
How to handle the complexity of migrate to
Microservices from Monolithic 10 years of code

Reasons to being or not involved in migrating to Microservices

Alberto Salazar,
CTO Advance Latam

4th May 2017

Who am I?
! Developer -> Architect -> Speaker

! Founder and CTO: AdvanceLatam & Cloudbanco

! Involved on a C level for the last 10 years

! Working 17 years with monolithic & continue

writing code

! Founder and Leader EcuadorJUG

! JCP Associate Member & JSR’s early adopter

Alberto Salazar

Alberto Salazar

@betoSalazar
@EcuadorJUG

asalazar@advlatam.com

www.advlatam.com www.cloudbanco.com www.ecuadorjug.org

Agenda
! The use case - The evolution of 10 years of code

! The motivation to move from Monolith to Microservices

! The fact - 10 years of code

! The path - Tips, tricks, pros & cons of Microservices

! Summary

The evolution of 10 years of code

JEE 5 (2005)
JBOSS 4.2.2.GA
JSF, EJB3, EIP & others
(Facade, DAO, DTO
Services Delegate, etc).

SOA (2007)
Industry approach

ESB
BPM
BAM

(-) Not succeed
external influence

OSGi (2011)
Any App Server

SpringDM
Apache Camel
Apache ActiveMQ
Html 5 Css3 Mobile

OSGi Blueprint
(2013)
Apache Karaf
AMQ
(Split the Front-end
from the back-end)

Microservices
(2014)
-> Split the monolith
Elasticsearch
Logstash
Hazelcast

Microservices
(2016 - 2017)
+ Vert.x | Spring boot
+ Apache Cassandra
+ NodeJS, ReactJS & React Native

The use case

Banks

Branches

Mobile
Banking

Online
Banking

Bill
Paymets

ATMs

Channels

The business
You have to understand the sponsor

Providers

ERP

Others

Leasing

CORE Banking

Credit Card

BPM / CRM

! First -> Multichannel

! Lately -> Omnichannel

! Now -> Digital

Applications,
Services & Transactions

The motivation to migrate
from Monolith to Microservices

The buzz
Why microservices ?

Microservices is the architectural approach that everybody talks about and everybody wants it,
but be careful

The Goal

VELOCITY
TIME

TO MARKET

The goal that organizations need is to increasing velocity & agility;

Get into production as soon as posible;

Deploy new features as soon as posible.

The plan of move forward (Microservices ?)
The reasons of this talk

Every body are talking about the result (microservices architectural style)
but nobody are showing the pain path

The fact - 10 years of code
The Monolithic

Characteristics
The Monolith

! Attachment to language, platform & OS

! Single logical executable, deploy everything at once or
nothing at all

! Failure of part == failure of whole

! Take months even years getting into production

! Centralized authority slows the delivery process (DBA,
OPS, QA)

! Coordinated releases are hard, because brings many
changes together from different teams

1 Year of code
Always the goal was to keep the modularization

12 ejb-jars, 8 wars, 15 developers, JEE 5, build by 2 Teams (The framework & The Business)

5 Years of code
Modularization -> Osgi bundles

Around 50 osgi-modules, 3 wars, 1 ear, 40 developers, JEE + SpringDM, organized in around 5
Teams (The framework, Mobile, The Business, 3 Customization team’s)

10 Years of code
Modular WTF

More than 100 osgi-bundles + more than 50 jars modules, 1 ear + 5 wars, Modularize JS resources as Jars,
>100 Developers, JEE + Spring + Apache Karaf, Camel, AMQ, 10 to 15 Teams (framework, Mobile,
Business App, Customer’s team)

OMG
10 Years of code

Migrate 10 years of code, It will be Easy ?
The challenge

! > 2MM lines of highly coupled code

! Build one microservice is, easy but what

about a complete microservice architecture

based on 2MM lines of code

! Time to delivery features are between: 6 to

12 months & QA overhead $$

! Several customers using the system on

production environment

The path - Tips, tricks, pros , cons
Microservices

Microservices
Characteristics

! Independently deployable & executable

! Based on services

! High cohesion, low coupling

! Failure is isolated

! Model driven design

! Effective & efficient scaling

! Polyglot “Plus”https://martinfowler.com/articles/microservices.html
https://martinfowler.com/bliki/MicroservicePrerequisites.html

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/bliki/MicroservicePrerequisites.html

Microservices
The path

! Split the frontend from the backend

! Split the backend & keep the centralized data

! Rest endpoints & the API Gateway

! Split the data

! Don’t forget the frontend & the agility

Osgi container

engine-orchestrator.jar

dynamic-camel-routes.jar

batch.jar

services.jar

business-module1.jar

business-module2.jar
business-module3.jar
business-module-n.jar

The path

Oracle

Split the frontend from the backend (1/5)

JEE application server (JBoss or WL or WAS)

thebanking-framework.ear

ENGINE.war

ENGINE-JS.jar

wizard.war

services.war

css.war

scripts-builder.war

The path

Oracle

Split the backend (2/5)

JEE application server (JBoss or WL or WAS)

thebanking-framework.ear

ENGINE.war

ENGINE-JS.jar

wizard.war

services.war

css.war

scripts-builder.war

Osgi container

engine-orchestrator.jar

Osgi container

dynamic-camel-routes.jar

Osgi container

batch.jar

Osgi container

services.jar

Osgi container

business-module1.jar

Osgi container

business-module-n.jar

The path
Split the backend (2/5)

Osgi container

engine-orchestrator.jar

Osgi container

dynamic-camel-routes.jar

Osgi container

batch.jar

Osgi container

services.jar

Osgi container

business-module1.jar

Osgi container

business-module-n.jar

https://karaf.apache.org/manual/latest/#_custom_distributions

Apache Karaf
with a custom
distribution

install just
what you need

https://karaf.apache.org/manual/latest/#_custom_distributions

The path
Split the backend (2/5) - Logging, trace & Monitoring

http://camel.apache.org/mdc-logging.html
 http://www.baeldung.com/mdc-in-log4j-2-logback

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana

Osgi container

engine-orchestrator.jar

Osgi container

dynamic-camel-routes.jar

Osgi container

batch.jar

Osgi container

services.jar

Osgi container

business-module1.jar

Osgi container

business-module-n.jar

logstash

1) Use Mapped Diagnostic Context (MDC)
2) Introduce a correlationId
3) Collect the logs
4) Search by rest API or use Kibana

http://camel.apache.org/mdc-logging.html
http://www.baeldung.com/mdc-in-log4j-2-logback
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana

The path

Oracle

Rest endpoints & API Gateway (3/5)

JEE application server (JBoss or WL or WAS)

thebanking-framework.ear

ENGINE.war

ENGINE-JS.jar

wizard.war

services.war

css.war

scripts-builder.war

Osgi container

engine-orchestrator.jar

Osgi container

dynamic-camel-routes.jar

Osgi container

batch.jar

Osgi container

services.jar

Osgi container

business-module1.jar

Osgi container

business-module-n.jar

Service
some api

Service
some api

Service
some api

Service
some api

Service
some api

Service
some api

Osgi container

api-gateway.jar
Services

api rest

POST bank.com/api/v1/accouts

POST bank.com/api/v1/accouts

logstash

The path
Split de database (4/5)

JEE application server (JBoss or WL or WAS)

thebanking-framework.ear

ENGINE.war

ENGINE-JS.jar

wizard.war

services.war

css.war

scripts-builder.war

Osgi container

engine-orchestrator.jar

Osgi container

dynamic-camel-routes.jar

Osgi container

batch.jar

Osgi container

services.jar

Osgi container

business-module1.jar

Osgi container

business-module-n.jar

Service
some api

Service
some api

Service
some api

Service
some api

Service
some api

Service
some api

Osgi container

api-gateway.jar
Services

api rest

POST bank.com/api/v1/accouts

POST bank.com/api/v1/accouts

logstash

The path

Osgi container

api-gateway.jar
Services

api rest

POST bank.com/api/v1/accouts

POST bank.com/api/v1/accouts

logstash

Don’t forget the frontend & the agility (5/5)

Login

React nodejs

Engine Transaction

React nodejs

Module n

React nodejs

Osgi container

engine-orchestrator.jar

Osgi container

dynamic-camel-routes.jar

fat jar

batch.jar

fat jar

services.jar

fat jar

business-module1.jar

fat jar

business-module-n.jar

Service
some api

Service
some api

Service
some api

Service
some api

Service
some api

Service
some api

Summary &
Code blueprints

Summary
Microservices Architecture Losses

! Transactions

! Single data repository

! Better architects needed
! Greater complexity - it bears repeating

! the system and services have to deal with
network communications, failures, rebalances,
splits.

! Monolithic apps are far easier to develop and
debug (when viewing the platform as a whole)

Summary
Recommendations

Design your application modular (either monolith, OSGi or microservices)

Continuously refactor your modules or micro services to achieve optimal boundaries

Define your remote and async APIs carefully, design remote calls for failure

Monolithic apps only look simple from the outside, but you just open the box

A lot of help using Event Driven Architecture (decoupled, scalable, Competing
Consumers Patter)

Care about logs, monitoring and always use a CORRELATIONID and MDC

Summary
Recommendations

Each team will be able to explore and test new technology

Automate the deployment and delivery process -> CI & CD

Microservices are not everyone, be careful

Design for failover, Service load balancing and automatic scaling, data Separation,
Integrity, Performance

Use lightweight frameworks or java containers (Karaf, Vert.x, Spring boot)

Split the database

code blueprints

https://github.com/lasalazarr/fastdev

https://github.com/lasalazarr/fastdev

THANK YOU
plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

