now n− c, but the overall

https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675


How to Find Ternary LWE Keys Using Locality Sensitive Hashing 17

runtime has to take the guessing into account. We find the optimal choice for
c by exhaustive search. For our attack, the total saving is around a factor of
2 (i.e., one bit in the security level). For the parameter sets from Table 4 our
Rep-1 attack performs similar to or even better than lattice-based attacks.

References

ACD+18. Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel
Player, Eamonn W. Postlethwaite, Fernando Virdia, and Thomas Wun-
derer. Estimate all the LWE, NTRU schemes! In Dario Catalano and
Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages 351–
367. Springer, Heidelberg, September 2018. 13, 16

ACW19. Martin R. Albrecht, Benjamin R. Curtis, and Thomas Wunderer. Exploring
trade-offs in batch bounded distance decoding. In Kenneth G. Paterson and
Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS, pages 467–491.
Springer, Heidelberg, August 2019. 16

ADP18. Martin R. Albrecht, Amit Deo, and Kenneth G. Paterson. Cold boot attacks
on ring and module LWE keys under the NTT. IACR TCHES, 2018(3):173–
213, 2018. https://tches.iacr.org/index.php/TCHES/article/view/7273. 3,
15

AI06. Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. In 47th FOCS, pages
459–468. IEEE Computer Society Press, October 2006. 4

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. Journal of Mathematical Cryptology, 9(3):169–
203, 2015. 14

BBC+20. Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok
Chuengsatiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola
Tuveri, Christine van Vredendaal, and Bo-Yin Yang. NTRU Prime: round
3, 2020. https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf. 2, 14,
15, 16, 20

BCJ11. Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic
algorithms for hard knapsacks. In Kenneth G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 364–385. Springer, Heidelberg,
May 2011. 2

BDGL16. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New direc-
tions in nearest neighbor searching with applications to lattice sieving. In
Robert Krauthgamer, editor, 27th SODA, pages 10–24. ACM-SIAM, Jan-
uary 2016. 13

BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. De-
coding random binary linear codes in 2n/20: How 1 + 1 = 0 improves infor-
mation set decoding. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 520–536. Springer, Hei-
delberg, April 2012. 2

CDH+20. Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hülsing, Joost Ri-
jneveld, John M. Schanck, Tsunekazu Saito, Peter Schwabe, William Whyte,
Keita Xagawa, Takashi Yamakawa, and Zhenfei Zhang. PQC round-3 candi-
date: NTRU. technical report, 2020. https://ntru.org/f/ntru-20190330.pdf.
2, 14, 15, 16, 20

https://tches.iacr.org/index.php/TCHES/article/view/7273
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://ntru.org/f/ntru-20190330.pdf


18 Elena Kirshanova1,2 and Alexander May1 *

DDGR20. Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE
with side information: Attacks and concrete security estimation. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, vol-
ume 12171 of LNCS, pages 329–358. Springer, Heidelberg, August 2020. 2,
3, 13, 14

DDLL13. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal Gaussians. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 40–56.
Springer, Heidelberg, August 2013. 2, 14, 15, 16, 20

GLP12. Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428
of LNCS, pages 530–547. Springer, Heidelberg, September 2012. 2, 14, 15,
16, 20

HJ10. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard
knapsacks. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 235–256. Springer, Heidelberg, May / June 2010. 2

HPS98. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based
public key cryptosystem. In Proceedings of the Third International Sympo-
sium on Algorithmic Number Theory, ANTS-III, page 267–288. Springer-
Verlag, 1998. 2, 4

HSH+09. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Lest we remember: Cold-boot attacks on encryption
keys. Commun. ACM, 52(5):91–98, May 2009. 15

IEE08. IEEE standard specification for public key cryptographic techniques based
on hard problems over lattices. IEEE Std 1363.1-2008, pages 1–81, 2008.
2, 3, 14, 15, 20

IM98. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98, page 604–613, 1998.
4, 5

Ind01. Piotr Indyk. On approximate nearest neighbors under `∞-norm. Journal
of Computer and System Sciences, 63(4):627–638, 2001. 4

May21. Alexander May. How to meet ternary LWE keys. In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages
701–731, Virtual Event, August 2021. Springer, Heidelberg. 2, 3, 6, 9, 10

MO15. Alexander May and Ilya Ozerov. On computing nearest neighbors with
applications to decoding of binary linear codes. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 203–228. Springer, Heidelberg, April 2015. 3

Ngu21. Phong Nguyen. Boosting the hybrid attack on ntru: Torus lsh, permuted
hnf and boxed sphere, 2021. https://csrc.nist.gov/Presentations/2021/
boosting-the-hybrid-attack-on-ntru. 4

A More representations from the error vector

One of the alternatives to the approximate matching technique from the previous
section is exact matching, where we explicitly enumerate all possible error vectors

https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675
https://csrc.nist.gov/Presentations/2021/boosting-the-hybrid-attack-on-ntru
https://csrc.nist.gov/Presentations/2021/boosting-the-hybrid-attack-on-ntru


How to Find Ternary LWE Keys Using Locality Sensitive Hashing 19

on the coordinates we merge on. The simplest algorithm, Rep-0, constructs a
depth-2 tree of lists as follows. For some optimal integer 0 ≤ k < n (we explain
how to choose it below), the top-most lists are of the form (cf. Eqs. (5))

L
(2)
1 = {(s(2)1 ∈ T n

2

(w
8

)
× 0

n
2 )} × {e(2)1 ∈ T k

(wk
4

)
}

L
(2)
2 = {(s(2)2 ∈ 0

n
2 × T n

8

(w
2

)
)} × {e(2)2 ∈ T k

(wk
4

)
}

L
(2)
3 = {(s(2)3 ∈ T n

2

(w
8

)
× 0

n
2 )} × {e(2)3 ∈ T k

(wk
4

)
}

L
(2)
4 = {(s(2)4 ∈ 0

n
2 × T n

2

(w
8

)
)} × {e(2)4 ∈ T k

(wk
4

)
},

(6)

where wk is the expected weight of the error vector on k coordinates. These lists

are of size
∣∣∣L(2)
i

∣∣∣ =
(

n/2
w/8,w/8,·

)
·
(

w
wk/8,wk/8,·

)
. Note that these lists, in addition to

si’s, enumerate partial error vectors ei such that when we merge L
(2)
1 with L

(2)
2 ,

and L
(2)
3 with L

(2)
4 , we obtain several solutions to the equation

A(s
(2)
1 + s

(2)
2 ) + (e1 + e2) = b−A(s

(2)
3 + s

(2)
4 ) + (e3 + e4).

In particular, we have on expectation Rs =
(
w/2
w/4

)2
representations of s as

s = (s
(2)
1 + s

(2)
2 ) + (s

(2)
3 + s

(2)
4 ), while for e we have Re =

(
wk/2
wk/4

)2
represen-

tations of the form e = (e
(2)
1 + e

(2)
2 ) + (e

(2)
3 + e

(2)
4 ). In total, there are Rs · Re

representations of the solution (s, e). Therefore, we construct a 1/(Rs · Re)-
fraction of all (s

(2)
1 , s

(2)
2 ; e

(2)
1 , e

(2)
2 ) by looking only at those that give As

(2)
1 +e

(2)
1 =

As
(2)
2 − e

(2)
2 mod q on k coordinates for the lists L1, L2, and only at those that

give As
(2)
3 + e

(2)
3 = b − As(2)4 − e

(2)
4 mod q on k coordinates for L3, L4. The k

is chosen such that k ≈ logq(Rs · Re), so on expectation one solution quadruple

(s
(2)
1 , s

(2)
2 ; e

(2)
1 , e

(2)
2 ) survives.

After we merge and filter out pairs (s
(2)
1 , s

(2)
2 ) that do not satisfy s

(2)
1 +s

(2)
2 ∈

T n
(
w
4

)
(analogously for e

(2)
1 + e

(2)
2 , s

(2)
3 + s

(2)
4 , and e

(2)
3 + e

(2)
4 ) we obtain the

following two lists

L
(1)
1 = {s(1)1 = s

(2)
1 + s

(2)
2 ∈ T n

(w
4

)
, e

(1)
1 = e

(2)
1 + e

(2)
2 ∈ T k

(wk
2

)
:

As
(1)
1 + e

(1)
1 = 0 mod q on k coordinates}

L
(1)
2 = {s(1)2 = s

(2)
3 + s

(2)
4 ∈ T n

(w
4

)
, e

(1)
2 = e

(2)
3 + e

(2)
4 ∈ T k

(wk
2

)
:

b−As(1)2 − e
(1)
2 = 0 mod q on k coordinates}

These lists are of size |Lj | =
∣∣∣L(2)
i

∣∣∣2 /(Rs · Re). It remains to merge the

elements from L
(1)
1 with the elements from L

(1)
2 on n−k coordinates. We do that



20 Elena Kirshanova1,2 and Alexander May1 *

(n, q, w) Rep-0 Rep-1 εs, εe Rep-1 εs, εe
depth 3 depth 4

NTRU IEEE [IEE08]

(401, 2048, 226) 251 196 [14, 4], [6, 0] 173 [26, 10, 4], [0, 0, 0]

(449, 2048, 268) 279 217 [12, 4], [2, 0] 189 [32, 10, 4], [0, 0, 0]

(677, 2048, 314) 403 290 [16, 6], [0, 0] 258 [32, 16, 6], [6, 0, 0]

(1087, 2048, 240) 438 330 [16, 6], [0, 0] 300 [34, 14, 2], [0, 0, 0]

(541, 2048, 98) 203 158 [18, 4], [0, 0] 150 [22, 6, 4], [0, 0, 0]

(613, 2048, 110) 219 165 [8, 2], [0, 0] 161 [20, 6, 4], [0, 0, 0]

(887, 2048, 162) 326 241 [18, 6], [0, 0] 234 [26, 8, 0], [8, 2, 0]

(1171, 2048, 212) 428 326 [16, 4], [0, 0] 297 [34, 10, 0], [0, 0, 0]

(659, 2048, 76) 184 147 [8, 0], [0, 0] 147 [20, 8, 0], [0, 0, 0]

(761, 2048, 84) 204 156 [6, 0], [0, 0] 156 [18, 6, 2], [0, 0, 0]

(1087, 2048, 126) 291 220 [16, 4], [0, 0] 214 [24, 8, 2], [0, 0, 0]

(1499, 2048, 158) 385 286 [16, 2], [0, 0] 280 [24, 8, 0], [8, 2, 0]

NTRUEnc [CDH+20]

(509, 2048, 254) 300 228 [12, 4], [0, 0] 198 [32, 10, 6], [0, 0, 0]

(677, 2048, 254) 360 265 [16, 6], [8, 2] 235 [32, 12, 4], [0, 0, 0]

(821, 4096, 510) 521 402 [16, 6], [0, 0] 365 [32, 18, 8], [8, 2, 0]

(701, 8192, 468) 464 358 [10, 8], [0, 0] 296 [34, 16, 8], [0, 0, 0]

NTRU Prime [BBC+20]

(653, 4621, 288) 366 270 [16, 6], [0, 0] 237 [32, 14, 6], [0, 0, 0]

(761, 4591, 286) 403 299 [16, 6], [0, 0] 269 [32, 16, 10], [4, 0, 0]

(857, 5167, 322) 468 339 [14, 6], [0, 0] 317 [34, 14, 2], [0, 0, 0]

BLISS I+II [DDLL13]

(512, 12289, 154) 316 244 [14, 4], [0, 0] 208 [26, 16, 4][0, 0, 0]

GLP I [GLP12]

(512, 8383489, 342) 327 250 [6, 4], [0, 0] 214 [30, 14, 4][0, 0, 0]

Table 5: Bit complexities of the Rep-0, Rep-1 with depth-3 search tree, and Rep-1
with depth-4 search tree algorithms with additional representations coming from
enumerating the error vector. In some cases this approach gives slightly better
results than the algorithm from Section 4. We mark them in bold.

https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675


How to Find Ternary LWE Keys Using Locality Sensitive Hashing 21

with Oldyzko’s LSH. Overall, the time and space complexities are determined

by max

{∣∣∣L(2)
i

∣∣∣ , ∣∣∣L(1)
j

∣∣∣ , ∣∣∣L(1)
j

∣∣∣2 /2n−k} for 1 ≤ i ≤ 4, 1 ≤ j ≤ 2.

The concrete cost of this attack is given in the column Rep-0 in Table 5. From
the table, one concludes that this approach performs similarly to the LSH Rep-0
algorithm from the Section 4. Similar to Rep-1 algorithms, the algorithm with
representations for error becomes faster when we add representations of 0’s and
more levels. The details of this extension are given below. We note that with
these additional representations we achieve the runtimes that are comparable
with those for the LSH algorithms, cf. Table 5.

A.1 Representations of 0 for the error vector

Let us consider an algorithm that constructs a depth-3 tree of lists. The reader is
advised to follow Figure 3 while reading this description. We implicitly assume
that all fractions that appear are integers by appropriate rounding. We count
the levels from bottom to top starting with 0, e.g., on level 3 we have 8 lists. The
algorithm is parametrised by two 2-dimensional arrays εs and εe, whose values
represent the number of additional 1’s and -1’s for the secret s added on level 2
(εs[2]) and on level 1 (εs[1]). These values are subject to optimisations and, for
concrete parameters, are given in Table 5.

On each level we target a certain weight of the secret s(0) := s. Enumeration
for s here is exactly the same as in Section 2. That is, starting from the bottom,
where the solution s is of weight w, i.e., s ∈ T n(w/2), we split s into s =

s
(1)
1 + s

(1)
2 , thus giving us, as in the previous section,

(
w/2
w/4

)2
ways to represent

1’s and -1’s in s, and
(

n−w
εs[1],εs[1],·

)
ways to represent 0’s in s. The total number

of representations for s is on level 1 therefore,

R(1)
s =

(
w/2

w/4

)2

·
(

n− w
εs[1], εs[1], ·

)
.

Next, we go one level up by splitting s
(1)
1 (analogously for s

(1)
2 ) into two vectors

s
(2)
1 , s

(2)
2 , each from T n(w8 + εs[1]

2 + εs[2]). Therefore, the 1’s and -1’s in s
(1)
1 can

be represented in
(
w/4+εs[1]
w/8+εs[1]/2

)2
ways, while for 0’s of s21 we have

(
n−w/2−2εs[1]
εs[2],εs[2],·

)
representations. In total on level 2, we have

R(2)
s =

(
w/4 + εs[1]

w/8 + εs[1]/2

)2

·
(
n− w/2− 2εs[1]

εs[2], εs[2], ·

)
representations for s. Depth-3 algorithm will enumerate them in the meet-in-

middle way by considering s21 = s31 + s32, where s3i ∈ T n/2( w16 + εs[1]
4 + εs[2]

2 ).
In order to understand how we enumerate partial errors, let us now go from

top to bottom. On each level above the merging, we additionally enumerate
the error vectors for the coordinates we are going to merge on. For example, on



22 Elena Kirshanova1,2 and Alexander May1 *

level 3, we enumerate all vectors e1, e2 from T k2(wk24 + εe[2]), where wk2 is the
expected weight of e on some k2 coordinates.

Li = {si ∈ T
n
2

(
w

16
+
ε[1]

4
+
ε[2]

2

)
× 0

n
2 } × {ei ∈ T k2

(wk2
4

+ εe[2]
)
}, i− odd

Li = {si ∈ 0
n
2 × T n

2

(
w

16
+
ε[1]

4
+
ε[2]

2

)
} × {ei ∈ T k2

(wk2
4

+ εe[2]
)
}, i− even.

We now explain how we choose k2. When we merge, say, L
(3)
1 with L

(3)
2 into L

(2)
1 ,

we want to make sure that in L
(2)
1 there remains on expectation one solution

quadruple (s1, e1), (s2, e2) that satisfies As1 + e1 = As2 + e2 mod q. As usual,
we do so by considering only those (s1, e1), (s2, e2) for which As1 + e1 = As2 +
e2 mod q on k2 coordinates. Note that the number of ways to represent the error
vector e on k2 coordinates as e = e1 + e2 is

R(2)
e =

(
wk2/2

wk2/4

)2

·
(

n− wk2
εe[2], εe[2], ·

)
,

where the first multiple counts the number of representations of 1’s and -1’s,
while the second computes the number of representations of 0’s in e on k2 coor-

dinates. Thus the value k2 is chosen to satisfy k2 = logq(R(2)) = logq(R
(2)
e ·R(2)

e ).
This is an equation in k2 that can be found for concrete parameters.

The top-level lists are merged into 4 lists:

L
(2)
i = {s(2)i ∈ T

n

(
w

8
+
εs[1]

2

)
,ei ∈ T k2

(wk2
2

)
:

Asi + ei = 0 mod q on k2 coordinates},

for i ≤ 4. We augment each such list with the set {ei ∈ T k1 (wk1/4 + ε[1])},
where k1 is the number of coordinates we are going to merge on. Therefore, the
number of representations on level 1, i.e., after we merge on level 2, is R(1) =

R(1)
e · R(1)

s , where

R(1)
e =

(
wk1/2

wk1/4

)2

·
(

n− wk1
εe[1], εe[1], ·

)
,

and k := k1 + k2 = logq(R(1)). This gives us an equation in k1. We now have

two lists L
(1)
1 , L

(2)
2 , which contain on expectation one pair s

(1)
1 , s

(1)
2 that sums to

the secret s and one pair e
(1)
1 , e

(2)
1 that sums to the error e on k coordinates. We

find these elements using Odlyzko’s LSH on the remaining n− k coordinates.
The overall runtime is determined by the cost of constructing the most ex-

pensive level (we remove the subscripts in the lists, since the lists on the same
level are expected to have the same size):

T = max

{∣∣∣L(3)
∣∣∣ , ∣∣L(3)

∣∣2
qk1

;
∣∣∣L(2)

∣∣∣ , ∣∣L(2)
∣∣2

qk2
;
∣∣∣L(1)

∣∣∣ , ∣∣L(1)
∣∣2

2n−k1−k2

}
.

For concrete parameters the value for T is found by optimising k1 and k2.

https://orcid.org/0000-0001-8924-7605
https://orcid.org/0000-0001-5965-5675


How to Find Ternary LWE Keys Using Locality Sensitive Hashing 23

L
(3)
1 L

(3)
2 L

(3)
3 L

(3)
4 L

(3)
5 L

(3)
6 L

(3)
7 L

(3)
8

As
(2)
1 + e

(2)
1 = 0 on k2

L
(2)
1 0

k2

L
(2)
2 0

k2

L
(2)
3 0

k2

L
(2)
4 0

k2

As
(1)
1 + e

(1)
1 = 0 on k1

L
(1)
1 0

k

k2k1

L
(1)
2 0

k

L(0)

Fig. 3: Rep-1 algorithm of depth-3 with representations for the error vector


	How to Find Ternary LWE Keys  Using Locality Sensitive Hashing

