How to find the equation of tangent line at a given point by using derivative

Example 1: Given $y=f(x)=2 x^{3}-4 x^{2}+6 x-3$ find the equation of tangent line at $x=2$
Step $1 \mathrm{x}=2 \quad \mathrm{y}=\mathrm{f}(2)=2(2)^{3}-4(2)^{2}+6(2)-3=9$ so the point will be $(2,9)$
Step 2 Now to find general slope of the tangent line, we need to find $y^{\prime}=f^{\prime}(x)=6 x^{2}-8 x+6$
Step 3 now at $\mathrm{x}=2 \quad \mathrm{~m}=\mathrm{f}^{\prime}(2)=6(2)^{2}-8(2)+6=14$
Step 4 So we use point slope formula to find the equation of tangent line $y-y_{1}=m\left(x-x_{1}\right)$
$y-9=14(x-2)$ then final answer is $y=14 x-19$
Check: graph both $y=f(x)$ and tangent equation in Desmos to see if it is correctly tangent to $f(x)$ at $x=2$

Example 2: Given $\mathrm{y}=\mathrm{f}(\mathrm{x})=2 \sin 2 \mathrm{x}-3 \cos \mathrm{x}$ find the equation of tangent line at $\mathrm{x}=\pi$
Step $1 x=\pi \quad y=f(\pi)=2 \sin (2 \pi)-3 \cos (\pi)=0-3(-1)=3$ so the point will be $(\pi, 3)$
Step 2 Now to find general slope of the tangent line, we need to find $y^{\prime}=f^{\prime}(x)=2(2 \cos (2 x))-3(-\sin x)$
Step 3 now at $x=2 \quad m=f^{\prime}(\pi)=f^{\prime}(x)=2(2 \cos (2 \pi))-3(-\sin \pi)=4$
Step 4 So we use point slope formula to find the equation of tangent line $y-y_{1}=m\left(x-x_{1}\right)$
$y-3=4(x-\pi)$ then final answer is $y=4 x-4 \pi+3$
Check: graph both $y=f(x)$ and tangent equation in Desmos to see if it is correctly tangent to $f(x)$ at $x=\pi$

Example 3: Given the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ or $9 x^{2}+4 y^{2}=36$ find the equation of tangent line at $x=1$
Step $1 \mathrm{x}=1 \quad 9(1)^{2}+4 \mathrm{y}^{2}=36 \quad 4 \mathrm{y}^{2}=27 \quad \mathrm{y}= \pm \sqrt{\frac{27}{4}}= \pm 2.6$ so the point will be $(1,2.6)$ and $(1,-2.6)$
Step 2 Now to find general slope of the tangent line, we need to find derivative by using implicit differentiation $18 x+8 y y^{\prime}=0 \quad 9 x+4 y y^{\prime}=0 \quad m=y^{\prime}=-\frac{9 x}{4 y}$

Step 3 Now because we have two points then we will be having two slopes

$$
\mathrm{m}_{1}=\mathrm{y}^{\prime}=-\frac{9(1)}{4(2.6)}=-.865 \quad \text { and } \quad \mathrm{m}_{2}=\mathrm{y}^{\prime}=-\frac{9(1)}{4(-2.6)}=.865
$$

Step 4 So we use point slope formula to find the equation of tangent line $y-y_{1}=m\left(x-x_{1}\right)$
At $(1,2.6)$ and $\mathrm{m}_{1}=-.865 \quad \mathrm{y}-2.6=-.865(\mathrm{x}-1) \quad \mathrm{y}=-.865 \mathrm{x}+3.465$

$$
\text { At }(1,-2.6) \text { and } \mathrm{m}_{1}=.865 \quad \mathrm{y}+2.6=.865(\mathrm{x}-1) \quad \mathrm{y}=.865 \mathrm{x}-3.465
$$

then final answer is $y=4 x-4 \pi+3$
Check: graph both $y=f(x)$ and tangent equation in Desmos to see if it is correctly tangeny to $f(x)$ at $(1,2.6)$ and (1,-2.6)

\qquad
Tangent Lines
Date
Period
For each problem, find the equation of the line tangent to the function at the given point. Your answer should be in slope-intercept form.

1) $y=x^{3}-3 x^{2}+2$ at $(3,2)$

2) $y=x^{3}-2 x^{2}+2$ at $(2,2)$
3) $y=-\frac{3}{x^{2}-4}$ at $(1,1)$
4) $y=(5 x+5)^{\frac{1}{2}}$ at $(4,5)$
5) $y=\ln (-x)$ at $(-2, \ln 2)$
6) $y=-2 \tan (x)$ at $(-\pi, 0)$
\qquad
Tangent Lines
Date \qquad Period \qquad
For each problem, find the equation of the line tangent to the function at the given point. Your answer should be in slope-intercept form.
7) $y=x^{3}-3 x^{2}+2$ at $(3,2)$

$$
y=9 x-25
$$

2) $y=-\frac{5}{x^{2}+1}$ at $\left(-1,-\frac{5}{2}\right)$

$$
y=-\frac{5}{2} x-5
$$

3) $y=x^{3}-2 x^{2}+2$ at $(2,2)$

$$
y=4 x-6
$$

4) $y=-\frac{3}{x^{2}-25}$ at $\left(-4, \frac{1}{3}\right)$

$$
y=-\frac{8}{27} x-\frac{23}{27}
$$

5) $y=-\frac{3}{x^{2}-4}$ at $(1,1)$

$$
y=\frac{2}{3} x+\frac{1}{3}
$$

6) $y=(5 x+5)^{\frac{1}{2}}$ at $(4,5)$

$$
y=\frac{1}{2} x+3
$$

7) $y=\ln (-x)$ at $(-2, \ln 2)$
$y=-\frac{1}{2} x+\ln 2-1$
8) $y=-2 \tan (x)$ at $(-\pi, 0)$

$$
y=-2 x-2 \pi
$$

1. Find the equation of the tangent line to the graph of the given function at the given point:
$f(x)=x-3 x^{2} ; \quad P(-2,-14)$
2. Find the equation of the tangent line to the graph of the given function at the given point:
$f(x)=-1+2 x+3 x^{2} ; \quad P(0,-1)$
3. Find the equation of the tangent line to the graph of the given function at the given point:
$f(x)=-2-x^{2} ; \quad P(2,-6)$
4. Find the equation of the tangent line to the graph of the given function at the given point:
$f(x)=x-x^{2} ; \quad P(0,0)$
5. Find the equation of the tangent line to the graph of the given function at the given point:
$f(x)=-3+2 x+x^{2} ; \quad P(3,12)$
6. Find the equation of the tangent line to the graph of the given function at the given point:
$f(x)=-3+2 x-2 x^{2} ; \quad P(3,-15)$
7. Find the equation of the tangent line to the graph of the given function at the given point:
$f(x)=1-2 x+x^{2} ; \quad P(0,1)$
8. Find the equation of the tangent line to the graph of the given function at the given point:
$f(x)=3+2 x-3 x^{2} ; \quad P(1,2)$
9. Find the equation of the tangent line to the graph of the given function at the given point:
$f(x)=3-2 x^{2} ; \quad P(-1,1)$
10. Find the equation of the tangent line to the graph of the given function at the given point:
$f(x)=2+x+3 x^{2} ; \quad P(0,2)$

:s.əдмsū

Solutions:

1. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(x-3 x^{2}\right)=1-6 x$

4 Find the first derivative of the function.
$m=f^{\prime}(-2)=1-6(-2)=13 \quad \triangleleft$ Find the slope of the tangent line at the given point P.
$y-(-14)=13[x-(-2)] \quad$ U Use the Point-Slope formula: $y-y_{1}=m\left(x-x_{1}\right) \quad \rightarrow$ Then simplify:
$y=13 x+12$
2. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(-1+2 x+3 x^{2}\right)=2+6 x \quad$ Find the first derivative of the function.
$m=f^{\prime}(0)=2+6(0)=2 \quad \triangleleft$ Find the slope of the tangent line at the given point P.
$y-(-1)=2[x-(0)] \quad$ Use the Point-Slope formula: $y-y_{1}=m\left(x-x_{1}\right) \quad$ Then simplify:
$y=2 x-1$
3. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(-2-x^{2}\right)=-2 x \quad$ \& Find the first derivative of the function.
$m=f^{\prime}(2)=-2(2)=-4 \quad$ \& Find the slope of the tangent line at the given point P.
$y-(-6)=-4[x-(2)] \quad$ U Use the Point-Slope formula: $y-y_{1}=m\left(x-x_{1}\right) \quad \rightarrow$ Then simplify: $y=-4 x+2$
4. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(x-x^{2}\right)=1-2 x \quad$ \& Find the first derivative of the function.
$m=f^{\prime}(0)=1-2(0)=1 \quad \triangleleft$ Find the slope of the tangent line at the given point P.
$y-(0)=1[x-(0)] \quad$ Use the Point-Slope formula: $y-y_{1}=m\left(x-x_{1}\right) \quad$ Then simplify:
$y=x 0$
5. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(-3+2 x+x^{2}\right)=2+2 x \quad \triangleleft$ Find the first derivative of the function.
$m=f^{\prime}(3)=2+2(3)=8 \quad$ \& Find the slope of the tangent line at the given point P.
$y-(12)=8[x-(3)] \quad$ Use the Point-Slope formula: $y-y_{1}=m\left(x-x_{1}\right) \quad$ Then simplify:
$y=8 x-12$
6. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(-3+2 x-2 x^{2}\right)=2-4 x \quad \measuredangle$ Find the first derivative of the function.
$m=f^{\prime}(3)=2-4(3)=-10 \quad \triangleleft$ Find the slope of the tangent line at the given point P.
$y-(-15)=-10[x-(3)] \quad$ «Use the Point-Slope formula: $y-y_{1}=m\left(x-x_{1}\right) \quad$ Then simplify:
$y=-10 x+15$
7. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(1-2 x+x^{2}\right)=-2+2 x \quad \triangleleft$ Find the first derivative of the function.
$m=f^{\prime}(0)=-2+2(0)=-2 \quad$ © Find the slope of the tangent line at the given point P.
$y-(1)=-2[x-(0)] \quad$ Use the Point-Slope formula: $y-y_{1}=m\left(x-x_{1}\right) \quad$ Then simplify:
$y=-2 x+1$
8. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(3+2 x-3 x^{2}\right)=2-6 x \quad$ \& Find the first derivative of the function.
$m=f^{\prime}(1)=2-6(1)=-4 \quad$ \& Find the slope of the tangent line at the given point P.
$y-(2)=-4[x-(1)] \quad$ Use the Point-Slope formula: $y-y_{1}=m\left(x-x_{1}\right) \quad$ Then simplify:
$y=-4 x+6$
9. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(3-2 x^{2}\right)=-4 x \quad \measuredangle$ Find the first derivative of the function.
$m=f^{\prime}(-1)=-4(-1)=4 \quad \triangleleft$ Find the slope of the tangent line at the given point P .
$y-(1)=4[x-(-1)] \quad$ Use the Point-Slope formula: $y-y_{1}=m\left(x-x_{1}\right) \quad$ Then simplify:
$y=4 x+5$
10. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(2+x+3 x^{2}\right)=1+6 x \quad \triangleleft$ Find the first derivative of the function.
$m=f^{\prime}(0)=1+6(0)=1 \quad \triangleleft$ Find the slope of the tangent line at the given point P .
$y-(2)=1[x-(0)]$ «Use the Point-Slope formula: $y-y_{1}=m\left(x-x_{1}\right) \quad$ Then simplify:
$y=x+2$

